
molecules

Article

In Vitro Anticandidal Activity and Mechanism of
a Polyoxovanadate Functionalized by
Zn-Fluconazole Complexes

Shuanli Guo 1,†, Wei Yang 2,†, Mingming Zhao 1, Rui Tian 1, Boyu Zhang 1 and Yanfei Qi 1,* ID

1 School of Public Health, Jilin University, Changchun 130021, China; guosl15@mails.jlu.edu.cn (S.G.);
mingming17@mails.jlu.edu.cn (M.Z.); tianrui16@mails.jlu.edu.cn (R.T.); boyu17@mails.jlu.edu.cn (B.Z.)

2 College of Basic Medical Science, Jilin University, Changchun 130021, China; ywei@jlu.edu.cn
* Correspondence: qiyanfei@jlu.edu.cn; Tel.: +86-431-8561-9441
† These authors contributed equally to this work.

Received: 13 April 2018; Accepted: 3 May 2018; Published: 9 May 2018
����������
�������

Abstract: The rise in the number of fungal infections is requiring the rapid development of novel
antifungal agents. A new polyoxovanadate functionalized by Zn-fluconazole coordination complexes,
Zn3(FLC)6V10O28·10H2O (ZnFLC) (FLC = fluconazole) has been synthesized and evaluated for
in vitro antifungal against Candida species. The identity of ZnFLC were confirmed by elemental
analysis, IR spectrum, and single-crystal X-ray diffraction. The antifungal activities of ZnFLC was
screened in 19 Candida species strains using the microdilution checkerboard technique. The minimum
inhibitory concentration (MIC80) value of ZnFLC is 4 µg/mL on the azole-resistant clinical isolates of
C. albicans HL973, which is lower than the positive control, FLC. The mechanism of ZnFLC against
C. albicans HL973 showed that ZnFLC damaged the fungal cell membrane and reduced the ergosterol
content. The expression of ERG1, ERG7, ERG11 ERG27, and ERG28, which have effects on the
synthesis of ergosterol, were all significantly upregulated by ZnFLC.
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1. Introduction

The Candida species including C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei are
posing serious nosocomial threats to patient populations [1–3]. Especially, the incidence of invasive Candida
infection increases significantly with the increasing number of immunocompromised syndrome (e.g.,
AIDS), organ transplant patients, and patients receiving chemotherapeutic agents for cancer treatment [4].
Meanwhile, one of the most important manifestations of a systemic candidiasis concerns the oral mucosa.
In these cases, differential diagnosis and curing of malignant and premalignant conditions is a must [5].
Azoles—such as fluconazole, itraconazole, posaconazole, and voriconazole—are considered the
first-line treatment of patients with Candida infections [6,7]. However, with the widespread and
prolonged use of azoles to treat fungal infections, drug resistance has become an increasing problem in
clinic isolates [7,8]. Therefore, there is an urgent need to develop novel efficient antifungals.

Polyoxovanadate, a unique class of metal-oxide clusters, have various properties that make
them attractive for applications in catalysis [9], magnetic [10,11], functional materials [12,13], and
medicine [14–17]. The orange decavanadate that contains 10 vanadium atoms are the predominant
polyoxovanadate species in the acidic pH range have attracted attention due to their medicinal and
biochemical behavior [14,17]. In the neutral pH range, it is kinetically inert and remains in solution
for several days. Decavanadate impacts proteins, lipid structures, and cellular function, and show
some in vivo effects on oxidative stress processes [15]. Moreover, decavanadate were found to form
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inside yeast [18]. However, to our knowledge, antifungal evaluation of decavanadate remains scarcely
reported by far.

Ergosterol is an important component throughout the fungal cell membranes, which distinguishes
fungi from bacteria, plant, and animal cells. It plays a vital role in many biological functions such as
maintaining cell integrity, regulating membrane fluidity, and the cell cycle. Ergosterol biosynthesis
pathway is thus a significant target of most existing antifungals and new antifungals under development,
for instance, fluconazole, itraconazole, amphotericin B, terbinafine, etc. [19,20]. Based on our
previous studies, the fungal membrane is the target of polyoxotungstates [21], and the antibacterial
polyoxotungstates uptake in the cell were preferentially located on the membrane with intact
composition [22,23]. Some examples have been reported that the pumps, channels, metalbotropic
receptors, lipid structures are all the potential biological targets for decavanadate [14]. Therefore, it is
necessary to research the interactions of polyoxovanadates on the membranes target.

We and other groups recently demonstrated that polyoxotungstates have antifungal activities
against various Candida species and agricultural fungal pathogens [21–23]. As a continuing work, we
synthesized a new compound, Zn3(FLC)6V10O28·10H2O (ZnFLC) which consists of the decavanadate,
zinc, and fluconazole. We evaluated the antifungal effect of ZnFLC against different species of Candida
fungus. To investigate the antifungal mechanism of ZnFLC, the ergosterol contents were determined
by high performance liquid chromatography (HPLC), and real-time PCR. This study demonstrates
that ZnFLC is a potential antifungal candidate against the Candida species.

2. Results and Discussion

2.1. Structure Description of ZnFLC

Single crystal X-ray crystallography shows that compound ZnFLC, Zn3(FLC)6V10O28·10H2O,
consists of [V10O28]6− anions, [Zn3(FLC)6]6+ and the isolated H2O molecules (Table 1). In the
asymmetric unit, there are two Zn(II) cations, three FLC ligands, and one [V10O28]6− anion. As shown
in Figure 1, the decavanadate [V10O28]6− anion shows γ-isomer, which is composed of 10 edge-sharing
VO6octahedra. There are five crystallographically independent V atoms in the unit. The V-O distances
of each MoO6 octahedron can be divided into three groups: V-Ot (terminal) 1.597(5)–1.702(4) Å, V-O12

(central) 2.086(4)–2.325(4) Å, and V-Ob (bridge) 1.687(4)–2.029(4) Å. The bond valence sum calculations
give the values of all vanadium sites are in the 5+ oxidation state. As shown in Figure S1a, the Zn(1)
cation is coordinated by two nitrogen atoms [Zn(1)−N(1) = 2.021(6) Å and Zn(1) − N(13) = 2.122(6) Å]
from different FLC molecules and three water molecules [Zn(1) − O(W1) = 2.019(5) Å, Zn(1) − O(W2)
= 1.982(6) Å and Zn(1) − O(W3) = 2.180(6) Å], showing a trigonalbipyramidal coordination geometry
[ZnN2O3]. The Zn(2) cation is six-coordinated by six nitrogen atoms from different FLC ligand with
Zn(2) − N(10) = 2.129(6) Å, Zn(2) − N(10)#2 = 2.129(6) Å, Zn(2) − N(7)#2 = 2.220(6) Å, Zn(2) − N(7)
= 2.220(6) Å, Zn(2) − N(6) = 2.277(6) Å, and Zn(2) − N(6)#2 = 2.277(6) Å, respectively (Figure S1b).
It shows octahedral coordination geometries [ZnN6]. The Zn–O and Zn–N bond lengths are all within
the normal ranges.
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Table 1. Crystal data and structure refinements for ZnFLC.

Compound ZnFLC

Formula C78H72F12N36O44V10Zn3
Formula weight 3151.23

T(K) 300(2)
Crystal system, space group Monoclinic, P21/c

Unit cell dimensions a = 16.983(2) Å, α = 90◦

b = 17.773(2) Å, β = 110.3 (4)◦

c = 20.033(3) Å, γ = 90◦

Volume (Å3) 5670.3(1)
Z, ρcalcd (g cm−3) 2, 1.846

µ (mm−1) 1.526
F(000) 3144

Crystal size 0.32 × 0.25 × 0.21 mm
Theta range for data collection 2.29–25.08◦

Limiting indices −20 ≤ h ≤ 20, −21 ≤ k ≤ 21, −23 ≤ l ≤ 23
Reflections collected/unique 79,761/10,019 [Rint = 0.1083]

Completeness to θ = 25.08 99.6%
Max. and min. transmission 0.726 and 0.639
Data/restraints/parameters 10,019/0/826

Goodness-of-fit on F2 1.068
Final R indices [I > 2sigma(I)] R1 = 0.0672, wR2 = 0.1777

R indices (all data) R1 = 0.1043, wR2 = 0.2253
Largest diff. peak and hole 1.357 and −0.767 e Å−3

2.2. FT-IR of ZnFLC

The IR spectrum of ZnFLC has the characteristic asymmetric stretching vibration peaks at 956, 918,
815, 743, 670, 651, 631, 597, 515, and 456 cm−1, which are attributed to ν(V-Oterminal) and ν(V-Obridge)
of polyoxoanion, shown in Figure S2. The characteristic peaks of ZnFLC are nearly consistent with
the reported decavanadate in the literature. The strong absorption bands at 3126, 1768, 1600, 1505,
1418, 1355, 1272, 1214, 1122, 1088, and 1039 are attributed to the characteristic peaks of the FLC ligands.
The other strong features at 1617 cm−1 are assigned to the water molecules.

2.3. Antifungal Susceptibility Testing

The MICs of ZnFLC and FLC were evaluated for standard and clinical strains of Candida spp.
As shown in Table 2, the MIC values of ZnFLC were various on different fungal strains. Except the
clinical strains HL3084, HL17034, HL3970, and the standard strain ATCC 750, the activity of ZnFLC
with MIC50 and MIC80 values of 0.5–64 µg/mL and 1–128 µg/mL were slightly higher than those
of FLC. Because the FCZ-resistant clinic isolate HL973 was sensitive to ZnFLC, further studies were
concentrated on the antifungal activities and the mechanism of ZnFLC against C. albicans HL973.

Candida species HL973, HL27, HL981, HL946, HL963, HL981, HL996, ATCC 750, ATCC 22019,
and ATCC 90028 strains were treated with equivalent doses of Zn(oac)2, NaVO3 and FLC in ZnFLC
(wt/wt %) at the MIC80 (4 µg/mL). As shown in Figure S3 the HL973, HL27, and HL963 strains in
the medium group with or without Zn(oac)2 and NaVO3 had similar growth rates, indicating that
Zn(oac)2 and NaVO3 had minimal effects. The FLC had inhibitory efficacy but lower than that of
ZnFLC. The result indicated that the antifungal activities of ZnFLC are not from the simple mixture of
metal cations and the FLC.
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Table 2. MIC values (µg/mL) of FLC and ZnFLC against fungi. MIC values were determined according
to CLSI protocol M38-A. FLC, fluconazole.

Strains
MIC80 MIC50

FCZ ZnFLC FCZ ZnFLC

C. albicans
HL973 64 4 16 2
HL963 64 32 4 1
HL996 2 4 1 0.5
HL27 2 1 1 0.5

HL3929 >256 128 >256 64
HL3973 16 8–16 8 4
HL3863 16 8 4 0.5
HL3084 16 32 4 8–16
HL3961 4 2 1 0.5
HL17034 8 16 4 4
HL3916 64 64 8 16
HL3974 16 4 0.5 0.5
HL3970 16 32 0.5 2
HL3968 32 8 4 1

ATCC 90028 1 1 0.25 0.5
C. glabrat

HL981 >256 64–128 128–256 32
C. krusei
HL946 >256 64–128 >256 32

C. parapsilosis
ATCC 22019 2 1 1 0.5
C. tropicalis
ATCC 750 4 8 4 <4

2.4. Inhibitory of ZnFLC on C. albicans HL973

The inhibitory of the C. albicans HL973 cells in the presence of various concentrations of ZnFLC
and FLC was evidenced once more by MTS method. As shown in Figure 2, after treatment by drugs,
the viability of C. albicans HL973 cells of ZnFLC have a significant reduction than that in the negative
control group (p < 0.05). The inhibition ratio of ZnFLC-treated C. albicans HL973 cells at 48 h with the
concentrations of 4, 8, 16, 32, 64, and 128 µg/mL of ZnFLC reached the peak value 77.44, 89.43, 95.71,
96.10, 96.57, 97.64, and 97.89%, respectively. The antifungal activities of ZnFLC are dose-dependent.
The result is similar to that from the broth microdilution method.
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2.5. Growth Inhibition Curves

The growth inhibition effect in the presence of various concentrations of ZnFLC, negative control,
and FLC groups on the C. albicans HL973 at different times are given in Figure 3. HL973 strains
in the medium group with or without DMSO had similar growth rates, indicating that DMSO had
minimal effects. In comparison, the yeast treated with ZnFLC and FLC with the increasing inhibitor
concentrations had significant delay in growth before 24 h. After 24 h treatment, the inhibited delay
curve quickly increased in the 4.64 µg/mL FLC group. In comparison among the delay curves, the
yeast receiving ZnFLC had a significantly higher inhibition rate than that in the FLC groups (p < 0.05).
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2.6. Cell Living/Dead Analysis on HL973

The C. albicans HL973 were plated on 6-well plates at a density of 1.0 × 106 cells/mL. After a 24 h
or 48 h in period of incubation, the fluorescence microphotographs of HL973 cells treated with (0.5%)
DMSO, ZnFLC, and FLC for 24 h and stained with AO/EB were shown in Figure 4. The presence of
DMSO on Candida cells in applied concentrations (up to 0.5%) did not cause any adverse effects. In the
presence of ZnFLC or FLC, large EB-positive areas (red staining) were evident, whereas the yeast cells
were AO positive (green), indicating they were viable. ZnFLC was more effective at killing HL973
yeast cells than that of FLC.
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2.7. Assessment of Ergosterol Content

In order to explore the reason of ZnFLC inhibiting the C. albicans HL973, the ergosterol contents,
one kind of critical components in C. albicans, were determined by HPLC. The results showed that the
retention time of ergosterol was about 12.90 min (Figure S4). After 24 h of treatment, the ergosterol
contents in the control, FLC and ZnFLC extract were 7.46 ± 0.11, 4.29 ± 0.10, and 0.60 ± 0.03 mg/mL,
respectively (p < 0.05) (Table S2). The standard curve was linear (R2 = 0.995). The treatment of
C. albicans HL973 with ZnFLC and FLC resulted in a reduction of 92.02% and 42.53% of ergosterol
content (p < 0.05), shown in Figure 5. The ergosterol content of the cytomembrane was obviously lower
in the drug and FLC groups. The results indicated that one of ZnFLC inhibition the C. albicans HL973
had the similar was through inhibition of ergosterol biosynthesis.
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To further study the mechanism of ergosterol biosynthesis reduction by ZnFLC, real-time PCRs
were used to evaluate the expression of five important genes involving in ergosterol biosynthesis.
The C. albicans HL973 cells were exposed to ZnFLC at 8 µg/mL values for 24 h, their total RNA
was extracted, and cDNA was synthesized by reverse transcription. This cDNA was then used as
a template for a series of real-time PCRs. The results showed that the expression of ERG1, ERG7,
ERG11, ERG27, and ERG28 were significantly upregulated with the fold change relative to control of
18.11 ± 0.96, 11.19 ± 0.47, 14.39 ± 3.06, 8.07 ± 1.19, and 9.19 ± 0.28, respectively, as shown in Figure 6.
These results is consistent with previous reports which C. albicans treated with azole [24,25]. The above
results indicate that ZnFLC may inhibit the C. albicans growth at least partly through interfering the
expression of ergosterol biosynthesis related genes, therefore decreasing the ergosterol contents and
damaging the cell member of C. albicans. When sterol levels are reduced, the expression of ergosterol
biosynthesis genes (ERG) are substantially increased. Therefore, we speculate that ZnFLC may inhibit
the ERG genes expression and ergosterol biosynthesis, which is similar to the drugs reducing the
sterol levels.
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Figure 6. Expression of ERG genes is increased in clinical isolates HL973. RT-PCR was performed using
RNA extracted from cells grown for 24 h treated with 2MIC80 ZnFLC. All data are normalized to an
internal control and are expressed as fold induction relative to the expression level in strain. (** p < 0.01
for the ZnFLC vs. DMSO control.)

3. Materials and Methods

3.1. Chemicals and Machines

All the chemicals were analytical grade and used without further purification. RPMI-1640
medium (Sigma, Mendota Heights, MN, USA) buffered to pH 7.0 with MOPS (Sigma) was used for
MIC determination and liquid culture of fungal strains. Fluconazole was purchased from TCI Company
(Gurugram, India). Ergosterol standard was purchased from Dr. Ehrenstorfer Company (Augsburg,
Germany). Prime script RT reagent kit (TaKaRa, Shiga, Japan) was used for reverse transcription. SYBR
Green I (Roche, Basel, Switzerland) was used for real-time PCR reactions. IR spectrum was recorded
in the range 400–4000 cm−1 on an Alpha Centaurt FT/IR Spectrophotometer using KBr pellets.

3.2. Synthesis and Characterization of Zn3(FLZ)6V10O28·10H2O

A mixture of Zn(OAc)2·2H2O (0.0465 g, 0.2 mmol), NaVO3 (0.045 g, 0.36 mmol), and FLC (0.03 g,
0.1 mmol) in water (7 mL) was stirred for 1 h. Then the mixture was placed in a 25 mL Teflon-lined
autoclave and kept at 120 ◦C for six days. After the mixture was cooled to room temperature at
10 ◦C·h−1, orange crystals of ZnFLC were obtained in 68.9% yield based on Zn(OAc)2·2H2O. Elemental
analyses calcd. for C78H72F12N36O44V10Zn3: C 29.70; H 2.28; N 15.99. Found: C 29.10; H 2.34; N
15.91. IR (KBr, cm−1): 3126(s), 1768(w), 1600(w), 1617(s), 1505(s), 1418(s), 1355, 1272(s), 1214(s),
1122(s), 1088(w), 1039(w), 986(s), 956(s), 918(s), 815(s), 743(vs), 670(s), 651(vs), 631(vs), 597(vs), 515(vs),
and 456(vs).

3.3. X-ray Crystallography

The structure of ZnFLC was determined by single crystal X-ray diffraction. Data were collected
on a Bruker D8 Venture diffractometer with Mo-Kα (λ = 0.71073 Å) at 300 K. Empirical absorption
corrections (φ scan) were applied for ZnFLC. The structures were solved by the direct method and
refined by the full-matrix least squares on F2 using the SHELXL-2003 software (version 6.14). All of
the non-hydrogen atoms were refined anisotropically. Hydrogen atoms of organic ligands were fixed
in ideal positions. The hydrogen atoms attached to water were not located. A summary of crystal data
and structure refinements for ZnFLC is provided in Table 1. The selected bonds and angels are listed
in Table S1. Crystallographic data for the structural analysis have been deposited with the Cambridge
Crystallographic Data Center, CCDC reference number 1821286, for ZnFLC.
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3.4. Fungal Isolates and Culture Conditions

The microorganisms used in this study consisted of 15 Candida albicans, 1 Candida glabrata,
1 Candida krusei, 1 Candida parapsilosis, and 1 Cryptococcus tropicalis strains. The strains named after
HL were isolated from clinical fungal infection patients in Changchun Qian Wei hospital (China).
The Candida species were preliminarily identified according to the colored colony morphology on
CHROMagar Candida medium (CHROMagar Co., Paris, France) was used for the confirmatory
identification of Candida species. The reference strains, C. parapsilosis ATCC 22019, C. albicans ATCC
90028, and Candida tropicalis ATCC 750 were obtained from American Type Culture Collection.
All isolates were cultured at 35 ◦C and maintained on Sabouraud dextrose agar (SDA, Conda) at
4 ◦C in School of Public Health, Jilin University, China.

3.5. Determination of MIC of ZnFLC

The quality control strain, C. parapsilosis ATCC 22019 was included in each susceptibility test
to ensure quality control. The results of MIC were determined by means of the broth microdilution
method after incubation at 35 ◦C for 48 h. The minimal inhibitory concentration (MIC) values of ZnFLC
and FLC were determined for all the Candida strains using Clinical and Laboratory Standards Institute
(CLSI) broth microdilution method M38-A. Briefly, the fungal strains were cultured 18 h at 35 ◦C
in SDB and suspended in 1640 medium to give a final density of 0.4~5 × 104 cells/mL. The 96 well
plates were prepared by dispensing into each well 100 µL of RPMI-1640 broth. A 100 µL of drugs
initially prepared at the concentration of 512 µg/mL (1% DMSO) was added into each of the first wells,
followed by two-fold serial dilution to obtain concentration range of 0.25~256 µg/mL. To this, 100 µL
of 0.4~5 × 104 cells/mL fungal cell suspensions was separately added. The 11th well contained 100 µL
medium without drugs and fungal cell as the empty control. The last well contained 100 µL fungi
cell suspensions without drugs as the negative control. The final volume in each well was 200 µL.
The final concentration of DMSO in each medium was 1%, which did not affect the growth of the tests
microorganisms. After agitation for 15 s, the plates were incubated at 35 ◦C for 48 h. The absorbance
was measured at 600 nm on a microplate reader (Biotek Co., Winooski, VT, USA). MIC80 or MIC50 were
determined as the lowest concentration of the drugs that inhibited growth by 80% or 50% compared
with that of drug free wells. The inhibitory rate was calculated using the equation

Inhibitory rate(%) = 1−
ODdrug −ODempty control

ODnegative control −ODempty control
× 100%

3.6. MTS-Reduction Assay

The antifungal activity of ZnFLC on the C. albicans HL973 were determined by the MTS assay as
described in literature [26]. Briefly, the C. albicans HL973 were plated on 96-well plates at a density
of 1.0 × 106 cells/mL. After a 24 h, the dilutions of ZnFLC and FLC at different doses (4, 8, 16, 32,
64, 128, and 256 µg/mL) were added and allowed to incubate for 48 h. The C. albicans HL973 cells in
the negative control group were treated with the same volume of medium. To evaluate cell viability,
an MTS [(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)]
assay was performed according to manufacturer’s instructions (Promega, Madison, WI, USA). The cells
were incubated in the dark for another 25 min at 37 ◦C. Then, using a multichannel pipette remove
80 µL of the resulting colored supernatant from each well and transfer into the corresponding wells of
a new microtiter plate. Measured microplate absorbance at a wavelength of 490 nm on a microplate
reader (Biotek Co., Winooski, VT, USA).

3.7. Growth Inhibition Curves

Rejuvenation of C. albicans HL973 was prepared in YPD (yeast peptone dextrose) liquid medium
overnight at 35 ◦C. C. albicans HL973 was diluted at the starting inoculum of 1 × 106 cells/mL in glass
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tubes. Different concentrations of the compound (8, 16, 32 µg/mL) and FLC (4.64, 9.28, 18.56 µg/mL)
were added into tubes. At predetermined time points (0, 2, 4, 8, 12, 24, 36, and 48 h) after incubation in
an orbital shaker (about 180 rpm) at 35 ◦C, a 100 µL aliquot was removed from every solution and was
at 600 nm with microtiter plate reader (Thermo LabSystems Multiskan MK3), and background optical
densities were subtracted from that of each well.

3.8. AO/EB Double Staining

living/dead staining of C. albicans HL973 cells with acridine orange (AO) and ethidium bromide
(EB) was done as described previously with some modifications. Fungal strains were seeded at a
density of 1.0 × 106 cells/mL in 6-well plates. Then cells were treated with 64 µg/mL of ZnFLC and
equivalent dose of FLC (58 wt/wt %) in ZnFLC for 24 h and 48 h at 37 ◦C. The cells were rinsed with
PBS and stained with AO (100 µg/mL) and EB (10 µg/mL) for 1 min at room temperature in the dark.
The cells was observed using the fluorescence microscopy (Leica DMi8, Wetzlar, Germany).

3.9. Assessment of Ergosterol Content

C.albicans HL973 were treated with 16 µg/mL of ZnFLC and equivalent dose of FLC in ZnFLC
(58 wt %) at 35 ◦C for 24 h. The cells were centrifuged and washed with PBS. A 0.5 g wet weight of
cell mixed with PBS and fresh saponifier was saponified at 80 ◦C for 1 h and extracted by petroleum
ether. Then the extract was volatilized to dryness at 60 ◦C. The dry residues were dissolved by 0.5 mL
methanol and filtered through 0.45 µm micro membrane. Quantification of ergosterol in samples
with or without the drugs was determined by comparing peak areas of samples to a standard curve
generated from HPLC-grade ergosterol. A standard curve of HPLC-grade ergosterol consisted of 0.001,
0.004, 0.015, 0.0625, and 0.25 mg/mL. Ergosterol contents were analyzed using LC-20AB prominence
Liquid Chromatograph (Shimadzu Co., Kyoto, Japan) including Shimadzu C18 column (250 × 4.6 mm,
5 µm). Eluent was methanol/water (97/3, 100% HPLC grade). Flow rate was 1 mL/min. Temperature
was 35 ◦C. A SPD-20AV prominence UV–vis detector (Shimadzu) was used to detect UV at 282 nm [27].

3.10. Real-Time PCR

Real-Time PCR was used to measure the transcriptional expressions of the genes involved in
ergosterol biosynthesis of C. albicans HL973 treated with ZnFLC. Total RNA was extracted from
C. albicans HL973 incubated with or without 8 µg/mL of ZnFLC and equivalent dose of FLC
(58 wt/wt %) in ZnFLC for 24 h using the hot phenol method. Reverse transcription was conducted in
a total volume of 20 µL with Prime script RT reagent kit. Real-time PCR reactions were performed
with SYBR Green I, using qTOWER 2.0 PCR system (Analytic Jena AG, Jena, Germany). The primer
sequences used in real-time PCR were listed in Table S3, using 18S rRNA as the internal control.
The expression level of each gene in ZnFLC treated sample relative to that of untreated sample was
calculated using 2−44Ct method.

4. Conclusions

In summary, a new compounds Zn3(FLC)6V10O28·10H2O exhibited potent anti-candidal effect
via inducing membrane disruption. Therefore, we propose that Zn3(FLC)6V10O28·10H2O is a
potential candidate in the development of a novel antimicrobial agent. Future research may focus
on attempting to explore the novel antimicrobial POM nano-delivery system or synthesize new
POM-based compounds.

Supplementary Materials: Figure S1: (a) and (b) Ball-stick representations of the coordination modes of Zn1 and
Zn2 in ZnFLC, Figure S2: FT-IR spectrum of ZnFLC, Figure S3: The viability effects of Zn(OAc)2·H2O and NaVO3
on 9 C. albicans strains with the equivalent doses (wt %) in ZnFLC (MIC80) by MTX assay. Data are presented
as the mean ± SD of three independent experiments, Figure S4: HPLC graphs of ergosterol in C. albicans HL973
treated by DMSO (a), FLC (b) and ZnFLC (c). The ergosterol extraction of DMSO, FLC and ZnFLC were diluted
into 10, 10, and 1 mL with methanol. The retention time of ergosterol was about 12.9 min. Each graph displayed
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three repeated experiments, Table S1: Bond lengths [Å] and angles [o] for ZnFLC, Table S2: Ergosterol content
of C. albicans HL973 treated with or without Drugs. Data are presented as the mean ± SD of three independent
experiments. * p < 0.05 for FCZ and ZnFLC vs. control, # p < 0.05 for ZnFLC vs. FCZ, Table S3: Primers used for
Real-Time PCR.
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