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ARTICLE INFO ABSTRACT

Keywords: Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary

Biomarkers cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and

;:/;‘ojoines circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa.
odulators

Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the
lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information.
Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and
prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible
applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the
ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis,
staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the
functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring,
and prognostic prediction.

Non-coding RNAs
Prostate cancer

1. Introduction

Prostate cancer (PCa) has the highest diagnostic rate among male
malignancies. Moreover, it ranks second among the leading causes of
cancer-associated mortality in the United States [1-3]. Globally,
approximately 10 million men have been diagnosed with PCa, and the
incidence of metastatic PCa is increasing, leading to over 3.8 million
deaths annually [4-6]. By 2040, this number is estimated to be at least
twice as high as it is today [7,8]. Since the survival rate of PCa is strongly
linked to early diagnosis [9], prostate-specific antigen (PSA) is used for
mass screening of suspected patients. However, due to the non-cancer
specificity, PSA often leads to unnecessary overdiagnosis and treat-
ment [10]. Given the significant burden of PCa, it is crucial to explore its

evolutionary mechanisms and identify potential diagnostic biomarkers
and therapeutic tools.

After reticular cells were discovered to secrete vesicles containing
biomolecules outside the cell [11], exosomes have emerged as the
shining stars of liquid biopsies, displaying profound potential in the
realm of cancer diagnosis and treatment. Once considered mere cellular
waste bins, exosomes are now recognized as vital vehicles for trans-
porting specific molecules between cells [11]. Exosomes comprise
diverse types of biomolecules, including nucleic acids, proteins, lipids,
sugars and metabolites [12]. Furthermore, non-coding RNAs (ncRNAs)
contained within exosomes, are enriched and more stable than circu-
lating ncRNAs because of the protection provided by the lipid bilayer
[13,14]. These exosomal ncRNAs have been found to modulate multiple
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cellular processes in malignancies by regulating gene expression
[15-17]. In addition, molecular and cellular biological studies of PCa
have emphasized the key players in its progression [18,19]. Owing to
their unique advantages and functions, exosomal ncRNAs serve as
invaluable resources for gaining novel insights into PCa development
and potential guides for its diagnosis and treatment.

In this review, we present a brief overview of exosomes and their
components. Moreover, we emphasize the modulatory functions of
exosomal ncRNAs in the initiation, growth, progression, and therapeutic
resistance of PCa, with attention to their possible role as promising
biomarkers. We also explore the clinical utilities of exosomal ncRNAs in
PCa.

2. Exosomes

Exosomes are the most extensively investigated subset among
extracellular vesicles (EVs), varying in size from 30 to 150 nm. They are
produced by both eukaryotic cells and prokaryotic cells and can be
found in all body fluids [20,21]. These vesicles are generated via an
endosomal degradation pathway and cargo inside, on or outside cell can
enter exosomes, supporting the essential function of exosomes in inter-
cellular communication [20,22]. While the selective packaging mecha-
nism of exosomes is still unknown, it has been demonstrated that
exosomes from different sources or the same cells under different con-
ditions carry a unique content profile [23]. This profile reflects the
constituents and current status of the source and may indicate a
modulatory selective packaging. Therefore, exosomes have demon-
strated potential as modulators and biomarkers of various diseases.

Exosomes contain diverse components including proteins, lipids,
nucleic acids, metabolites and small molecules. Proteins, partly origi-
nating from the cell membrane, endosomal membrane and cytoskeletal
components [24], have been reported to regulate cancer progression
[25,26] and serve as biomarkers for diagnostic and prognostic purposes
[27,28]. Exosomal lipids are primarily located in the exosomal mem-
brane and play a major role in exosomal formation and homeostasis in
recipient cells [27]. They have also been found to modulate cancer and
aid diagnosis because of their unique profiles [29-32]. In addition,
exosomes also contain nucleic acids such as DNAs and RNAs. It has been
demonstrated that the number of DNAs with more bases is relatively
higher in larger exosomes than in smaller exosomes [33]. This may
indicate that small nucleotides are the most nucleic acids in exosomes.
The ncRNAs consisting of dozens to over 200 nucleotides constitute over
98 % of the genome and are abundant in exosomes due to their short
length [34]. They regulate gene expression by interacting with mRNAs,
remodeling chromatin and cooperating with other biomolecules, thus
constructing multiple regulatory networks that modulate the levels of a
variety of fundamental protein effectors [35]. The relative abundance
and function of ncRNAs in exosomes make them the principal players in
cancer modulation [15-17].

The ncRNAs encompass various types of RNA molecules, including
microRNAs (miRNAs), long non-coding RNAs (IncRNAs) and circular
RNAs (circRNAs) [36]. MiRNAs, serving as short ncRNAs of roughly 22
nucleotides in length, are also the most common ncRNA type trans-
ported by exosomes and function by engaging in interactions with
mRNAs [37]. LncRNAs are longer than 200 nucleotides and exhibit
extensive functional diversity. They can guide chromatin-modifying
complexes to target gene promoters and affect transcriptional regula-
tion, as well as bind to miRNAs to modulate molecular functions [38].
CircRNAs are more than 200 nucleotides in length like IncRNAs and are
protected from exonuclease degradation due to the closed circular
structures and the absence of polyadenylated tail [39]. Therefore,
circRNAs in mammalian cells have a longer half-life that is approxi-
mately 2.4 times longer than linear RNAs [40] and exosomes exhibit a
higher proportion of circRNAs to linear RNAs, with a ratio that is
approximately 6 times higher than in cells [41]. Furthermore, circRNAs
act as sponges and scaffolds for specific proteins and can be translated to
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Molecular mechanisms of exosomal ncRNAs in modulation of prostate cancer.

Process Types ncRNAs Signaling Pathways and
Targets
Initiation miRNAs miR-27a-3p [48], miR-21 VEGF [49,56,57],
[51-54,121] and let-7b PTEN/AKT [54] and
[55] PTEN/ERK [54] pathway
IncRNAs / /
circRNAs  circRNA HIPK3 [150] BMI-1 [151]
Growth miRNAs miR-183 [65], miR-217 PI3K/AKT [62,63,78,79]1,
[70], miR-23b-3p [70], NF-B [62,64], Rho [75,
miR-143 [141], miR-205 76], STAT3 [86,87,105],
[74], miR-95 [77], TGF-p and mTOR [100]
miR-153 [85], pathway; EZH2 [89]
miR-99b-5p [61],
miR-888 cluster [88],
miR-1246 [98], miR-26a
[99], miR-424 [104],
miR-31 [121] and
miR-145 [121]
IncRNAs MYU [135], NF-xB [140] and
IncAY927529 [139] and PI3K/AKT [136]
PCSEAT [141] pathway; c-Myc [135]
circRNAs  circRNA HIPK3 [150], Wnt/p-catenin pathway
circ_0044516 [154] and [155]; BMI-1 [151] and
circ-XIAP [161] TPD52 [161]
Progression ~ miRNAs  miR-27a-3p [117], PI3K/AKT [98,103,120,
miR-99b-5p [61], 142], NF-xB [118], Rho
miR-183 [65], miR-217 [114,115], STAT3 [86,87,
[70], miR-23b-3p [70], 105,1071, TGE-p [120],
miR-143 [141], miR-205 EGFR [94,98], mTOR
[74]1, miR-95 [77], [100], Lats2/YAP [101],
miR-153 [85], MAPK [108], MEK/ERK
miR-146a-5p [94], [120] and Wnt/f-catenin
miR-26a [99,117], [142] pathway; EZH2
miR-1246 [98], miR-888 [89], p53 [127], PDCD4
cluster [88], miR-125b [101], RUNX2 [111,116,
[101], miR-130b [101], 117] and FAM134A [113]
miR-141-3p [108],
miR-155 [101], let-7b
[55], miR-424 [104],
miR-375 [110], miR-940
[113], miR-1275 [116],
miR-92a-1-5p [119],
miR-31 [121], miR-145
[121] and miR-21 [55,
121]
IncRNAs MYU [135], NF-kB [140], PI3K/AKT
IncAY927529 [139], [136] and Wnt/p-catenin
PCSEAT [141], [142] pathways; c-Myc
HOXD-AS1 [143] and [135], FOXM1 [143] and
NEAT1 [145] PTBP2/SFPQ complex
[145]
circRNAs circRNA HIPK3 [150], Wnt/p-catenin [155] and
circ_0044516 [154], MAPK [158] pathway;
circ_0081234 [157] and BMI-1 [151] and TPD52
circ-XIAP [161] [161]
Therapy miRNAs miR-31 [121], miR-145 STAT3 [129], TGF-p
resistance [121], miR-21 [121], [130], NF-xB [133] and
miR-27a [127], PI3K/AKT [134] pathway
miR-423-5p [130] and
miR-34a [131,132]
IncRNAs LINC01213 [148] Wnt/p-catenin pathway
[148]
circRNAs circ-XIAP [150] TPD52 [161]

perform specific functions in cancer [17].

3. Exosomal ncRNAs as modulators in PCa

Exosomes affect initiation, growth, development and treatment of
cancer by facilitating cellular communication [42]. There is growing
evidence indicating that exosomal ncRNAs are the major contributors to
these effects. Exosomal ncRNAs can influence the levels of downstream
target mRNAs, genes or proteins, altering various signaling pathways
(Table 1). Subsequently, they trigger a range of physiological and
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Fig. 1. The modulatory mechanisms of exosomal ncRNAs in PCa. Exosomes derived from diverse cell types transport non-coding RNAs, which in turn modulate the
expression of downstream genes, target mRNAs or proteins and alter various signaling pathways. The exosomal ncRNAs trigger a cascade of physiological and
pathological events, encompassing angiogenesis, proliferation, apoptosis, migration, invasion, phenotypic transformation, bone microenvironment regulation and
therapeutic resistance. Ultimately, these processes affect the occurrence, growth, development and treatment of PCa.

pathological processes, including angiogenesis, proliferation, apoptosis, pathway inhibitor (TFPI), inhibits the expression of TFPIa, reduces the
migration, invasion, phenotypic transformation, bone microenviron- phosphorylation of VEGFR2 at residue K951 [49], and then restrains
ment regulation, and therapy resistance (Fig. 1). Therefore, compre- endothelial cell migration [50]. Therefore, miR-27a-3p may induce
hending the role of exosomal ncRNAs could offer a valuable perspective angiogenesis through the miR-27a-3p/TFPI/VEGF pathway. Addition-
on PCa. ally, the HIF-1o/VEGF pathway is another common regulatory target.
Exosomal miR-21 is upregulated in patients with PCa and DU145 PCa
3.1. Exosomal miRNAs in PCa cell line [51-54]. It targets phosphatase and tensin homolog deleted on
chromosome ten (PTEN), activates AKT and extracellular regulated ki-
3.1.1. Exosomal miRNAs in PCa initiation nases (ERK) 1/2, upregulates HIF-1a and VEGF [54], and promotes
The first step in cancer development is initiation, in which angio- angiogenesis via HIF-1a/VEGF pathway. Similarly, exosomal let-7b is
genesis provides oxygen and nutrients and eliminates metabolic waste overexpressed in PC-3 cell-derived exosomes, increased in recipient
and carbon dioxide from tumor cells [43]. Angiogenesis, which is the cells, and promotes tube-like structure formation, which is an essential
neovascularization from the original ones, is typically activated tran- step during neoangiogenesis in human umbilical vein endothelial cells
siently in response to various stimuli, including wound healing and the (HUVEC) [55]. Moreover, let-7b is a hypoxia-responsive miRNA that
female reproductive cycle [44]. However, the angiogenic switch is al- modulates the expression of VEGF by targeting argonaute 1 (AGO1) [56,
ways activated in cancer to support the growth of cancer cells. Without 571, indicating that the HIF-1a/let-7b/AGO1/VEGF pathway might be
the support of angiogenesis, the cancer cells would only reside within the potential mechanism of angiogenesis in PCa. In conclusion, exoso-
100 pm of capillary blood vessels and could not expand [45]. Angio- mal miRNAs engage in PCa angiogenesis through various signaling
genesis is regulated by several growth factors and cytokines, such as pathways dominated by VEGF.
vascular endothelial growth factor (VEGF) and hypoxia-inducible factor
(HIF)-1a [15]. Tumor-derived exosomes can regulate angiogenesis 3.1.2. Exosomal miRNAs in PCa growth
through proangiogenic biomolecules, which induce or inhibit angio- With sustained angiogenesis, the tumor acquires sufficient support
genesis by modulating angiogenic signaling pathways in endothelial for growth by regulating cell proliferation and apoptosis. Cell prolifer-
cells [46,47]. ation refers to the controlled growth and division of cells, leading to the
Exosomal miRNAs are significant modulators of angiogenesis in PCa, generation of new daughter cells and an overall increase in cell popu-
involving multiple signaling pathways dominated by VEGF. Exosomal lation. Apoptosis is an automatic and orderly cell death program that is
miR-27a-3p is overexpressed in the PC-3 PCa cell line, which induces crucial for cell consumption. Thus, cell proliferation and apoptosis are
angiogenesis by enhancing endothelial tube formation [48]. In the essential processes in tumor growth and correlate with a rise in the
proangiogenic process, miR-27a-3p directly targets tissue factor number of malignant cells [45]. These crucial cellular processes are
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regulated by various physical and chemical signals. Exosomal miRNAs
have been reported to modulate cell proliferation and apoptosis in
various cancers, including colorectal [58], gastric [59] and ovarian [60]
cancers.

Exosomal miRNAs are involved in modulating cell proliferation as
either tumor promoters or suppressors through a series of signaling
pathways in PCa. One such tumor suppressor is miR-99b-5p, which is
upregulated in exosomes obtained from human bone marrow mesen-
chymal stem cells (hBMSCs). This elevation significantly inhibited PCa
growth in vivo and in vitro by downregulating insulin-like growth factor-
1 receptor (IGF1R) [61]. IGF1R mediates the phosphoinositide 3-kinase
(PI3K)/AKT [62,63] and nuclear factor-kappaB (NF-kB) pathways [62],
promoting cell proliferation in PCa [62,64]. Another miRNA, miR-183,
is upregulated in LNCaP and PC-3 cell-derived exosomes and enhances
cell proliferation by downregulating tropomyosinl (TPM1) [65], which
acts as a tumor suppressor in PCa [66,67]. The underlying mechanism of
TPM1 in PCa requires further investigation, but the
TPM1/mitogen-activated protein kinase kinase (MEK)/ERK pathway
and TPM1/NF-«xB pathway in colorectal cancer [68] and osteosarcoma
[69] may offer possible pathways by which TPM1 functions in PCa.

The modulation of apoptosis by exosomal miRNAs in PCa involves
multiple pathways. Exosomal miR-217 is significantly upregulated in
the serum of patients with PCa and acts as an oncogenic factor by
inhibiting apoptosis, whereas miR-23b-3p is significantly down-
regulated and acts as a pro-apoptotic factor [70]. However, how
miR-217 and miR-23b-3p function in PCa remains unexplored. Notably,
miR-217 has oncogenic and anti-tumor effects. MiR-217 significantly
promotes apoptosis in chemotherapy-treated PC-3 cells by regulating
polo-like kinase 1 (PLK1) and protein tyrosine kinase 2 (PTK2) expres-
sion [71]. Other studies have suggested several potential mechanisms,
including PLK1/androgen receptor (AR) [72] and PTK2/PI3K/AKT [73]
pathways. The dual roles of miR-217 on apoptosis were observed in
PC-3 cells, which excluded the possibility of cell line diversity and
suggested that the effect of chemotherapy may be the underlying reason.
After chemotherapy, intracellular molecules in PC-3 cells may alter,
resulting in a reduction in the levels of the miR-217 initial target and an
elevation of new targets such as PLK1 and PTK2, or the activation of
other complicated mechanisms. This suggests that chemotherapy may
trigger the conversion of biomolecules from pro-cancer molecules to
anti-cancer molecules.

MiRNAs in exosomes derived from other non-cancerous cells also
regulate apoptosis. For instance, hBMSCs-derived exosomes over-
expressing miR-205 promote apoptosis in vivo and tumor growth in vitro
by suppressing rhophilin-2 (RHPN2) [74]. By targeting RHPNZ2,
miR-205 indirectly regulates apoptosis via the Rho pathway [75,76].
MiR-95, which is significantly increased in tumor-associated macro-
phages (TAMs)-derived exosomes, directly targets JunB, thereby inhib-
iting PCa cell apoptosis [77]. JunB is functionally relevant for increased
proliferation and decreased senescence in PCa through interaction with
PIBK/AKT pathway [78,79]. Overall, exosomal miRNAs primarily
modulate PCa growth via PI3K/AKT, AR and Rho pathways.

3.1.3. Exosomal miRNAs in PCa progression

PCa undergo certain changes as they progress, where cancer cells
become more aggressive, non-cancerous cells change their phenotype,
and the tumor microenvironment is remodeled. These characteristics
enable tumors to alter their microenvironment and grow in distant or-
gans, thereby promoting their survival and development. Invasion and
migration increase cell mobility, allowing tumor cells to penetrate the
vascular matrix. Recent studies on the new hallmarks of cancer have
shown that phenotypic transformation is a crucial factor in neoplastic
development [43]. Additionally, the “seed and soil” theory suggests that
the emergence of a bone pre-metastasis niche creates favorable condi-
tions for PCa metastasis [80].

Cumulative evidence has revealed that exosomes have emerged as a
novel messaging system in organisms, mediating cell-cell and inter-
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organ communication in tumor progression. Specifically, biologically
functional molecules inside exosomes are transferred to recipient cells,
facilitating tumor progression by influencing invasion [81], migration
[82], phenotypic transformation [83] and bone microenvironment
regulation [84].

Cell invasion and migration are hallmark features of aggressive
cancer and are significantly influenced by exosomes, particularly exo-
somal miRNAs. Exosomes facilitate the detachment of tumor cells in situ
and their transport to other sites via the bloodstream or lymphatic sys-
tem [11]. In PCa, exosomal miRNAs have been identified as oncogenic
factors that promote cell invasion and migration through multiple
pathways. For instance, in the DU145 and PC3 cell lines with high
Gleason score (GS > 7), miR-153 is overexpressed and transferred
through exosomes, promoting cell invasion and migration by regulating
kruppel-like factor 5 (KLF5) [85]. KLF5 is deleted and plays a suppressor
role by inhibiting the IGF1/signal transducer and activator of the tran-
scription 3 (STAT3) pathway in PCa [86,87]. Exosomal miR-888 and its
cluster members are enriched in PC3-ML cells. MiR-888 inhibits KLF5,
retinoblastoma-like 1 (RBL1), tissue inhibitor of metalloproteinase 2
(TIMP2) and SMAD4 levels and enhances cell migration and invasion in
vitro [88]. KLF5 is also a target of exosomal miR-153 [87]. RBL1 in-
terferes with the enhancer of zeste homolog 2 (EZH2) and is involved in
oncogenic processes [89]. TIMP2 inhibits cell migration, invasion and
cancer cell-mediated tissue remodeling [90], possibly through the
PI3K/AKT pathway [91]. SMAD4 regulates cell invasion and motility in
PCa [92], likely through the SMAD4/TGF-§ pathway [93]. Overall, low
levels of KLF5, RBL1, SMAD4, and TIMP2 levels are associated with PCa
progression.

Exosomal miRNAs also act as suppressors of cell invasion and
migration. Cancer-associated fibroblasts (CAFs) also contribute to PCa
progression. CAFs-derived exosomes contain miR-146a-5p, which is
taken up by LNCaP and DU145 cells and inhibits epidermal growth
factor receptor (EGFR)/ERK pathway [94]. This inhibition results in a
decrease in cell migration and invasion of PCa [95]. In addition, EGFR is
related to biochemical relapse and high GS in PCa [96]. Therefore,
exosomal miRNAs modulate cell invasion and migration in PCa through
various pathways, including the IGF/STAT3, RBL1/EZH2, TGF-f,
PI3K/AKT and EGFR/ERK pathways.

Moreover, exosomal miRNAs are associated with cellular phenotypic
transformations that enhance PCa cell aggressiveness. Epithelial-
mesenchymal transition (EMT) is a well-known phenotypic trans-
formation and a conserved developmental program controlled by
several signaling pathways. It confers metastatic properties and en-
hances cancer aggressiveness by regulating cell activity, invasion and
apoptosis [97].

Exosomal miRNAs are also involved in PCa EMT. The miR-1246
selectively is secreted into exosomes in PCa. It targets EMT-related
genes, inhibits EMT, and regulates other cellular processes via the
EGFR and PI3K/AKT pathways [98]. Likewise, Exosomal miR-26a is
increased in LNCaP cells and significantly downregulates the expression
of EMT-related factors in recipient cells [99] by regulating the la-related
proteins 1 (LARP1)/mechanistic target of rapamycin (mTOR) pathway
[100].

Other phenotypic transformations such as mesenchymal-epithelial
transition (MET) and neoplastic transformations also occur in the
tumor microenvironment. Co-culture with C4-2B and PC-3 cell-condi-
tioned media induces phenotypic transformation in stem cells, resulting
in the formation of prostate-like neoplastic lesions. This transformation
is facilitated by exosomes, which upregulate oncogenic factors (miR-
125b, miR-130b, and miR-155) and downregulate tumor suppressors
(large tumor suppressor homolog 2 (LATS2) and programmed cell death
protein 4 (PDCD4)) [101]. The LATS2/yes associated protein (YAP)
pathway is critical for tissue homeostasis in PCa [102], and the
PI3K/AKT pathway is associated with the expression of PDCD4 [103].
Additionally, exosomal miRNAs are involved in the acquisition of stem
cell-like and tumorigenic properties in prostate epithelial cells. In
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patients with metastatic PCa, there is a higher frequency of circulating
miR-424-positive exosomes compared to those with primary tumors and
benign prostatic hyperplasia (BPH). MiR-424-loaded exosomes promote
stem cell-like properties and tumor initiation, contributing to tumori-
genesis in recipient cells [104]. Meanwhile, miR-424 promotes tumor-
igenic traits via the miR-424/constitutive photomorphogenic 1
(COP1)/STATS3 axis [105].

Phenotypic transformation is also present in the immune system, not
only in the mesenchymal and epithelial cells. Overexpressed let-7b in
PC-3 cell-derived exosomes can be transferred to THP-1 monocytes,
inducing TAM-like polarization [55], which facilitates tumor cell
growth [106]. These effects of let-7b are attributed to the suppressor of
cytokine signaling 1 (SOCS1)/STAT3 pathway [107]. To conclude,
exosomal miRNAs modulate the transformation of cell phenotypes and
enhance malignant activity through the EGFR, PI3K/AKT, LARP1/m-
TOR, Lats2/YAP, and STAT3 pathways.

PCa frequently results in the development of bone metastasis. Exo-
somes are essential in the preparation of bone pre-metastatic niches.
They contain miRNAs that stimulate the formation of a metastatic
microenvironment. Exosomal miR-141-3p is overexpressed in MDA PCa
2b cells. It can enter osteoblasts and stimulate their activity. This can
lead to bone metastasis and osteogenic damage in PCa. The underlying
mechanism of miR-141-3p involves the inhibition of deletion of liver
cancer-1 (DLC1) and the activation of the mitogen-activated protein
kinase (MAPK) pathway [108]. DLC1 modulates the Rho pathway and
suppresses the invasion of highly metastatic PCa cells [109]. Similarly,
exosomal miR-375 is identified to promote osteoblast activity [110] via
the miR-375/runt-related transcription factor 2 (RUNX2) pathway
[111]. RUNX2 is a major modulator of osteoblast activity and related to
the metastatic traits of C4-2B cells [112]. In addition, C4-2B
cell-derived exosomal miR-940 enhances osteoblastic differentiation in
human mesenchymal stem cells by the modulation of Rho
GTPase-activating protein 1 (ARHGAP1) and family with sequence
similarity 134 member A (FAM134A) [113]. ARHGAP1 is a potential
tumor suppressor that mediates osteoblastic differentiation via the Rho
pathway [114,115], whereas FAM134A is an oncogenic factor in tumor
metastasis, and its physiological function in osteogenesis remains un-
clear [113]. The transfer of miR-1275 from PC-3 cells to osteoblasts via
exosomes significantly enhances osteoblast proliferation by inhibiting
sirtuin 2 (SIRT2) and increasing RUNX2 expression [116]. Collectively,
exosomal miRNAs have a critical function in PCa bone metastasis.

In addition to osteoblastic lesions, exosomal ncRNAs have been
implicated in osteolytic loss. RM1-BM PCa cell-derived exosomes show
increased expression of miR-26a-5p, miR-27a-3p and miR-30e-5p. These
miRNAs suppress osteogenesis and osteoblast differentiation [117]. The
miR-26a-5p targets bone morphogenetic protein 2 (BMP-2), which was
reported to activate NF-xB mediated BMP-2-SMAD signaling cascade
[118]. Both miR-26a-5p and miR-27a-3p can rejuvenate the level of t
RUNX2 [117]. Exosomes derived from PCa cells regulate bone homeo-
stasis, leading to osteoclastic lesions and the promotion of bone tumor
growth. MiR-92a-1-5p is overexpressed in MDA PCa 2b cell exosomes
and transferred to osteoclasts, promoting osteoclast differentiation
through regulating collagen type I alpha 1 (COL1A1) [119]. COL1A1
might be regulated by TGF-p pathway, EGFR/MEK/ERK pathway and
PI3K/AKT pathway [120], which implies the involvement of these
pathways in the regulation of osteoclastic lesions.

3.1.4. Exosomal miRNAs in PCa therapy resistance

Therapy resistance inevitably presents a complex challenge in PCa,
including resistance to androgen deprivation therapy (ADT) and
chemotherapy. ADT is the recommended primary therapy for PCa and
can improve patient prognosis to a certain extent. However, almost all
androgen-sensitive PCa finally becomes androgen-resistant, leading to
castration-resistant PCa (CRPC) that can metastasize to distant organs.
Exosomes are pivotal in modulating therapy resistance and promoting
PCa progression by conveying anti- and pro-tumor signals [27].
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Consequently, exosomes can positively or negatively impact therapy
resistance by delivering their cargo, indirectly affecting treatment and
prognosis.

Mesenchymal-like PCa cells (Mes-PCa)-derived exosomes are
involved in promoting mesenchymal characteristics in recipient cells,
resulting in resistance to enzalutamide. Genetic analysis of the recipient
cells revealed the downregulation of AR and AR-regulated genes, which
may be associated with miR-31, miR-145 and miR-21. Mes-PCa-derived
exosomes deliver these miRNAs to recipient cells where they target the
AR pathway. The upregulation of these miRNAs is associated with
message delivery by Mes-PCa-derived exosomes [121]. MiR-31 and
miR-21 act as oncogenic factors in regulating therapeutic resistance
[122-124], while miR-145 plays a tumor suppressor role and inhibits
chemo-radio-resistance [125,126]. Although these miRNAs are all
upregulated in Mes-PCa-derived exosomes, the effect of
Mes-PCa-derived exosomes is mainly attributed to miR-31 and miR-21.

Non-cancerous cell-derived exosomes implicate in chemoresistance
as well. For example, primary prostate fibroblasts (PSC-27)-derived
exosomes carrying miR-27a promote chemoresistance of PC-3 cells by
inhibiting p53 [127]. The inhibition of p53 can confer resistance to
chemotherapeutic drugs [128], activate the STAT3 pathway, and pro-
mote tumor progression [129]. MiR-423-5p is overexpressed in
CAF-derived exosomes and modulates drug resistance by targeting
gremlin 2 via TGF-p pathway [130].

Moreover, exosomal miRNAs implicate in upregulating chemo-
therapy sensitivity. For example, exosomes derived from docetaxel-
resistant PC-3 and 22Rv1 cells decrease levels of miR-34a, which leads
to increased docetaxel resistance by upregulating B-cell lymphoma-2
[131,132]. It is related to NF-xB [133], PISK/AKT [134] and other
pathways. Overall, exosomal miRNAs derived from different cells have a
significant impact on regulating therapy resistance via the AR, STAT3,
TGF-B, NF-xB and other signaling pathways, contributing to chemo-
resistance and sensitivity to chemotherapy.

3.2. Exosomal IncRNA in PCa

3.2.1. Exosomal IncRNAs in PCa growth

Exosomal IncRNAs act as miRNA sponges and indirectly regulate PCa
growth. They have been shown to exert significant effects on cell pro-
liferation and apoptosis. Exosomal IncRNA MYU complements miR-184,
resulting in the upregulation of c-Myc level, which subsequently stim-
ulates the proliferation of PC-3 cells [135]. The c-Myc maintains a high
cell proliferation rate and cooperates with the PI3K/AKT pathway [136]
to promote PCa cell survival [137,138]. Additionally, the upregulation
of exosomal IncAY927529 inhibits apoptosis by positively regulating
C-X-C motif chemokine ligand-14 level [139]. It promotes M2 macro-
phage polarization through the NF-xB pathway and contributes to
LNCaP and PC-3 cell proliferation, invasion, colony formation and
tumor growth [140].

3.2.2. Exosomal IncRNAs in PCa progression

Exosomal IncRNAs, boasting over 200 nucleotides, possess distinc-
tive nucleotide sequences that allow them to complement and pair with
corresponding miRNAs, thereby exerting an indirect influence on gene
expression and modulating the progression of PCa. For instance, exo-
somal IncRNA PCSEAT, which is overexpressed in patients with PCa, is
transmitted to promote migration and proliferation of recipient cells via
exosomes. PCSEAT modulates EZH2 by interacting with miR-143-3p and
miR-24-2-5p [141]. EZH2 plays a crucial role in activating the
PI3K/AKT/mTOR and Wnt/f-catenin pathways [142].

Exosomal IncRNAs induce phenotypic transformation in PCa. Exo-
somal IncRNA HOXD-AS]1 is increased in LNCaP-Bic and LNCaP-AlI cell-
derived exosomes. In recipient cells, HOXD-AS1 competitively binds to
miR-361-5p, upregulates forkhead box protein M1 (FOXM1), and in-
duces a metastasis-associated phenotype in vitro and in vivo [143]. The
HIF-1a/FOXM1 pathway is mediated by EMT in PCa [133]. Moreover,
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Table 2
Biomarkers of exosomal ncRNAs in prostate cancer.
Biomarker Type Role Source
Urine Plasma Serum
Diagnostic Distinguish PCa from HS miR-19b [172], miR-21 [51,52], miR-141-5p [52], miR-375 miR-125a-5p [175], miR-141 [52,176,1771,
biomarkers [171], miR-486-5p [171], miR-451a [171], miR-486-3p [171], miR-141-5p [175] and miR-212 [150], HIPK3 [150]
miR-196a-5p [170], miR-501-3p [170], let-7c [51], IncAY927529 [139] and circ_0044516 [154]
miR-574-3p [52] and miR-2909 [174]
Distinguish PCa from miR-145 [173], miR-1290 [173], miR-2909 [174] and miR-21-5p [53] and /
BPH IncRNA-p21 [181] miR-200c-3p [53]
Distinguish PCa from PCA3 [178] and MALAT1 [178] / /
negative prostate biopsy
Staging and Identify metastatic PCa miR-375 [171,173] and miR-1290 [171,173] / miR-141 [52,176,177] and
grading circ_0081234 [157]
biomarkers Distinguish treatment- / miR-423-3p [183] /
naive PCa from CRPC
Distinguish PCa with miR-145 [173], PCA3 [178] and MALAT1 [178] let-7a-5p [53] /
different GS
Identify metastatic PCa / / miR-141 [52,176,1771,
after radical miR-375 [177] and miR-1246
prostatectomy [98]
Prognostic Associated with poor / miR-375 [184] and /
biomarkers overall survival miR-1290 [184]

Abbreviation: PCa, prostate cancer; CRPC, castration-resistant prostate cancer; GS, Gleason Score; SM, spine metastasis; HS, healthy subjects; BPH, benign prostatic

hyperplasia.

FOXM1 may also be involved in the modulation of the AR pathway
through interaction with the AR [144].

In the bone microenvironment, exosomal IncRNAs regulate osteo-
genic activity. Exosomal IncRNA nuclear-enriched abundant transcript 1
(NEAT1) is transported to hBMSCs, which upregulates RUNX2 level by
interacting with miR-205-5p [145]. Additionally, the overexpression of
RUNX2 could be partly attributed to the splicing factor proline- and
glutamine-rich (SFPQ)/polypyrimidine tract-binding protein 2 (PTBP2)
axis [145]. Additionally, exosomal HOXD-AS1 enhances osteolytic loss
and tumor metastasis in the microenvironment via the
miR-361-5p/FOXM1 axis [143]. FOXM1 is involved in a
metastasis-related gene network, including those related to cellular
adhesion and bone microenvironment [146].

3.2.3. Exosomal IncRNAs in PCa therapy resistance

Exosomal IncRNAs modulate androgen sensitivity in PCa, ultimately
influencing the efficacy of ADT. Androgens are key drivers of prostate
growth and are known to contribute to tumor progression. As androgen
sensitivity changes in tumor cells, PCa can progress to CRPC and become
androgen-independent [147]. Androgen-independent PCa cell-derived
exosomes enhance the acquisition of androgen independence. This ef-
fect is mediated in part by overexpression of the LINC01213, which
confers androgen deprivation tolerance by activating the Wnt/p-catenin
pathway [148]. Activation of this pathway is more commonly observed
in CRPC than in treatment-naive PCa, and its inhibitors can reduce
therapy resistance in PCa [149].

3.3. Exosomal circRNA in PCa

3.3.1. Exosomal circRNAs in PCa initiation

Exosomal circRNAs modulate angiogenesis in PCa by regulating
miRNAs. For example, circHIPK3 interacts with miR-212 [150] and its
overexpression leads to upregulation of B-cell-specific Moloney murine
leukemia virus integration site 1 (BMI-1) and inhibition of angiogenesis
in PCa [151]. BMI-1 significantly affects the initiation and development
of PCa [152]. Moreover, BMI-1 has been shown to promote angiogenesis
via the NF-kB pathway in gliomas [153], which may be a potential
mechanism of BMI-1 in PCa.

3.3.2. Exosomal circRNAs in PCa growth
Exosomal circRNAs also implicate in modulating tumor growth by
acting as miRNA sponges in PCa. Circ_.0044516 overexpression in
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exosomes downregulates miR-29a-3p and enhances the proliferation as
an oncogenic factor in PCa [154]. MiR-29a-3p regulates cell prolifera-
tion by mediating the classical Wnt/p-catenin pathway in PCa [155].
Exosomal circHIPK3 reduces apoptosis via the
circHIPK3/miR-212/BMI-1 axis [150]. The inhibition of BMI-1 impairs
apoptosis-related protein expression via the ubiquitination pathway and
promotes apoptosis in PCa [156].

3.3.3. Exosomal circRNAs in PCa progression

Exosomal circRNAs modulate PCa progression by acting as miRNA
sponges. Exosomes derived from patients with PCa and spinal metastasis
(SM) showed higher expression levels of circ_ 0081234 compared to
those without SM. Overexpression of circ_0081234 promoted malignant
activity by increasing MAP3K1 levels as a miR-1 sponge [157]. MAP3K1
is part of the MAPK/MEK/ERK pathway, which is a significant signaling
pathway in PCa EMT [158]. By the circHIPK3/miR-212/BMI-1 axis,
exosomal circHIPK3 enhances cell viability, migration and invasion
[150]. BMI-1 also modulates cell migration and invasion in PCa pro-
gression [156,159,160].

3.3.4. Exosomal circRNAs in PCa therapy resistance

Exosomal circRNAs implicate in the upregulation of chemoresistance
via message delivery. Docetaxel (DTX)-resistant PCa cell-derived exo-
somes enhance DTX resistance, in which circ-XIAP is overexpressed,
directly targets miR-1182, and increases TPD52 level [161]. TPD52
avoids apoptosis in response to androgen deprivation by activating the
PI3K/AKT and STAT3 pathways [162-164].

Signaling pathways mediated by miRNAs, IncRNAs and circRNAs in
exosome-derived PCa cells are not only involved in a single cellular
activity. For example, the PI3K/AKT pathway is associated with cellular
proliferation, apoptosis, invasion, migration, phenotypic trans-
formation, regulation of the bone microenvironment and therapy
resistance in PCa. Therefore, exosomal ncRNAs are delivered and target
the same or correlated signaling pathways, which in turn affect cellular
activity. This establishes a complicated modulatory network in PCa and
sheds new light on the pathogenesis of PCa. Overall, the regulatory
mechanisms of PCa are diverse and every cellular process cannot be
viewed unilaterally. Additional exploration is necessary to reveal the
underlying mechanisms and crosstalk among the aforementioned
pathways.
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4. Exosomal ncRNAs as biomarkers in PCa

Due to their capacity to regulate a wide range of cellular processes,
exosomal ncRNAs serve as valuable biomarkers for diagnosis, staging,
grading and prognosis assessment. The levels of exosomal ncRNAs
reflect the status of donor and recipient cells due to the specific roles of
exosomal ncRNAs in PCa. Profiling and quantifying exosomal ncRNAs
have shown differential expression levels among healthy individuals,
patients with BPH, patients with androgen-sensitive PCa and patients
with CRPC [12,165,166]. Therefore, exosomal ncRNAs are of the utmost
importance in providing precise diagnostic, staging, grading and prog-
nostic biomarkers for PCa (Table 2).

4.1. Exosomal ncRNAs as diagnostic biomarkers

Exosomal ncRNAs represent reliable and precise biomarkers for PCa
diagnosis. At present, PSA screening is the first choice for all patients due
to its efficiency. However, it also leads to overdiagnosis and over-
treatment because it is prostate-specific, not PCa-specific [10]. Other
diagnostic methods, such as tissue biopsy, imaging examination and
digital rectal examination (DRE), are not routinely recommended for
newly admitted patients because of their limitations, such as invasive-
ness, high cost, and poor diagnostic performance [167,168]. Exosomes
have become a research hotspot and provide a promising alternative to
liquid biopsy with better overall diagnostic performance [169]. Partic-
ularly, ncRNAs in exosomes are important modulators and biomarkers.
Therefore, exosomal ncRNAs may offer a new and valuable choice for
PCa diagnosis.

The focus of numerous research has been on exosomal miRNAs as
biomarkers for diagnosing PCa. For example, the levels of miR-196a-5p
[170], miR-501-3p [170], miR-375 [171] and miR-19b [172] are
significantly decreased in urinary exosomes from patients with PCa in
comparison to those from non-cancerous subjects. Conversely, the
expression levels of miR-451a [171], miR-486-3p [171], miR-486-5p
[171], miR-21 [51,52], miR-375 [51], let-7c [51], miR-141-5p [52],
miR-574-3p [52], miR-145 [173], miR-1290 [173] and miR-2909 [174]
are significantly higher in urinary exosomes from patients with PCa in
comparison to those from non-cancerous subjects. In exosomes from
plasma, miR-200c-3p [53], miR-21-5p [53] and miR-141-5p [175] are
significantly overexpressed and utilized to differentiate between pa-
tients with PCa and non-cancerous subjects. Additionally, the decline of
miR-125a-5p in plasma exosomes is valuable for diagnosing PCa pa-
tients and healthy subjects [175]. Similarly, in exosomes from serum,
miR-212 is significantly downregulated [150], whereas miR-141 is
significantly upregulated [52,176,177], which is meaningful in PCa
diagnosis. Moreover, combining multiple biomarkers, including
miR-375, miR-451a, miR-486-3p and miR-486-5p [171], miR-21 and
miR-375 [51], miR-125a-5p and miR-141-5p [175], PCA3 and MALAT1
[178], or SChLAP1 and SAP30L-AS1 [179], can increase the diagnostic
accuracy.

As a part of ncRNAs, exosomal IncRNAs are also valuable diagnostic
biomarkers in PCa. Specific exosomal IncRNAs are enriched or
decreased and contain miRNA seeds or RNA-binding protein binding
(RBP) motifs [180], which make IncRNAs valuable diagnostic bio-
markers. In urinary exosomes, PCA3 [178], MALAT1 [178] and
IncRNA-p21 [181] are significantly upregulated and serve for PCa
diagnosis. The diagnostic performance of exosomal PCA3 and MALAT1
in combination is superior to that of PCA3 or MALAT1 alone. Moreover,
the diagnostic performance is further enhanced by combining urinary
exosomal PCA3 and MALATI, PSA, fPSA/tPSA, and a model that in-
cludes age, prostate volume, and DRE status [178]. Similarly, serum
exosomes from patients with PCa show significant upregulation of
SChLAP1 [179] and IncAY927529 [139], compared to those from
normal volunteers.

Exosomal circRNAs can also function for PCa diagnosis. Specifically,
exosomal circ_0044516 is increased in the serum of patients with PCa
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and differentiates them from normal subjects [154]. Similarly, exosomal
circHIPK3 is also a diagnostic biomarker found in serum and it is
meaningfully increased in patients with PCa in comparison to normal
subjects [150]. Both circ_0044516 and circHIPK3 act as miRNA sponges
and bind to miR-212 and miR-330-5p, respectively [150,182]. This may
explain the decline of miR-212 and miR-330-5p in the exosomes.

4.2. Exosomal ncRNAs as staging and grading biomarkers

In addition to diagnosing PCa, exosomal ncRNAs also function as
staging and grading biomarkers. Understanding the stage and grade of
PCa is essential as it reveals the current status of the disease and the
degree of malignancy. This information can help clinicians make
informed therapeutic decisions.

Different PCa stages affect the choice of therapy, making it necessary
to determine the disease stage. According to studies, patients with
metastatic PCa exhibit overexpression of miR-1290 and decreased levels
of miR-375 in urinary exosomes as compared to those with localized PCa
[171,173]. Furthermore, overexpression of exosomal miR-141 [176]
and miR-1246 [98] in serum can distinguish whether PCa metastasizes
or not like miR-1290. Additionally, serum exosomal circ_ 0081234 is
meaningfully overexpressed in patients with PCa SM, suggesting its
utility for PCa staging [157]. Plasma exosomal miR-423-3p is mean-
ingfully increased in patients with CRPC than in those with non-CRPC
[183]. Additionally, after undergoing radical prostatectomy, serum
exosomal miR-375 and miR-141 are meaningfully increased in patients
with metastatic PCa compared to those without relapse [177].

The GS of PCa is associated with treatment decisions and risk strat-
ification. Exosomal ncRNAs can help determine GS values. For example,
overexpression of urinary exosomal miR-145 can be used to significantly
determine GS > 8 or GS < 7 in patients with PCa [173]. Conversely, the
decline of plasma exosomal let-7a-5p is meaningful when distinguishing
GS > 8 or GS < 6 in patients with PCa [53]. PCA3 and MALAT1 are also
associated with GS. The levels of these biomarkers are significantly
upregulated in urinary exosomes and utilized to distinguish patients
with PCa with a high GS (GS > 7) from those with other non-aggressive
diseases (PCa with a GS < 6 and benign disease) [178]. By quantifying
these ncRNAs, clinicians can determine the stage and grade of patients
without invasive biopsies.

4.3. Exosomal ncRNAs as prognostic biomarkers

Exosomal ncRNAs are also useful for predicting patient survival. For
example, patients with CRPC after ADT failure show significant upre-
gulation of plasma exosomal miR-1290 and miR-375, indicating their
potential for survival prediction. Moreover, the predictive performance
of the prognosis is significantly improved by measuring the ratio of miR-
1290/miR-375 [184]. Similarly, circ_14736 and circ_17720 form a part
of the circRNA signature model. This model, including eight circRNAs,
predicted the biochemical recurrence of PCa [185]. These findings
suggest that exosomal ncRNAs have prognostic value and can be used to
develop effective predictive models for patients with PCa.

5. Clinical application of exosomal ncRNAs
5.1. Exosomal ncRNAs as biomarkers

Given the roles of exosomal ncRNAs as modulators and biomarkers,
they hold promise as novel biomarkers in clinical settings. Based on the
apparent differences in exosomal ncRNAs between patients with PCa
and others, some studies have used them to diagnose. Wei et al. [186]
and Wang et al. [187] designed diverse techniques for the ultrasensitive
detection of miR-141. Additionally, Kim et al. [188] successfully
measured urinary exosomal miR-6090 and miR-3665 levels in patients
with PCa, developed a dual amplification approach, and identified its
potential in PCa diagnosis. Moreover, by targeting exosomal miR-21 and
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Table 3
The therapeutic potential of exosomal ncRNAs.
ncRNAs Carrier Target Model Role Reference
let-7a Modified exosomes EGFR-expressing In vivo and Inhibited tumor growth [195]
breast cancer in vitro
miR-497 Hybrid nanoparticles of liposomes and ~ Ovarian cancer In vivo and Led to tumor cell death and overcame drug resistance [196]
exosomes in vitro
anti-miR- Anti-exosome Exosome In vitro Inhibited exosomal miR-21 to prohibit cancer cell growth [199]
21 antibody-oligonucleotide complexes
IncRNA Modified exosomes Osteosarcoma In vivo and Inhibited proliferation, migration and promoted apoptosis by [197]
MEG3 in vitro regulating miR-185-5p
ciRS-122 Exosome Colorectal cancer In vivo and Suppressed glycolysis and reversed resistance to oxaliplatin by [198]
in vitro regulating the ciRS-122-miR-122-PKM2 pathway

surface CD63, Cho et al. [189] could determine whether exosomes
derived from cancerous prostate cells or not. The sequence between two
IncRNAs or circRNAs has some repeat sites, leading to low efficiency in
constructing a system to detect specific sequences of IncRNAs or circR-
NAs. Hence, real-time fluorescence polymerase chain reaction (PCR)
and other methods are commonly used to directly measure the expres-
sion of IncRNAs or circRNAs.

Although significant progress has been made in detecting specific
biomarkers in the plasma, serum or exosomes, the time-consuming
procedures and high technical requirements of some methods make
biosensing through exosomal ncRNAs non-mainstream. However, the
high enrichment of ncRNAs in exosomes makes it easier to collect the
same type of ncRNAs and send signals without acquiring a large volume
of body liquid. In addition, some researchers have successfully applied
their detection assays from basic research to clinical applications with
high diagnostic efficiency [187,188], showing that exosomal ncRNAs
have excellent detection performance in PCa. These detection systems
not only show compatibility with PCR but also have higher specificity
than typical PSA tests.

It is critical to standardize the collection and measurement of exo-
somal ncRNAs before accurately understanding the relationship be-
tween ncRNAs and PCa. Several highly sensitive and specific assays have
been developed to determine exosomal miRNAs related to PCa. How-
ever, the absence of standardization in the collection and measurement
of miRNAs can lead to different conclusions. For instance, Foj et al. [51]
found that urinary exosomal miR-141 exhibits no apparent difference in
diagnosing PCa upon using differential centrifugation, which differs
when comparing urinary exosomal miR-141 by lectin-based exosome
agglutination method [52]. Additionally, other potential factors should
be explored, such as prostate massage, urine volume, urine concentra-
tion, renal function and hemodynamic status [14].

5.2. Exosomal ncRNAs as potential therapeutic tools

Besides as biomarkers, exosomal ncRNAs are hopeful targets for
cancer therapy. The ncRNAs encased in exosomes are biocompatible and
more prone to evade attacks by the immune system. Exosomal ncRNAs
are more stable than ncRNAs in bodily fluids and can cross physiological
barriers, because of their biocompatibility. Specific miRNAs in endog-
enous exosomes derived from stem cells can protect adjacent cells [190,
191]. Exogenous ncRNAs can be incorporated into synthetic exosomes
using methods like electroporation, lipofection, sonication or calcium
chloride treatment [192]. Synthetic exosomes can induce gene silencing
with loaded ncRNAs, leading to the knockdown of cancer oncogenes
[193,194]. Furthermore, exosomal ncRNAs have been used to breast
cancer [195], ovarian cancer [196], osteosarcoma [197], colorectal
cancer [198] and other cancers (Table 3). Overall, loading ncRNAs into
exosomes is promising for PCa.

6. Conclusions

According to published studies, exosomal ncRNAs have emerged as
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key regulators of multiple signaling pathways, critically influencing PCa
initiation, growth, progression and therapy resistance. The relationship
among exosomal ncRNAs, signaling pathways and cellular activities is
complex and requires further exploration. Understanding the involve-
ment of exosomal ncRNAs in tumorigenesis, progression and therapeutic
response will usher in a new era in PCa diagnosis and treatment. Given
their predictive effects in PCa, exosomal ncRNAs can function as inno-
vative biomarkers and construct a professional system that can identify,
classify, monitor PCa, predict patient survival, and assist in medical
decision-making. Additionally, new therapeutic methods may target
exosomal ncRNAs to intervene in oncogene expression, and exosomes
can be designed to transport functional ncRNAs to cancer cells. How-
ever, the lack of a recognized protocol for obtaining exosomes remains a
challenge and researchers must collaborate to determine the best sepa-
ration and detection techniques based on stability, accuracy and selec-
tivity to facilitate credible research results. Furthermore, exosomal
ncRNA expression in various body fluids of patients with PCa at each
stage requires reliable average measurements through multiple assess-
ments. With the combined efforts of researchers, exosomal ncRNAs in
PCa will be better explored and successfully applied in clinical practice.
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