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Raising the Flag for Mast Cells as a Novel Target in
Lymphangioleiomyomatosis

Lymphangioleiomyomatosis (LAM) is a rare, multiorgan disease,
affecting primarily women during the childbearing years (1).
Patients with LAM have proliferative, smooth-muscle–like cells
within the lung and lymphatics, leading to both airway and
lymphatic obstruction (2). An inherited form of LAM occurs in
patients with tuberous sclerosis complex (TSC), with prevalence
estimated at 26–49% of women with TSC and increased incidence
with aging (3). Sporadic LAMoccursmore rarelywith an incidence
estimated at 3.5 per 1million females in theUnited States (4). From
a pulmonary standpoint, women with this disease can present
incidentally or, more often, with symptoms including dyspnea,
cough, chylous effusions, or pneumothoraces (1).

Based on the high incidence of LAM in patients with TSC,
studies historically focused on the role of the mammalian target of
rapamycin (mTOR) signaling pathway. Loss of TSC gene function

constitutively activates the mTOR signaling pathway, leading to
cellular proliferation and survival in numerous disease states
including LAM (5). mTOR activation is blocked by sirolimus,
leading to a series of in vitro and preclinical in vivo studies in LAM
that ultimately laid the framework for the landmark MILES
(Multicenter International LAM Efficacy and Safety of Sirolimus)
trial (6). This double-blind, placebo-controlled study of 89 women
with LAM found that mTOR inhibition with sirolimus stabilized
the decline in FEV1 over a 1-year study (6). Although cessation of
sirolimus in the 12-month followupwas associatedwith a resumed
decline in lung function, the MILES trial was nevertheless
transformative for the care of women with this rare disease, with
efficacy and minimal side effects described out to 4 years of
observational therapy (7, 8). However, it must be noted that
inhibitionofmTORproduces growth arrest, not apoptosis, inLAM
cell cultures (9), rendering this treatment as transient and not fully
curative (10–12). There is recurrence and/or growth of tumors
noted upon cessation of therapy (6), and studies have proposed
mechanisms bywhichTSC2-null cells develop resistance tomTOR
inhibition over time (13). Therefore, despite the putative role of
TSC2 in LAM, groups have wisely begun to investigate TSC2-
independent pathways in disease pathogenesis (14–16) to increase
the potential pipeline of therapies for this rare disease.
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In this issue of the Journal, Babaei-Jadidi and colleagues (pp.
431–444) have focused on the tumormicroenvironment and identified
a critical role for the mast cell in LAM nodule proliferation, adding an
important and already targetable mTOR-independent pathway to the
LAM armamentarium (17). The authors beautifully lay out a
translational investigationbyfirst identifyingincreasedtryptasepositive
mast cell presence in LAM nodules, correlating with disease
progression. They later evaluate how LAM cell–fibroblast coculture
chemokines altermast cell recruitment ina three-dimensional spheroid
model system and show that tryptase release from themast cell further
augments fibroblast proliferation and the resultant size of the LAM
spheroid. Tryptase inhibition reduces the LAM spheroid growth in an
mTOR-independent manner, but combination with sirolimus had
synergistic effects. The mast cell stabilizer cromoglycate reduced
tryptaseactivity inan invivomurineLAMmodelandalonesignificantly
decreased the lung tumor burden similar to sirolimus therapy.

Although the data above is quite promising, particularly the
LAM spheroid work, one area of concern is the lack of protease
effect as a result of mast cell coculture. In fact, in LAM cocultures,
mast cells have an inhibitory effect onprotease activity asmeasured
by gel zymography and cathepsin K activity. Parenchymal lung
damage in LAM is widely accepted to be protease dependent
(18–20), and the lack of effect of mast cell stabilizers on protease
activity may foreshadow limitations of targeting the mast cell in
LAM disease progression. In addition, although LAM spheroid
work suggests a synergistic effect of mast cell stabilization and
mTOR inhibition in LAM, the authors did not perform in vivo dual
therapy studies,whichwouldhave strengthened the foundation for
future clinical trials in patients with LAM.

This work by the Johnson laboratory is an incredibly important
contributiontotheLAMresearchcommunity.Notdiscussedwithinthe
manuscript but worth mentioning is the fact that many women with
LAMare initially diagnosedwith asthmabased onpulmonary function
testing that includes the hallmark bronchodilator reversibility thatmay
in part be mast cell related. Even after LAM diagnosis, almost half of
patients use bronchodilators regularly (21). Some of the positive effects
of b-adrenergic agonists in LAM (16) may be additionally attributable
to direct mast cell stabilizing effects (22). In chronic obstructive
pulmonary disease, mast cells lining the blood vessels, not the airway
smoothmuscles,wereassociatedwithairwayhyperresponsiveness (23).

In summary, Babaei-Jadidi and colleagues have identified a novel
mTOR-independent pathway to be targeted in LAM.Many tumors of
patients with LAM do not exhibit TSCmutations (24–26) and express
the tuberin protein (27, 28), underscoring the need for the LAM
research community to identify mTOR-independent pathologic
mechanisms that can account for the timing of onset and growth of
tumors in patientswithTSC, LAM, and sporadic LAM.Broadening the
net to includeother pathways canonly aid thepatient population; some
patients have progression of disease despite mTOR inhibitor therapy,
otherpatientshave therapy-limiting sideeffects, and,most importantly,
in apopulationofwomen in their childbearingyears, patientsmayneed
to stop sirolimus in the setting of pregnancy. Understanding these
constraintsonsirolimustherapy forwomenwithLAM, identificationof
efficacious and already available pharmacotherapieswill aid in therapy,
whether it be in early disease, in mTOR-intolerant patients, or in
conjunctionwithsirolimusinpatientswithsevereorrapidlyprogressive
disease.Futurestudieswouldbeexpectedtoaddresspotential synergyof
cromoglycate and sirolimus in animal models and, ultimately, in the
patient population.�
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Electronic Health Records andMachine Learning for Early Detection of
Lung Cancer and Other Conditions
Thinking about the Path Ahead

In this issueof the Journal,Gouldandcolleagues (pp. 445–453)describe
an innovative use of machine learning with stored patient electronic
health record (EHR) data to develop a risk model assessing the short-
termriskofnon-small-cell lungcancer (1).The studyauthors identified
two primary applications of the approach in clinical practice, namely
providing patients and providers with a tool to assist in personalized
decision-making and identifyingpersons for outreach and for potential
eligibility for lung cancer screening with low-dose computed
tomography (LDCT).

The model developed by the study authors, denoted by “MES,”
used demographic information, smoking history, clinical data, and
laboratorydata thatwere available inEHRs in their healthmaintenance
organization’s (HMO’s) data warehouse. TheMESmodel showed
better prediction of lung cancer diagnosiswithin 3–12months than the
current standardLDCTeligibility criteria (which are based only on age,
pack-years, and years since quitting) as well as better prediction than a
well-known risk model based on detailed smoking history and
demographics (the PLCOm2012 model) (1, 2).

Uptake of LDCT screening following the initial B
recommendation of theU.S. Preventive Services Task Force (USPSTF)
in 2013 has been slow and limited, with currently (before coronavirus
disease [COVID-19]) only an estimated 5–10% of eligible individuals

undergoingLDCTscreening(3).Therefore, there isacriticalneedtouse
strategies to substantially increase this rate. Although with shared
decision-makingnot all eligible individualswill choose tobe screened, a
rate of 50% or higher is desirable and potentially attainable.

Around half of patients in this HMO hadmissing data on pack-
years,meaning thatfinal determinationofUSPSTF eligibility couldnot
be made based on EHRs alone (1). Use of theMESmodel could help
identify, among those with missing data, those patients more likely to
meet theUSPSTF criteria. In addition, by helping estimate risk, it could
assist with shared decision-making and potentially encourage
individuals to choose to be screened.

The USPSTF recently updated their lung cancer screening
recommendation, increasing the eligible pool by lowering the age and
minimumpack-year requirements (4, 5) Their recommendation states
that there was insufficient evidence to “assess whether or not risk
prediction model–based screening would improve outcomes” (5). An
argument against using current risk models (e.g., PLCOm2012) is that
they incorporate age as a risk factor and thus skew eligible individuals
toward older individuals. Although older people are at a higher risk of
lung cancer, they also represent fewer potential life-years saved by
screening, so using risk-based criteriamay increase the number of lives
saved but not necessarily the years of life saved (5). In theMESmodel,
agewas oneof the top10most informative features, suggesting that this
same issue applies (1).

For HMOs, which do not rely on fee-for-service reimbursement
from the U.S. Centers for Medicare andMedicaid Services or private
insurers, there is some leeway in deciding whom to screen for lung
cancer. Accordingly, they could use either standard riskmodels such as
PLCOm2012 or models developed from EHRs—such as MES—to
broadentheireligibilitycriteriaforscreening.However,mosthealthcare
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