
ORIGINAL RESEARCH
published: 25 June 2021

doi: 10.3389/fninf.2021.632729

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2021 | Volume 15 | Article 632729

Edited by:

Ludovico Minati,

Tokyo Institute of Technology, Japan

Reviewed by:

Vincent Lefèvre,

Inria Grenoble-Rhône-Alpes Research

Centre, France

Malu Zhang,

National University of Singapore,

Singapore

*Correspondence:

James Paul Turner

j.p.turner@sussex.ac.uk

Received: 23 November 2020

Accepted: 31 May 2021

Published: 25 June 2021

Citation:

Turner JP and Nowotny T (2021)

Arpra: An Arbitrary Precision Range

Analysis Library.

Front. Neuroinform. 15:632729.

doi: 10.3389/fninf.2021.632729

Arpra: An Arbitrary Precision Range
Analysis Library
James Paul Turner* and Thomas Nowotny

School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom

Motivated by the challenge of investigating the reproducibility of spiking neural network

simulations, we have developed the Arpra library: an open source C library for arbitrary

precision range analysis based on the mixed Interval Arithmetic (IA)/Affine Arithmetic (AA)

method. Arpra builds on this method by implementing a novel mixed trimmed IA/AA,

in which the error terms of AA ranges are minimised using information from IA ranges.

Overhead rounding error is minimised by computing intermediate values as extended

precision variables using the MPFR library. This optimisation is most useful in cases

where the ratio of overhead error to range width is high. Three novel affine term reduction

strategies improve memory efficiency by merging affine terms of lesser significance. We

also investigate the viability of using mixed trimmed IA/AA and other AA methods for

studying reproducibility in unstable spiking neural network simulations.

Keywords: interval arithmetic, affine arithmetic, range analysis, floating-point, reproducibility, numerical

integration, spiking neural networks

1. INTRODUCTION

Computer simulations are a valuable tool for understanding the behaviour of complex natural
systems, in particular in the context of Neuroscience and neural network simulations. They help
us form hypotheses and so reduce the need for expensive or at times impossible experiments.
Executing simulations of computational models on computers, however, means accepting a
small amount of imprecision in the results stemming from rounding errors when performing
floating-point arithmetic, truncation errors when using approximate numerical methods, and even
errors due to limited precision representations of input data. Although small, when accumulated
over time, these errors can influence the overall behaviour of a computation, sometimes with
dramatic effect. In a famous example, gradual accumulation of unchecked rounding errors between
January 1982 to November 1983 was causing stocks at the Vancouver stock exchange to loose
around 25 points per month (Huckle and Neckel, 2019). Such events have spurred a lot of interest
in analysing how numerical errors propagate through computer programs. This is particularly
relevant where numerical simulations rest on limited precision floating-point arithmetic (IEEE,
1985, 2008, 2019) and errors accumulate due to the iterative nature of the numerical integration
of models. To further complicate matters, there are sometimes subtle differences in the way
floating-point arithmetic is implemented across architectures, and additional differences in the
way compilers optimise floating-point arithmetic code (Monniaux, 2008;Whitehead and Fit-florea,
2011). The use of massively parallel General Purpose Graphics Processor Unit (GPGPU) code has
further compounded the problem as a large number of FPUs are used simultaneously, all operating
on the same data, with no guarantee on the order in which they will begin or finish an operation.

In this work we present the Arpra library (Turner, 2019), which uses floating-point error
bounding techniques to analyse numerical error propagation in computations. We evaluate the

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.632729
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.632729&domain=pdf&date_stamp=2021-06-25
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.p.turner@sussex.ac.uk
https://doi.org/10.3389/fninf.2021.632729
https://www.frontiersin.org/articles/10.3389/fninf.2021.632729/full

Turner and Nowotny Arpra Library

effectiveness of a novel mixed trimmed IA/AA method against
existing IA, AA andmixed IA/AAmethods in example problems,
including a prototype spiking neural network.

1.1. Background
Real numbers are in the vast majority of systems represented in
floating-point number format f = s · m · be, with s ∈ {−1, 1}
and m ∈ [1, b), where s, m and e are, respectively the sign,
significand (also known as the mantissa) and exponent of f ,
and b is the base of the floating-point system (usually two). The
IEEE-754-1985 standard (IEEE, 1985), and later revisions (IEEE,
2008, 2019), define the 32 bit single-precision and 64 bit double-
precision floating-point formats, corresponding to the float
and double types in C-like programming languages. The

standard dictates that a subset of floating-point functions must
be correctly rounded, meaning the result must be computed as if
in infinite precision and then rounded to a nearby floating-point
number according to the selected rounding mode.

1.1.1. Numerical Errors
Because this representation of real numbers is discrete and
approximate, small rounding errors can be introduced whenever
an FPU and math library are utilised. There are three commonly
used measures of numerical error (Goldberg, 1991), the first two
are absolute error, errorabs(f , r) =

∣

∣f − r
∣

∣, and relative error,

errorrel(f , r) =
∣

∣

∣

f−r
r

∣

∣

∣
, where f is the computed floating-point

value, and r is the exact value. Thirdly there is the error in terms
of units in last place (ULP) of the significand, errorULP(f , r) =
∣

∣m− r
be

∣

∣ bp−1 = |f−r|
be

bp−1 ∈ [0, bp), where p is the precision of f
(the number of digits inm) and e is the exponent of r.

While rounding errors occur only in the least significant digit,
they can rapidly be amplified, for instance through a process
called catastrophic cancellation. This occurs if two approximately
equal floating-point numbers are subtracted from each other
so the least significant bits of the two numbers determine the
most significant bits of the result. For a detailed exploration
of rounding error analysis, and strategies of minimising errors
based on specific ordering of arithmetic operations, see Higham
(2002). For a complete primer for floating-point arithmetic in
general, we refer you to Muller et al. (2018).

Another type of error occurs when numerically integrating
ordinary differential equations. This involves the discretisation of
the equations into difference equations with a finite time step δt
and limited order of approximation, causing so-called truncation
errors. When numerically integrating a model on a computer, the
overall error is a combination of rounding error from the basic
computations, and truncation error from the integrationmethod.
There is a trade-off between reducing truncation error through
smaller time steps and increased rounding errors due to more
ensuing floating-point operations (Chesneaux et al., 2009).

1.1.2. Reproducibility
A serious repercussion of the existence of unavoidable numerical
errors is the lack of reproducibility in numerical simulations.
In the context of serial (single threaded) execution, this can be
a problem when compilers and CPU architectures comply to

different standards (Monniaux, 2008; Whitehead and Fit-florea,
2011). For instance, in IEEE-754-1985, the only floating-point
operations that are required to be correctly rounded are the
basic (+,−, /, ∗,√) operations and floating-point conversion
functions. However, in later IEEE-754 revisions, the ‘fused
multiply-add’ (FMA) function is included in this list. FMA
instructions are now shipped as standard with AMD and Intel
processors, respectively starting in 2011 with AMD’s ‘Bulldozer’
(Hollingsworth, 2012) architecture, and in 2013 with Intel’s
‘Haswell’ (Intel, 2018) architecture, which provide fully IEEE-
754-2008 compliant floating-point implementations. Even so,
there is still no guarantee that a given compiler will make use
of FMA operations. As FMA incurs a single rounding error
but a separate multiply and add operation incurs two separate
errors, results can depend on the compiler vendor and version.
Transcendental functions are often implemented in software
libraries, such as the glibc library used by GCC on Linux. Given
that the error bounds for many of the glibc math functions have
not been entered into the glibc manual (Loosemore, 2020) at
the time of writing, it is difficult to determine whether results
computed by these functions exactly match those computed by
alternate math libraries. It is well-known that results depend on
the library, and can even change in different versions of the same
library. Tests have been done on values that are difficult to round
correctly (Lefèvre, 2021) and (Zimmermann, 2021). Accurate
libraries will computematching results in general, but may return
different results when the exact result is very close to themidpoint
of consecutive floating-point numbers.

Another layer of complexity is added with the growing
use of concurrency, for instance the massively parallel GPU
accelerators popular in machine learning. The basic arithmetic
functions of NVIDIA’s compute unified device architecture
(CUDA) (NVIDIA, 2018), including fused multiply-add, are
fully IEEE-754-2008 compliant and even though the CUDA
implementations of the transcendental functions are not
necessarily correctly rounded, their error bounds are known
and documented in the CUDA programming guide appendices
(NVIDIA, 2018). However, CUDA also provides ‘intrinsic’
functions, which correspond to constructs of high-speed
arithmetic circuits inside each CUDA core called Special
Function Units (SFU). These intrinsic functions sacrifice
accuracy in return for faster operation, affecting numerical error
and hence reproducibility. In addition, the approach of massively
parallel execution in itself poses new challenges in terms of
reproducibility. Unlike in serial architectures there is often no
guarantee on the order in which a pool of threads will finish
working. Floating-point instructions may be ordered differently
in separate runs of the same binary program and, since floating-
point arithmetic lacks the associative property of real arithmetic,
this can influence rounding error propagation. In combination
with the known effects of catastrophic cancellations and other
forms of error amplification this can lead to situations where
results appear completely disparate in repeated runs of the
same program on the same hardware. In such a situation, the
normal paradigms of testing program validity against a reference
implementation break down completely. It is worth noting that
while this will be surprising to some, it is just making the known

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

problem of otherwise hidden, potentially large numerical errors
more visible.

1.1.3. Error Bounding
In order to establish whether differences in numerical results
are due to normal numerical errors as described above or due
to algorithmic or programming errors, it would be useful to
compute tight upper and lower bounds for the computed values
with their expected numerical error. To determine error bounds,
‘range analysis’ methods are used, most prominently interval
arithmetic (IA) and affine arithmetic (AA).

In interval arithmetic (IA), each of the floating-point variables
are replaced with an interval variable x̄ = [xa, xb], each
containing a lower and upper bound for its corresponding
floating-point value. An alternative but equivalent representation
is the centre-radius form x̄ = [(xc−xr), (xc+xr)]. The bounds of
each interval variable are initialised with the same floating-point
input value, and then track numerical errors so that the exact
value of a given variable is guaranteed to be somewhere within its
representative interval (Stolfi and de Figueiredo, 2007). Though
fast and correct, IA suffers from the ‘dependency problem’
(Krämer, 2006), where IA treats variables as if completely
unrelated even if they are dependent on each other. This can lead
to unnecessarily loose error bounds. For instance, if x̄ = [1, 2],
then x̄ − x̄ = [(1− 2), (2− 1)] = [−1, 1] even though the result
should clearly be [0, 0]. Arithmetic expressions may be rewritten
such that a variable only appears once on the right hand side, but
this is usually not possible for complicated expressions.

Affine Arithmetic (AA) (de Figueiredo and Stolfi, 2004; Stolfi
and de Figueiredo, 2007) is a range analysis method which aims
to solve the dependency problem of IA by encoding correlations
between variables within its range representation. Each affine
range is a first-order polynomial. The constant term x̂c represents
the centre value of the range, in a manner similar to the IA
centre-radius representation, but with n linear terms x̂[i]ǫ[i] with
i ∈ 1 . . . n (henceforth deviation terms) instead of one.

x̂ = x̂c + x̂[1]ǫ[1] + . . . + x̂[n]ǫ[n], ǫ[i] ∈ [−1, 1] (1)

These n deviation terms each represent a linear correlation
with another variable. The values of all noise symbols ǫ[i] are
unknown, and they collectively represent the uncertainty in the
interval. If they were known, then the exact error-free solution
of a computation can be determined by simply substituting them
into the above formula. Affine ranges x̂ and ŷ are at least partially
correlated if ∃i > 0 : x̂[i] 6= 0 ∧ ŷ[i] 6= 0. In other words,
two affine ranges are correlated if they have non-zero deviation
symbols in common. This means that the dependency problem
and wrapping effect of standard IA is no longer an issue. For
example, returning to the IA subtraction example again, where
x̂ = 1.5 + 0.5ǫ[1] equivalently, we now have x̂ − x̂ = (1.5 +
0.5ǫ[1]) − (1.5 + 0.5ǫ[1]) = 0 as desired. Since x̂ is the same
variable, and entirely correlated with itself, both occurrences of x̂
share the deviation term x̂[1]ǫ[1], which is allowed to cancel in the
subtraction. This can happen with any affine forms which share
the same deviation terms. Any numerical error from a function is
simply appended to the resulting range as a new deviation term

x̂[k]ǫ[k], where ǫ[k] is an unused noise symbol. The radius of an
affine range is the sum of all absolute deviation coefficients in
the interval x̂r =

∑n
i=1 |x̂[i]|. Since affine ranges are all first-

order polynomials, AA can be considered a first-order range
analysis method, where the error bounds are linear in ǫ. Any
linear function of one or more affine ranges may be expressed
exactly as another affine range by combining the midpoint and
any corresponding error terms.

However, all nonlinear functions must be approximated to
first order to be representable in AA - see Stolfi and de Figueiredo
(2007). As a consequence, it is sometimes the case that AA
multiplication, and consequently division, produce ranges that
are wider than those computed with plain IA. This is a known
weakness of the AA method, and is most likely to occur when
operands are weakly or not correlated with each other, since AA
only has the advantage when operands have shared noise symbols
to cancel out. Alternative error estimates that give tighter ranges
for affine multiplication are known. Based on the ideas presented
in Bouissou et al. (2012), an improved affine multiplication error
estimate is given in Equation 26 of Rump and Kashiwagi (2015),
which we have implemented in Arpra.

Univariate non-linear functions can be approximated
by two common methods; the Chebyshev and Min-Range
approximations. In brief, the goal is to determine values that
lead to the best linear approximation of a function f on the
input range [xa, xb] = [(x̂c − x̂r), (x̂c + x̂r)]. These values,
which depend explicitly on both the function f and the input
range x̂, are α, γ and δ. With these values, the resulting
range ŷ can be computed as f (x̂) = αx̂ + γ + ǫ[k]δ =
(αx̂c + γ) + ǫ[1](αx̂[1]) + . . . + ǫ[n](αx̂[n]) + ǫ[k]δ, where ǫ[k]
is a new unused noise symbol. However, the meaning of the
best approximation is ambiguous, as one can either minimise
the error δ or minimise the overall range of the result. The
so-called Chebyshev approximation minimises the error and
the Min-Range approximation the resulting range. See Stolfi
and de Figueiredo (2007) for details on how these values are
computed for each approximation method.

The Chebyshev approximation is the theoretically ideal
option, since AA is best when as much correlation information
as possible can be preserved, and as little approximation error
as possible introduced. However, the Chebyshev approximation
suffers from the ‘overshoot’ and ‘undershoot’ phenomenon,
where the range of the computed result is bigger than if it
were computed in IA (Stolfi and de Figueiredo, 2007). This is
especially problematic when approximating over larger input
ranges. To prevent overshoot and undershoot, the Min-Range
approximation can be used. At the expense of some correlation
information, thus a larger independent error term δ, one can find
a function which approximates the non-linear function as tightly
as plain IA does.

2. MATERIALS AND METHODS

We here present Arpra, which is an open source library for
Arbitrary-precision range analysis, written in C. Its compatible
with all UNIX-like operating systems, including Linux, BSD and

Frontiers in Neuroinformatics | www.frontiersin.org 3 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

macOS, and is licensed under the terms of the GNU Lesser
General Public version 3 license (LGPL-3.0). Arpra is primarily
intended to be a diagnostic tool for debugging behavioural
changes in numerical simulations caused by the introduction
and propagation of numerical error. It implements a modified
version of the mixed IA/AA range analysis method, described
in Stolfi and de Figueiredo (2007) and Rump and Kashiwagi
(2015), implemented in INTLAB (Rump, 1999). In addition,
it has novel space and time saving truncation procedures as
discussed below. Arpra uses GNU MPFR (Fousse et al., 2007)
as its floating-point back end. MPFR has many advantages over
standard floating-point implementations, such as the ability to set
any variable’s precision dynamically, and to choose the rounding
mode on a per-operation basis without a costly FPU register
setting operation.

2.1. Features of the Arpra Library
The Arpra library loosely follows the design philosophy of the
MPFR library (Fousse et al., 2007) and represents ranges with C
structures. The elementary structure of an Arpra computation is
known as an arpra_range.

struct arpra_range_struct {
mpfr_prec_t precision;
__mpfr_struct centre;
__mpfr_struct radius;
__mpfi_struct true_range;
unsigned int *symbols;
__mpfr_struct *deviations;
unsigned int nTerms;

};

typedef struct arpra_range_struct
arpra_range;

The precision field stores the range’s ‘working precision’. The
centre and radius fields, respectively, hold the centre and
radius values of the range. The true_range field is an MPFI
interval representing the actual lower and upper bounds of the
range, in the working precision. MPFI is an implementation
of IA, written by Revol and Rouillier (2005), which also uses
MPFR as its floating-point back end. Next, the symbols and
deviations fields are, respectively, pointers to an array of
noise symbol numbers and a corresponding array of deviation
coefficients, and nTerms is the number of deviation terms
currently stored in the symbols and deviations arrays.
The radius field is a redundant variable which accumulates
the absolute value of all deviation terms in the arpra_range
. The radius must be known internally by Arpra in a few
places, including when computing the true_range field, but
this field could in principle be computed on demand, saving
the space of one MPFR number per arpra_range instance
in memory. Throughout the remainder of this document,
for any arpra_range variable x̂, centre, radius and
true_range are, respectively, denoted x̂.c, x̂.r and x̂.t, while
deviations, symbols and nTerms are denoted x̂.d, x̂.s
and x̂.n.

In an AA implementation which accounts for rounding errors,
a new deviation term is typically added after each operation
leading to rapid growth in the number of active noise symbols,
but each noise symbol often only affects a small subset of
active affine ranges. In an effort to reduce the memory footprint
of AA, we use a sparse representation of non-zero deviation
coefficients inside the deviations array, following Stolfi
and de Figueiredo (2007). For each deviation coefficient, the
corresponding noise symbol number is stored at the same index
of the symbols array, as the following example shows.

deviations = (2.45, 1.03, 12.56, 3.12)

symbols = (1, 3, 4, 6)
(2)

The deviation terms stored in these arrays are sorted in order
of increasing noise symbol number, to reduce the complexity
of indexing into them. In the above example, note how at
least six noise symbol numbers exist globally: (1, 2, 3, 4, 5, 6).
However, only the four symbols (1, 3, 4, 6) are actually stored
in the deviation term arrays, since the deviation coefficients of
symbol numbers (2, 5) are zero. Depending on the number of
active noise symbols at a given point in the computation, this
could be far less computationally intensive than the equivalent
dense representation.

Each arpra_range must be initialised before use using
either arpra_init or arpra_init2. The former initialises
an arpra_range with default working precision, while the
latter initialises it with a given working precision. This allocates
the internal memory of the range, and initialises it to the Arpra
equivalent of IEEE-754 not-a-number (henceforth NaN). When
done with a range, the memory should be freed to prevent
memory leaks using arpra_clear.

2.1.1. Function Structure
Arpra implements the plus, minus, negation, multiplication
and division operations, as well as the Chebyshev versions of
the square root, natural exponential, natural logarithm and
multiplicative inverse (reciprocal) functions as implemented in
de Figueiredo and Stolfi (2004). Arpra also implements Min-
Range versions of the natural exponential and multiplicative
inverse functions, with Min-Range square root and natural
logarithm left for future work. Arpra mathematical functions
use a function schema similar to that used by MPFR, with the
result pointer followed by the operand pointers. For instance,
bivariate function calls look like arpra_f2(y_ptr, const
x1_ptr, const x2_ptr). All Arpra functions first check

for domain violations. For instance, if computing the square
root of a range that contains negative numbers, then a NaN
range is returned. Like most (but not all) functions in regular
floating-point arithmetic, Arpra functions produce NaN ranges
if any of the operand ranges are NaN. A range is considered
NaN if any of the true_range bounds are NaN. A range
is infinity if the true_range bounds are ±∞, and neither
of them are NaN. If either of the operands are NaN or
infinity, then the function immediately sets the result to,
respectively, NaN or infinity, and then returns, skipping many
unnecessary instructions. Next, the new centre value ŷ.c and

Frontiers in Neuroinformatics | www.frontiersin.org 4 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

the deviation coefficients ŷ.d are computed, along with the new
numerical error term. The absolute values of these coefficients
are accumulated in the radius, rounding upwards, using the
mpfr_sum function. For the nonlinear univariate functions, the
floating-point approximation parameters α and γ are computed
using the true_range field of the input x̂ as MPFI intervals
(Revol and Rouillier, 2005). The resulting range’s centre ŷ.c
and deviation coefficients ŷ.d are then computed using the
centre values of these MPFI intervals, and the radii of α and
γ are added to the numerical error term δ, rounding upwards.
Next, the new true_range field is computed, and excess
error is optionally removed by the mix_trim procedure, as
discussed below.

2.1.2. Arbitrary-Precision
Like MPFR itself, for its variables, Arpra allows users to
dynamically change the precision field of arpra_range
variables (used to set the precision of the true_range field),
which is useful for determining the effect of altering floating-
point precision in a computation. Arbitrary precision is also
useful for calculating intermediate quantities more precisely.
When computing a newarpra_range, any overhead rounding
error (incurred from internal Arpra floating-point operations)
must be accumulated in the new numerical error deviation
term, increasing the range’s width. Therefore, we want these
computations to be as accurate as possible, such as to minimise
this overhead rounding error. The Arpra library achieves this
by computing and storing ŷ.c and ŷ.d in an extended global
‘internal precision’, which is higher than the working precision of
all ranges currently in use. Intermediate quantities, including the
α and γ approximation parameter intervals, are also computed
in this internal precision. We can do this safely because only the
true_range field is required to be rounded to the specified
working precision; all computations up until the final rounding
can be done in whichever precision one chooses, so it makes sense
to choose a higher one.

The working precision of an arpra_range (the precision
of its true_range field) is set during initialisation. If a
range is initialised using the arpra_init2 function, then
its working precision is set to the value of the precision
argument. If the range is initialised with the arpra_init
function, then its working precision is determined by a global
‘default precision’ variable. The default precision can be
retrieved using the arpra_get_default_precision
function, and dynamically set by the user using the

arpra_set_default_precision function. One can also
retrieve and dynamically set the working precision of a range that
has already been initialised by using arpra_get_precision
and arpra_set_precision. Setting the precision of a
range using the above setter function is faster than clearing and
reinitialising it. Note, however, that setting it in this manner
causes the range to be reset to NaN. If one needs to change
the precision of a range without invalidating it, one can simply
initialise a new range with the desired precision, and then set the
new range with the old one using the arpra_set function. As
with the default precision, and the precision of individual ranges,
the user is able to retrieve and dynamically set this internal

precision using the arpra_get_internal_precision
and arpra_set_internal_precision functions.

2.1.3. Mixed Trimmed AA/IA
We have discussed how arbitrary-precision can help us to
minimise the overhead rounding error caused by the AAmethod.
However, since AA ranges are essentially first-order polynomials,
often with many deviation terms each, a small amount
of overhead rounding error is inevitable when computing
the true_range. Furthermore, approximation error from
multiplication and the transcendental functions can result in
ranges that are wider than those computed with plain IA,
regardless of rounding error. To reduce the impact of these
additional error sources, Arpra implements a modified version of
the mixed IA/AA method. In plain AA, the true_range field
of a range ŷ is simply the interval ŷ.t = [(ŷ.c − ŷ.r), (ŷ.c + ŷ.r)],
rounded outwards in working precision. As a consequence, the
rounding error from these bound calculations, and the error
incurred in nonlinear function approximation, is included as
bloat in the final true_range. In order to trim some of this
excess error, a method known as ‘mixed IA/AA’ can be used.
This method is described by Stolfi and de Figueiredo (2007),
and Rump and Kashiwagi (2015), and has been implemented in
INTLAB (Rump, 1999).

The idea of mixed IA/AA is to simultaneously compute AA
and IA versions of each range, and use the information from the
IA method to complement the AA method. Arpra uses the MPFI
library (Revol and Rouillier, 2005) for IA functions. Specifically,
when computing some AA function on affine ranges, the IA
version of that function is also computed on the true_range
fields of those affine ranges. After that, the true_range field
of the resulting range is taken to be the intersection of the AA
range ŷ.t and the IA range ȳ. Doing this consistently ensures that
the true_range field of all resulting ranges is never worse than
when computing it with either AA or IA on their own. In other
words, if variable correlations cause an IA range to expand, the
AA range will compensate. Conversely, if approximation error
causes an AA range to expand, the IA range compensates. We
emphasise that only the true_range is modified in mixed
IA/AA, while the centre and deviation terms remain the same.

However, one can do better than this. The Arpra library
implements a modified version of mixed IA/AA, which we will
refer to as ‘mixed trimmed AA/IA’. In this version, if the interval
T = [(ŷ.c − ŷ.r), (ŷ.c + ŷ.r)] fully contains the interval ŷ.t
computed with the mixed IA/AA method, then the new error
deviation term of the AA operation can also be trimmed a little,
so long as we maintain the condition that T ⊇ ŷ.t, and that
the new error term is reduced to a minimum of zero. It is
safe to do this because the new error term is an independent
deviation term, which noise symbol number is not used elsewhere
in the computation, so no correlation information is lost. The
complete Arpra range mixing and trimming procedure is shown
in Algorithm 1, where RD and RU means round down and
up, respectively. This procedure assumes that the approximated
function is twice differentiable and that its second derivative
does not change sign within the approximation interval (i.e.,
the function is convex or concave within the approximation

Frontiers in Neuroinformatics | www.frontiersin.org 5 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

interval). See the Appendix for proofs that range correctness
is maintained by mix_trim for Chebyshev and Min-Range
approximations of functions that fulfill these criteria.

Algorithm 1: Algorithm for combining AA and IA
ranges and trimming the error term.

1 Procedure mix_trim(ŷ, ȳ):
2 ŷ.t← ŷ.t ∩ ȳ // Intersect AA and IA

ranges
3 T ← [RD(ŷ.c− ŷ.r), RU(ŷ.c+ ŷ.r)]
4 if T ⊇ ŷ.t then
5 wlo ← RD(ŷ.t.lo− T.lo)
6 whi ← RD(T.hi− ŷ.t.hi)
7 w← min(wlo,whi) // Trim error term

ŷ.d[ŷ.n]
8 ŷ.d[ŷ.n]← RU(ŷ.d[ŷ.n]− w)
9 ŷ.r← RU(ŷ.r − w)
10 if ŷ.d[ŷ.n] < 0 then
11 ŷ.d[ŷ.n]← 0
12 end

13 end

14 return

2.1.4. Term Reduction Functions
In long computations, it is often the case that the number
of deviation terms accumulated in AA ranges becomes very
large, and an AA computation can often grind to a halt after a
short while, due to the computational overhead. No other AA
implementation handles this eventuality, to our best knowledge,
even though a known solution exists (Stolfi and de Figueiredo,
2007). A so-called ‘term condensing’ function, which sums the
absolute value of selected deviation coefficients into a new
coefficient, corresponding to a new noise symbol ǫ[k], and
removes the replaced terms. For example, if one has an AA range
x̂, with deviation terms (1.5ǫ[1], 8ǫ[2], 2ǫ[3],−4ǫ[4], 1ǫ[5]), one can
reduce the ǫ[1], ǫ[3] and ǫ[4] terms of x̂ in a new range ŷ, with just
three deviation terms.

ŷ = x̂c + 8ǫ[2] + 1ǫ[5] + (|1.5| + |2| + | − 4|)ǫ[k] (3)

Although some of the correlation information in x̂ is potentially
lost in ŷ, this is a safe operation, since ǫ[k] is a new and
independent noise symbol, and the actual range ŷc ± ŷr of ŷ is
not smaller than the range of x̂.

Arpra provides three variants of a term condense function.
arpra_reduce_last_n condenses the last n deviation terms
of a range, while arpra_reduce_small_abs function
reduces all terms which deviation magnitude is less than or
equal to a given threshold and arpra_reduce_small_rel
reduces all terms whose deviation magnitude is less than

or equal to a given fraction of the range’s radius. The
arpra_reduce_last_n function, listed in Algorithm 2,
can be considered a ‘lossless’ condensing function, if used
correctly, that is to say that, if the noise symbols in the last

Algorithm 2: Condense the last n terms

1 Procedure reduce_last_n(ŷ, x̂, n):
2 if n = 0 then
3 ŷ← x̂
4 return

5 else if n > x̂.n then

6 n← x̂.n
7 end

8 ŷ.c← x̂.c // Copy ŷ.c
9 for i← 1 to (x̂.n− n) do
10 ŷ.s[i]← x̂.s[i] // Copy ŷ.d[i]
11 ŷ.d[i]← x̂.d[i]

12 end

13 ŷ.n← x̂.n− n+ 1 // Merge last n terms
14 ŷ.s[ŷ.n]← a new noise symbol

15 ŷ.d[ŷ.n]← RU(
∑x̂.n

i=ŷ.n |x̂.d[i]|)
16 return

n deviation terms are not present in any other range, this
function is guaranteed to preserve all correlation information
when condensing terms. There are a number of situations
in which the last n terms of a range are independent. For
instance, if only a single arpra_range is returned by any
given function, then all noise symbols introduced by the
intermediate computations in that function are guaranteed to
be only present in the returned range. Alternatively, one can
use arpra_reduce_small_abs, listed in Algorithm 3, or
arpra_reduce_small_rel, listed in Algorithm 4, if some
loss of correlation information is acceptable. These condensing
functions can be considered ‘lossy’, since there is no direct
control over which deviations terms are condensed, and some
of these terms may consequently be correlated ones. However,
this matters less when the deviation coefficients are small. If the
majority of deviation coefficients are close to zero, with just a few
coefficients contributing to the majority of the radius, then the
loss of correlation information will be minimal when these low
magnitude terms are condensed.

2.2. Neural Network Model
We test Arpra on prototypical neural network models as
described in the results below. Within the network we use either
the Morris-Lecar neuron model (Morris and Lecar, 1981) or the
Traub-Miles (Hodgkin-Huxley) model (Traub and Miles, 1991).

The Morris-Lecar model is defined as follows:

C
dV

dt
= I − gCam∞(V)(V − VCa)

−gKn(V − VK)− gL(V − VL)

dn

dt
= n∞(V)− n

τn(V)
, (4)

using the following auxiliary functions:

m∞(V) =
1+ tanh(V−V1

V2
)

2

Frontiers in Neuroinformatics | www.frontiersin.org 6 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

Algorithm 3: Condense terms smaller than threshold

1 Procedure reduce_small_abs(ŷ, x̂, threshold):
2 if threshold < 0 then
3 ŷ← x̂ return
4 end

5 ŷ.c← x̂.c // Copy ŷ.c
6 merged← 0
7 j← 0
8 for i← 1 to x̂.n do

9 if x̂.d[i] > threshold then
10 j← j+ 1 // Copy ŷ.d[i]
11 ŷ.s[j]← x̂.s[i]
12 ŷ.d[j]← x̂.d[i]

13 else

14 merged← RU(merged+ |x̂.d[i]|) // Merge
ŷ.d[i]

15 end

16 end

17 ŷ.n← j+ 1 // Append merged term
18 ŷ.s[ŷ.n]← a new noise symbol
19 ŷ.d[ŷ.n]← merged

20 return

Algorithm 4:Condense terms smaller than x̂.r ·threshold
1 Procedure reduce_small_rel(ŷ, x̂, threshold):
2 threshold← threshold ∗ x̂.r
3 reduce_small_abs(ŷ, x̂, threshold)

4 return

n∞(V) =
1+ tanh(V−V3

V4
)

2

τn(V) =
1

φ cosh(V−V3
2V4

)
. (5)

where V the membrane potential and n the probability of
rectifying K+ ion channels opening. m∞ and n∞ are the steady
state value for m and n, respectively, where m is the probability
of depolarising Ca2+ ion channels opening. gCa, gK and gL are
conductance values for calcium, potassium and leak channels,
respectively, while VCa,VK and VL are their respective reversal
potentials. I represents current inputs from external sources, C
is the cell membrane capacitance, φ is the rate of the recovery
process, and the V1, . . . ,V4 parameters determine the shape of
the steady state activation curves for m and n, and the n time
scale. The parameters were set such that the neurons exhibit class
1 excitability Morris and Lecar (1981), in particular gL = 2 µS,
gCa = 4 µS and gK = 8 µS, VL = −60 mV, VCa = 120 mV,
and VK = −80 mV. The remaining parameters are V1 = −1.2,
V2 = 18, V3 = 12, V4 = 17.4, φ = 1/15 and C = 20 nF.

The Traub-Miles model (Traub andMiles, 1991) is defined as:

C
dV

dt
= I − IL − INa − IK

IL = gL(V − VL)

INa = gNam
3h(V − VNa)

IK = gKn
4(V − VK)

dy(t)

dt
= αY (V)(1− Y)− βY (V)Y ,

(6)

where Y ∈ {m, h, n}, and

αm(V) = 0.32(−52− V)/
(

exp((−52− V)/4)− 1
)

βm(V) = 0.28(25+ V)/
(

exp((25+ V)/5)− 1
)

αh(V) = 0.128 exp((−48− V)/18)

βh(V) = 4/
(

exp((−25− V)/5)+ 1
)

αn(V) = 0.032(−50− V)/
(

exp((−50− V)/5)− 1
)

βn(V) = 0.5 exp((−55− V)/40).

(7)

m is the probability of Na+ channel activation, h is the probability
that Na+ channels are not blocked, and n is the probability of
K+ channel activation The chosen parameters are typical for this
model, with gL = 0.02672µS, VL = −63.563 mV, gNa = 7.15µS,
VNa = 50 mV, gK = 1.43 µS, VK = −95 mV and C = 0.143 nF.

The synapses of the SNN model are simulated using a model
similar to the standard Rall synapse (Rall, 1967), but with the
additional constraint of being fully continuous.

dR

dt
= ασ (Vpre − Vthr)− βR

dS

dt
= γR− δS,

(8)

where σ is the sigmoid function

σ (x) = 1

1+ e−kx
(9)

and k is the steepness of the synapse activation slope. In the
results, for simplicity, α = γ and β = δ. The receptor activation
S causes a postsynaptic current Isyn according to

Isyn = gsynS(Vsyn − V) (10)

where gsyn is the synaptic conductance and Vsyn is the
reversal potential. For the Morris-Lecar model experiments,
the conductance of each synapse was drawn from a normal
distribution with standard deviation 1 and mean 150/npre, where
npre is the number of presynaptic neurons. For the Traub-Miles
model experiments, the conductances are drawn from a normal
distribution with both standard deviation and mean equal to
1.3/npre. The remaining parameters are set to Vsyn = 0 mV,
Vthr = −50 mV, α = 0.25 kHz, β = 0.15 kHz and k = 106.

In order to create biologically plausible SNN models,
randomised input spikes are generated by dummy Poisson

Frontiers in Neuroinformatics | www.frontiersin.org 7 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

neuron models, which are then propagated to the Morris-
Lecar neuron models via the modified Rall synapses. Each
Poisson neuron is modelled as a Poisson point process.

P(N(1t) = n) = (0.001λ1t)n

n!
e−0.001λ1t (11)

where P(N(1t) = n) is the probability of n spike events
occurring within the next timestep, and λ is the desired spike
rate in Hz. For the small timesteps used here, the probability of
more than one spike per timestep can be neglected and we use
the approximation

P(N(1t) = 0) = e−0.001λ1tP(N(1t) = 1) = 1− P(N(1t) = 0)
(12)

We sample distribution for each neuron and if it spikes, V is set
high to 20 mV, otherwise it is set low to−60 mV.

3. RESULTS

3.1. Accuracy of the Arpra Library
In order to test the accuracy of ranges computed by Arpra,
compared to those computed with IA, we computed result
ranges ŷ with Arpra arithmetic functions n = 100, 000 times
on randomly generated operands x̂1 and x̂2, each with centre
values drawn from a uniform distribution in [100, 500], and
between zero and nine deviation terms drawn from a uniform
distribution in [−10, 10]. The IA result ȳ was computed on the
true_range fields x̂1.t and x̂2.t of these operands using the
corresponding arithmetic function from the MPFI library (Revol
and Rouillier, 2005). For each test, the diameter of the Arpra
result DArpra = ŷ.t.hi − ŷ.t.lo relative to the diameter of the IA
result DIA = ȳ.hi− ȳ.lo is computed as Drel = DArpra/DIA. Tests
were performed both for plain AA and for mixed IA/AA. The
working precision of all test cases was 24, corresponding to IEEE-
754 single-precision numbers, while Arpra’s internal precision
was set to 256. All transcendental functions used the Chebyshev
approximation method.

Univariate functions were tested once for each test case.
Bivariate functions were tested three times for each test case, with
different operand correlation scenarios, in order to determine
how the strength of operand correlation affects the resulting
range. In the no correlation scenario, the noise symbol sets x̂1.s
and x̂2.s of the operands are mutually exclusive. In the random
correlation scenario, each pair of noise symbols (x̂1.s[i], x̂2.s[i]),
with i ≤ min(x̂1.n, x̂2.n), contained identical symbols with
probability 0.5. In the full correlation scenario, all noise symbol
pairs (x̂1.s[i], x̂2.s[i]) contained identical symbols. The relative
diameters of Arpra ranges are shown in Figure 1.

The observed relative diameters of bivariate functions clearly
illustrate how deviation term cancellation improves the resulting
range when operands are correlated. Note how the distribution of
relative diameters progressively moves towards zero as operand
correlation increases. With the plain AA method, although the
majority of linear addition and subtraction result ranges are at
least as good as IA ranges, they can sometimes be wider. This
is more noticeable as the ratio of overhead rounding error to
range diameter increases. However, deviation term cancellation

leads to large improvements over IA results when operands
are correlated. The same applies to the nonlinear multiplication
and division functions, although the extra linearisation error
increases the chance of range overestimation. However, with
the mixed IA/AA method, the relative diameter of all results is
bounded to a maximum of one, due to the range intersection step
in Algorithm 1.

Ranges computed by nonlinear univariate functions are also
subject to linearisation error. However, with no opportunity
for deviation term cancellation, the relative diameter of these
ranges is at least one with the plain AA method. The plain
AA exponential function results in Figure 1 show especially
large relative diameters, since the Chebyshev exponential
approximation is prone to undershoot in this input domain.
With the mixed IA/AA method, however, all resulting ranges are
exactly equal to their IA counterparts.

3.2. The Hénon Map
In this section, we next tested the performance of the Arpra
library on a simulation of the Hénon map (Hénon, 1976),
which is a dynamical system with known stability properties in
different dynamical regimes. The Hénon map has trajectories
ranging from stable limit cycles to chaotic attractors, depending
on the choice of parameters. In addition to evaluating Arpra,
this allows us to observe how system stability affects the growth
of Arpra ranges. The model was used in Rump and Kashiwagi
(2015) to test the INTLAB range analysis package for MATLAB,
making it a good first benchmark to see how the Arpra library
compares, given its additional arbitrary internal precision and
term condensing functions.

The Hénon map is defined by the following equations, where
xi and yi are the state variables at the ith iteration, while α and β

are constant parameters.

xi+1 = 1− αx2i + yi

yi+1 = βxi
(13)

In the ‘classical’ Hénon map, α = 1.4 and β = 0.3, resulting in
a chaotic system. However, the system is also known to have a
stable periodic orbit below around α = 1.06, and is increasingly
stable as α is reduced further. Note that transcendental functions
are not required to implement this model. As a consequence,
the only sources of overhead error from the AA method are
floating-point rounding errors and approximation errors from
multiplication. For all experiments in this section, both x and y
are initialised as ranges centred on zero, with small initial radii of
1e − 5, the β parameter is fixed to 0.3, and a working precision
of 53 is used. All simulations use version 0.2 of the Arpra library
(Turner, 2019).

We first compared the plain AA method of Arpra with the
IA method of the MPFI library (Revol and Rouillier, 2005). The
system was iterated for n = 500 steps with Arpra’s internal
precision set to 53, equal to the working precision. The α

parameter of the Hénonmap was set to 1.057, meaning themodel
was close to chaotic, but still locally stable. The x ranges of the
AA and IA runs are shown in Figures 2A,B. The y ranges behave
similarly (data not shown). The figure illustrates that the ranges

Frontiers in Neuroinformatics | www.frontiersin.org 8 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

FIGURE 1 | Plots of Arpra diameters relative to IA diameters. The left half of each plot shows results using the plain AA method, while the right side shows the mixed

IA/AA method. The top three rows show results for the bivariate functions addition, subtraction, multiplication and division, each with no correlation, random

correlation and full correlation of operands. The bottom row shows results for the univariate functions square root, exponential, logarithm and inverse function. Please

note the logarithmic scale on the x-axis.

computed in IA explode almost immediately to infinite width
after only about i = 30 iterations, despite the global stability of
the underlying model. In agreement with Rump and Kashiwagi
(2015), the ranges computed with AA initially grow for a short
while, but then begin to shrink back below their initial width
from around iteration i = 100, as the trajectory converges to a
periodic orbit.

Trajectories in chaotic dynamical systems are, by definition,
highly sensitive to perturbations in the initial state, and these
perturbations can propagate in unpredictable ways. As a result,
ranges representing the state of these systems can grow very
quickly. The Hénon map is known to exhibit chaotic behaviour
with β = 0.3 and α approaching around 1.06. So, we next

tested α = 1.057, 1.058 and 1.059, to see how changes in the
local stability of the Hénon map affect the diameter of computed
ranges. Arpra’s plain AAmethod was used with internal precision
p = 53. The range diameter for the Hénon map x variable
is shown for each α value in Figure 2C. In the left column, as
we saw earlier, the diameter of ranges computed in the stable
Hénon map initially grows, as the trajectory converges to its
stable orbit, but begins to shrink once the stable orbit is reached.
As α is increased, the Hénonmap enters a chaotic regime, and the
small perturbations represented by the affine ranges are amplified
in unpredictable ways. This results in the runaway growth of
the bounding range (Figure 2C middle and right panel). The
rate of range growth is dependent on how sensitive, or rather

Frontiers in Neuroinformatics | www.frontiersin.org 9 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

FIGURE 2 | Range analysis of the Hénon map’s x variable. (A) Values of x and

the range (errorbars) computed by Arpra using plain AA (red), and by MPFI

using IA (blue). Note that the symbols were offset diagonally to make them

visible where they coincide. (B) Diameter of the range, in log scale, for 500

iterations (red, blue) and the diameter relative to the magnitude of the range’s

centre (light red, light blue). Note how the IA ranges begin to explode at

around i = 30, while the AA ranges shrink after a short growth period.

α = 1.057 and β = 0.3 in (A,B). (C) Diameter (log scale) of the x range

computed using Arpra’s plain AA method for α = 1.057 (left), α = 1.058

(centre) and α = 1.059 (right).

how chaotic, the system is. Higher values of α result in faster
range growth.

This effect can pose a problem for analysing systems with
singularities. For example, in range analysis methods such as IA
and AA, dividing by a range which straddles zero results in an
infinite width range, since values from the denominator range
can be arbitrarily close to zero. If one analyses a sufficiently
unstable system involving division, it is possible that the
computed ranges will quickly grow large enough such that they
eventually straddle zero, resulting in immediate range explosion.
Even if ranges which straddle zero do not occur, there is still the
question of whether ranges with such large diameters are useful in
practice. Thus, the analysis of highly unstable systems with Arpra,
or indeed any AA implementation, is not recommended. This
issue is not unique to IA and AA. Statistical approaches to error
bounding, such as discrete stochastic arithmetic (Vignes, 2004),
would also produce garbage results in unstable computations.
Using a higher working precision may help to mitigate the issue,
but only temporarily.

Arpra is capable of more advanced methods than just plain
AA, with higher internal precision. It is expected that ranges
computed with these advanced features should be comparatively

tighter for a small runtime and memory cost. To investigate
this, we iterated the Hénon map for n = 1, 000 steps, with
α = 1.057. To evaluate Arpra’s range analysis methods, we
compare the diameter of Arpra ranges computed with AA, mixed
IA/AA and mixed trimmed IA/AA to those of reference ranges
computed in an equivalent simulation using INTLAB (Rump,
1999) version 11. Other affine arithmetic packages also exist, such
as yalAA (Kiel, 2012) and kv (Kashiwagi, 2020). We chose to
compare against INTLAB since it is widely known, and readily
implements the mixed IA/AAmethod. To compare ranges fairly,
Arpra’s internal precision was set to 53, matching the double-
precision numbers used internally by INTLAB. Arpra results are
shown in the top row of Figure 3. To evaluate Arpra’s extended
internal precision feature, we compare Arpra mixed trimmed
IA/AA range diameters computed with internal precision set
to p = 54, p = 55 and p = 56 to diameters of reference
Arpra mixed trimmed IA/AA ranges. The reference ranges are
computed with internal precision p = 53, equal to the working
precision. Internal precision results are shown in the bottom row
of Figure 3. In all plots, Arpra range diameters are plotted in blue,
while Arpra range diameter divided by reference range diameter
is plotted in red.

As the top left and top middle plots of Figure 3 show,
Arpra ranges computed with plain AA and mixed IA/AA are
of approximately equal diameter to INTLAB ranges up until
around iteration i = 750, where the range diameter becomes so
small that overhead error begins to dominate. Beyond this point,
since internal precision is low and error term trimming is not
enabled, the diameters of Arpra ranges are up to 50% larger than
those of INTLAB ranges. The small difference between AA and
mixed IA/AA results is due to the fact that the plotted diameters
are computed from the true_range field of Arpra ranges,
and any overhead rounding error present in plain AA ranges
is stripped from mixed IA/AA ranges. Besides this, the mixed
IA/AA method is only beneficial when transcendental functions
are used, since only Chebyshev and Min-Range approximations
make direct use of the intersected IA/AA ranges when computing
affine terms. In the top right plot of Figure 3, we see that Arpra’s
mixed trimmed IA/AA begins outperforming INTLAB by a
modest amount as the system converges to stability from iteration
i = 100 onwards, and the range diameter is up to 50% smaller
than INTLAB ranges after around iteration i = 750, where the
rounding errors began dominating in the other methods.

In the bottom row of Figure 3, we see that setting the internal
precision higher than the working precision understandably has
little effect when the ratio of range diameter to numerical error
is high. However, when rounding error becomes significant
from around iteration i = 750, we see a 30% reduction of
range diameter when the internal precision p = 54 is one
higher than working precision. The remaining plots show that
further increases to internal precision have diminishing effects.
Increasing precision by a few bits incurs only a small cost in
runtime and memory. While this increase in precision is minor
compared to an increase from double to quadruple precision
(p = 53, p = 113, respectively), we already see diminishing
returns for 3 additional bits, so that further increases in precision
are unlikely to make a difference.

Frontiers in Neuroinformatics | www.frontiersin.org 10 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

FIGURE 3 | Relative diameters (red, linear scale) and actual diameters (blue, log scale) of Arpra ranges representing the Hénon map’s x variable. The top plots show

diameters of Arpra ranges computed with the AA, mixed IA/AA and mixed trimmed IA/AA methods, where relative diameter plots are relative to INTLAB mixed IA/AA

range diameters. The bottom plots show diameters of Arpra mixed trimmed IA/AA ranges computed with internal precision set to p = 54, p = 55 and p = 56, where

relative diameter plots are relative to Arpra range diameters with internal precision set to p = 53.

Rump’s example (Rump, 1988; Loh andWalster, 2002) implies
that it is non-trivial to determine how the accuracy of floating-
point arithmetic changes as the precision increases, since the
mapping from precision to accuracy is not continuous. Despite
this, there is clearly a ceiling where the increases in accuracy begin
to plateau, suggesting that a more algorithmic way of finding
the optimal internal precision is possible. A potential solution,
used by the MPFR library (Fousse et al., 2007), is to use Ziv’s
strategy (Ziv, 1991) as a heuristic. The idea is to start at some base
internal precision, just above Arpra’s default working precision,
and incrementally raise it until the true_range field of an
Arpra range is sufficiently tight. A problem with this is that
affine ranges are constantly changing, with deviation terms being
added, and sometimes removed, and the internal precision would
need constant updating. With such a negligible effect on range
tightness, such complexity seems of limited use when one can
simply set the internal precision moderately high to begin with.

After 500 iterations of the Hénon map, the Arpra ranges
representing x and y each contain approximately 3500 deviation
terms, which is enough to cause noticeable slowdown. In
order to solve this issue, Arpra implements the deviation
term condensing functions discussed in section 2. For a single
Arpra range, assuming we are iterating for m time steps and
that the number of deviation terms grows by some constant
k each step, we need to compute up to k + 2k + . . . +
(m − 1)k + mk terms throughout the simulation. Ignoring
constants, this gives us an asymptotic runtime complexity of

k
∑m

i=1 i = km(m+1)
2 = O(km2), which is not ideal in longer

computations. Calling arpra_reduce_last_n after each
iteration condenses all k new (independent) deviation terms
into one. Calling arpra_reduce_small_rel condenses all
deviation terms smaller than or equal to tr, with t being the
relative threshold and r being the range’s radius. No more than
1/t (rounded down) terms can remain after this call, since the
absolute sum of the remaining high-magnitude terms cannot
exceed r. This effectively resets the number of active noise
symbols in a range to some threshold-dependent baseline each
time it is used.

To illustrate the effectiveness of these functions, we calculated
the Hénon map for 1000 iterations using various term reduction
strategies, with α = 1.057 and internal precision set to 256. The
diameters of term condensed Hénon map x ranges, relative to
the diameter without term reduction, are shown in Figure 4. For
the first term reduction strategy, the arpra_reduce_last_n
function is used to condense all new deviation terms in

the Hénon map variables after each iteration. This is safe to
do because the new noise symbols in x and y are mutually
exclusive. Although it is considered lossless, this function can
still introduce overhead rounding error. From the top plot of
Figure 4, we can see that arpra_reduce_last_n has a small
overhead cost, in terms of diameter growth, but no correlation
information is lost and the computational performance gains are
significant. A comparison of Arpra term condensing functions is
given in Table 1. Despite the performance improvements due to

Frontiers in Neuroinformatics | www.frontiersin.org 11 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

arpra_reduce_last_n, the number of deviation terms in x
and y still grows by one with each iteration, and the computation
will still eventually become slow.

For the remaining term reduction strategies, the
arpra_reduce_small_rel function was used with
radius-relative thresholds of 0.001, 0.01 and 0.1. In the middle
and bottom plots of Figure 4, the Hénon map variables
were condensed every 50 and 100 iterations, respectively.
arpra_reduce_small_abs allows finer control of term
condensing, however here it makes sense to condense terms
that are most weakly contributing to the radius. Due to loss of
correlation information, these ranges grow comparatively wider
than those condensed with arpra_reduce_last_n.
From the plots, we see that ranges grow ever wider as

FIGURE 4 | Diameter of the Hénon map’s x range with term reduction, relative

to that of x computed without. The top plot shows x condensed with

arpra_reduce_last_n (red) each iteration, resulting in a reduced deviation

term count (see Table 1) at the expense of minor overhead error. The middle

and bottom plots show x condensed with arpra_reduce_small_rel

(blue) every 50 and 100 iterations, respectively, each with relative thresholds

0.001 (dotted), 0.01 (dashed) and 0.1 (solid). Deviation term count is reduced

considerably, but range diameters are comparatively larger. Note how the

condensing of small deviation terms typically leads to an uptick of the relative

diameter every 50 (every 100) steps. The relative threshold of 0.1 is clearly too

aggressive, as can be seen by the large jump in relative diameter at step 500.

arpra_reduce_small_rel is used more frequently,
or with a higher threshold. Indeed, condensing ranges in each
iteration or using a high threshold will cause rapid and fatal
range growth, in a manner not dissimilar to IA range explosion.
However, the number of active deviation terms is far lower
with this strategy, as shown in Table 1. From this data, we can
see that the majority of deviation terms in both Hénon map
ranges have magnitudes <10% of their radius. We also see that
careful use of arpra_reduce_small_rel to periodically
remove these lesser deviation terms can greatly improve the
performance of the analysis, while mindful that excessive use
deteriorates range quality. Therefore, some combination of all
term reduction strategies seems desirable, where independent
terms are condensed as they appear and small terms are
swept away when appropriate. Fewer terms translates to less
memory and faster processing, and the time and memory
savings due to deviation term reduction dwarfs the additional
runtime complexity of using these procedures. Conversely, if
no reduction procedure is used, Hénon map iterations become
noticeably slower as deviation term lists grow unwieldy.

In summary, we found that AA performs well when
analysing stable systems, but its usefulness is limited for
chaotic systems. It is worth noting, however, that other
range analysis methods would also struggle to bound such
chaotic computations. We furthermore found that mixed
trimmed IA/AA outperforms mixed IA/AA when overhead error
dominates range width, and that using higher internal precision
helps when rounding error dominates range width. Finally, we
tested the effectiveness of Arpra’s deviation term condensing
functions, finding that overuse of the arpra_reduce_small
functions rapidly deteriorates range quality, while carefully

combining term reduction strategies significantly improves
computational performance.

3.3. Spiking Neural Networks
Spiking neural network (SNN)models are used by computational
neuroscientists to simulate anything from tiny peripheral neural
circuits to vast ‘in silico’ brain circuits. Furthermore, there is
growing interest in the field of neuromorphic computing (Furber
et al., 2014; Diamond et al., 2016a,b). The widespread adoption
of SNN simulations has prompted interest in the verification of
the resulting data, including data computed on high performance
parallel CPU and GPU computing clusters, for instance with
tools such as GeNN (GPU enhanced Neural Networks) (Yavuz

TABLE 1 | Performance comparison of deviation term condensing functions.

Method Run time x Terms y Terms Mallocs Malloc bytes

none 11 min 38 sec 7,005 7,000 146, 727,726 8, 459, 253, 260

last n 35 sec 1,002 1,002 23, 653, 899 1, 399, 553, 468

small (0.001r) 4.3 sec 126 125 9, 991, 398 569, 101, 594

small (0.01r) 2.8 sec 25 26 8, 185, 733 466,901,545

small (0.1r) 2.4 sec 2 2 7,745,798 442, 149, 080

The Hénon map is iterated n = 1,000 times, and the arpra_reduce_small_rel condense epoch is 50 iterations. Term counts are taken at the end. Heap memory information was

obtained using Valgrind (Nethercote and Seward, 2007).

Frontiers in Neuroinformatics | www.frontiersin.org 12 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

et al., 2016). Range analysis is particularly important when
concurrency is used due to the relationship of rounding errors,
resulting non-associativity of numerical operations and the lack
of guarantees for the execution order on parallel systems, which
can lead to serious issues for replicability, as explained above. It
can be an important tool for deciding whether disparate results
from two simulation runs are within a range explainable by
numerical error or are outside it indicating an algorithmic or
programming error.

To study parallel models, we implement equivalent serial
models using Arpra. To emulate parallel input current
summation, we implemented a function which sums the
centre and deviation terms of n Arpra ranges with arbitrary
summand ordering, usingMPFR’s correctly rounded mpfr_sum
function, and then widens the resulting range by the rounding
error bound for recursive summation. A tight rounding error
bound for summation is given in Rump (2012).

|S̃− S| ≤ (n− 1)u

n
∑

i=1
|xi|. (14)

where S is the exact sum, S̃ is the result of summing with
n − 1 correctly rounded floating-point additions, and x is the
vector of summands. When computing this error bound with
Arpra ranges, the absolute value of a summand range is defined
as the true_range bound with the highest magnitude. This
error is accumulated with other rounding errors into the new
deviation term.

There are many different neuron and synapse models that are
used in SNN simulations with varying degrees of abstraction.
Some of the more popular models include the Izhikevich neuron
model (Izhikevich, 2003) and the Traub-Miles type (Traub
and Miles, 1991) Hodgkin-Huxley neuron model. In these
experiments, we use the Morris-Lecar neuron model (Morris
and Lecar, 1981), a reduced version of a Hodgkin-Huxley
conductance based model, and the Traub-Miles neuron model.
Furthermore, we use a variant of the Rall synapse model (Rall,
1967) which has been modified to remove discontinuities. All
models used in this study are fully continuous (see section 2).
If hybrid systems such as the popular integrate-and-fire neuron
or the Izhikevich neuron model (Izhikevich, 2003) were to be
used, their discretised spiking dynamics (instantaneous spike
detection and voltage reset) can cause simulation trajectories to
be partitioned into two or more regions. This would require
the capability to split affine ranges into smaller sub-ranges, and
the ability to merge these ranges as and when the trajectories
converge again. This is non-trivial, since modifying affine ranges
can invalidate correlation information. The Arpra library does
not currently support this, and we will hence use the continuous
models throughout our analysis. For the topology of the network
we chose a simple fan-in SNN model, in which multiple
Poisson neuron inputs project to a single neuron via modified
Rall synapses.

In all tests, the working precision of Arpra ranges was 53
bits, equivalent to IEEE-754 double-precision, while Arpra’s
internal precision was set to 256 bits. All models were integrated
with a forward Euler algorithm, in steps of h = 0.5 ms

for Morris-Lecar models and h = 0.05 ms for Traub-Miles
models. Arpra transcendental functions used the Chebyshev
approximation scheme. Independent deviation terms were
merged each iteration with arpra_reduce_last_n, and
terms ≤10% of the radius were merged every 100 iteration with
arpra_reduce_small_rel.

We first tested how changes in input count and spike
frequency affect range growth. A number of fan-in Morris-Lecar
networks were simulated for 500 ms, where each model had a
different number of Poisson input neurons and a different input
firing rate, varied between 0 and 24 inclusive. Random number
seeds for Poisson input generators and synaptic conductance
values are not fixed in this experiment. The average diameter of
the V range is shown for all three Arpra methods in Figure 5.
White tiles indicate that a range exploded within the 500 ms of
simulated time. Otherwise, warmer tiles indicate a higher average
range width. Our results indicate that both increasing the number
of Poisson input neurons and increasing the spiking frequency
of the inputs affects the average diameter of ranges over the
course of the simulation. In these simulations, ranges tend to
begin exploding when input neuron spiking frequency exceeds
around 10 Hz. How the range depends on parameters such as the
firing rate and number of input neurons depends on a number
of factors but essentially on how much the parameter affects the
stability of the system. For instance, changing the firing rate of
a large number of input neurons is likely to have a more potent
effect than adding a single input neuron.

We then tested how input spike frequency affects range
growth in each range analysis method. Fifty Poisson input
neurons were used to stimulate Morris-Lecar and Traub-Miles
neurons in fan-in networks. The random number generator seed
used to generate spikes and initialise synaptic conductances was
fixed for all tests. Plot A of Figure 6 shows the results for the
Morris-Lecar model simulations, while plot B shows the results
for the Traub-Miles model simulations. The top row of each plot
shows the range and diameter of the output neuron’s membrane
potential V , with input firing frequency λ = 20 Hz, and the
second row shows the range and diameter of V with λ = 10 Hz.
For the third row of Figure 6, input spike frequency is alternated
between 100 ms bursts of λ = 10 Hz input and 100 ms λ = 0 Hz
rest periods.

Note how IA ranges explode almost immediately in all
experiments. The affine Arpra ranges last considerably longer,
however they too eventually explode when the model is subject to
sustained instability. The diameter difference of ranges computed
by the three Arpra methods is noticeable, but only just. The
mixed trimmed IA/AA method slightly outperforms other AA
methods, however this difference is small since the majority of
range growth occurs due to system instability. For the same
reason, increasing either the internal or working precision of
Arpra ranges also has little effect on range diameter. Whilst these
results are not what one might have hoped for, one might argue
that this is to be expected. The experiments of section 3.2 showed
us that even AA ranges explode if a system is sufficiently unstable.
One might expect ranges of all methods to grow slower in more
stable systems, just as the stable Hénon map ranges did in section
3.2. The top two rows in Figure 6A show that this is indeed still

Frontiers in Neuroinformatics | www.frontiersin.org 13 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

FIGURE 5 | Simulations of fan-in Morris-Lecar networks where each model had a different number of Poisson input neurons (0–24 neurons) and the inputs had

different frequencies (0–24 Hz). Each tile shows the mean diameter of V over 500 simulated milliseconds, with warmer tiles indicating wider mean diameter. White tiles

indicate that the range explodes at some point during the simulation.

the case, with ranges in the simulation with λ = 10 Hz inputs
lasting approximately 200 simulated milliseconds longer than
those of the simulation with λ = 20 Hz inputs in the Morris-
Lecar experiment. A similar effect is shown for the Traub-Miles
model in Figure 6B.

The question then becomes whether or not Arpra ranges
can still recover once the SNN simulation enters a stable
system regime, after a period of growth in an unstable regime.
The bottom rows of Figures 6A,B illustrate that, although the
diameter of V grows rapidly during the spike burst regime,
it also shrinks equally rapidly in the quiescent regime to a
baseline of approximately 10−13 for the Morris-Lecar model,
and approximately 10−12 for the Traub-Miles model. This is
consistent with the behaviour of Arpra when iterating the stable
Hénon map in section 3.2, where range width begins to shrink
once the stable limit cycle is reached. Although this demonstrates
that AA at least has the ability to recover from moderate range
explosion in chaotic regimes, the other results in this section
suggest that the scope of all three AA variants discussed here
may be limited to the analysis of SNN models with relatively
low spiking activity. It is clear that dynamical systems simulation
trajectories must have local stability for a sufficiently high
proportion of the simulation to be amenable for analysis using
any AA method.

Next, we asked how the worst case ranges actually compare
to the typically observed variability due to unpredictable
summation orders in simulations using IEEE-754 floating-point
arithmetic on parallel hardware. To test how well Arpra bounds
the trajectories of floating-point SNN simulations, we analysed
fan-in Morris-Lecar and Traub-Miles networks with n = 500
Poisson input neurons with λ = 10 Hz and λ = 5 Hz firing
rate using Arpra’s mixed trimmed IA/AA method. All random
number seeds were fixed. We then simulated the same models
1000 times with standard IEEE-754 floating-point arithmetic
using theMPFR library (Fousse et al., 2007) and with randomised
incoming spike lists, to simulate the unpredictable summation
order of input currents on parallel hardware. We then compared
the observed upper and lower bounds of the 1, 000 sampled
floating-point trajectories with the ranges computed by Arpra.

The ‘diameter’ floating-point trajectories at a given time is
defined as the difference between the maximum and minimum
trajectory value at that time, while the diameter of an Arpra
range is defined as the range’s true_range field. Furthermore,
we performed a stability analysis on the networks to determine
how the growth of Arpra ranges and the divergence of observed
trajectories in the floating-point computations relate to the
stability of the system. We used the tangent space method to
calculate the largest local Lyapunov exponent as a function of
time. The results are plotted in Figure 7.

As the top rows of A and B in Figure 7 show, the diameter
of ranges computed with mixed trimmed IA/AA grows quickly
towards infinity with λ = 10 Hz model input, whilst the
divergence of observed trajectories computed in floating-point
remains relatively constant throughout, diverging slightly when
spikes occur but converging back afterwards. In section 3.2,
we saw that affine ranges inevitably explode when analysing
chaotic systems, and this is reflected in these results. The global
Lyapunov exponent of the floating-point simulations’ average
trajectory is 0.041 to three decimal places on the Morris-Lecar
model, and 0.117 on the Traub-Miles model, indicating that these
trajectories are indeed overall unstable. We see that, although
the Arpra ranges have brief recovery periods when the local
Lyapunov exponent falls below zero due to the absence of spiking
dynamics, the ranges resume growing when the local Lyapunov
resurfaces above zero. We also see that the shape of neuronal
spikes has a notable effect on the overall stability of the trajectory,
and range diameter growth is consequently much higher during
Traub-Miles spikes than in Morris-Lecar spikes.

Since we already know that affine ranges explode in chaotic
systems, it is perhaps more interesting to ask how tight
the bounds are compared to the variation of floating-point
trajectories in a more stable system. In the bottom row of
plot A in Figure 7, we see that the diameter of the V range
is allowed to recover fully down to a baseline value in the
absence of Morris-Lecar spiking dynamics. Similarly, in plot B,
we see the diameter of V rapidly recovers in the absence of
Traub-Miles spiking dynamics. However, the baseline diameter
of V is still approximately three orders of magnitude higher, at

Frontiers in Neuroinformatics | www.frontiersin.org 14 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

FIGURE 6 | Range and diameter of V in a fan in SNN model, where 50 Poisson input neurons project to a single output neuron. (A) Results for the Morris-Lecar

model. (B) results for the Hodgkin-Huxley type Traub-Miles model. The three sub-panels show, respectively, results for constant input firing rate λ = 20 Hz, λ = 10 Hz,

and for alternating 100 ms bursts of λ = 10 Hz input and 100 ms of λ = 0 Hz rest. Arpra methods AA (green), mixed IA/AA (yellow) and mixed Trimmed IA/AA (red) are

compared to the MPFI (Revol and Rouillier, 2005) implementation of IA (blue).

least, than the range of observed divergence of trajectories in the
repeated floating-point simulations. Global Lyapunov exponents
of −0.015 to three decimal places on the Morris-Lecar model,
and −0.013 on the Traub-Miles model, confirms that these
trajectories are overall stable, and local Lyapunov exponents
converge below zero after the Arpra range value bottoms out. So
what could be the cause of this additional range width?

First and foremost, it is important to remind ourselves that
range analysis, by its very definition, is a method for computing

the theoretical worst case error bounds of a computation, and not
necessarily the bounds that one may observe in practice. Range
analysis is conservative by design. Having said that, there are
different flavours of range analysis. We have already seen how
much of an improvement AA is over IA, but AA is a first-order
range analysis method, and thus incurs heavy approximation
error whenever nonlinear functions are used. One solution,
and potential future work in Arpra, is to implement Taylor
intervals, in which ranges are represented using Taylor series

Frontiers in Neuroinformatics | www.frontiersin.org 15 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

FIGURE 7 | Comparison of mixed trimmed IA/AA ranges (red) and the trajectory boundaries computed from 1, 000 floating-point simulations (blue) of a fan-in network

with n = 500 Poisson input neurons. (A) Results for the Morris-Lecar model. (B) Result for the Hodgkin-Huxley type Traub-Miles model. Top sub-panels show results

with input spike frequency λ = 10 Hz and bottom sub-panels with λ = 5 Hz. We analysed the range of V (left sub-panels), and the diameter of these ranges (right

sub-panels). For context, the local Lyapunov exponent is plotted in the right sub-panels (green).

polynomials. This would likely be of most benefit for moderately
stable nonlinear computations. For now, however, we focus on
the linear mixed trimmed IA/AA method.

The Morris-Lecar neuron model in Equation (4) uses the
nonlinear functions tanh and cosh, implemented in terms of
arpra_exp, and division, implemented using arpra_inv.
The Traub-miles model in Equation (6) is also implemented
using arpra_exp and arpra_inv. These functions are
both susceptible to overshoot and undershoot, as discussed in
section 1. Because of this, one would expect there to be a
noticeable difference in the diameter of Arpra ranges when
different approximation schemes are used. In order to determine
how the error from nonlinear function approximation affects
Arpra’s mixed trimmed IA/AA ranges in SNN models, we
simulated a fan-in Morris-Lecar network with 50 Poisson input

neurons with λ = 10 Hz firing rate three times. In the first
run, arpra_exp and arpra_inv use the same Chebyshev
approximation scheme used up until now. In the second run,
these functions use the Min-Range approximation scheme. In
the final run, functions use the Chebyshev scheme, but the
approximation error term δ is set to zero, giving us a crude
demonstration of the effect linearisation error has on computed
ranges. Random number seeds are fixed. The results are shown in
Figure 8.

We see that the Min-Range function approximation scheme
performs only marginally better than the Chebyshev scheme,
with ranges lasting approximately 20 simulated milliseconds
longer before exploding. This extra accuracy can be attributed
to the lack of overshoot and undershoot in the Min-Range
approximation. When artificially removing the approximation

Frontiers in Neuroinformatics | www.frontiersin.org 16 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

FIGURE 8 | Range and diameter of the Morris-Lecar neuron’s V variable, computed with transcendental functions using Chebyshev approximation (red), Min-Range

(blue) and Chebyshev with approximation error set to zero (green). The model is a fan-in SNN with n = 50 Poisson inputs firing at λ = 10 Hz.

error altogether, we see that ranges still barely last longer than
ranges with approximation error added. One can imagine that a
second order range analysis method would better approximate
the exp function using a quadratic curve, lowering the error term
δ, and successively higher order methods would further reduce δ.
Our results suggest, however, that system instability is by far the
biggest contributor to catastrophic range growth, which in turn
suggests that this growth is an appropriate estimate of the worst
case. But in practice this worst case appears to not be realised, due
to cancellation of errors, as seen in the empirical test with 1, 000
repeated floating-point simulations.

4. DISCUSSION

The original motivation that culminated in this work was to
compute boundaries for the numerical error of GeNN (Yavuz
et al., 2016) simulations of spiking neural networks (SNN)
on massively parallel hardware. In the pursuit of this goal,
the Arpra library for arbitrary-precision range analysis was
developed. Unlike other AA packages, Arpra builds on the
standard AA method by exploiting extended precision floating-
point arithmetic using the MPFR library (Fousse et al., 2007)
to produce tighter bounding ranges. It also features the novel
mixed trimmed IA/AA method and three novel term reduction
functions to further decrease overhead error and improve
computational tractability.

We analysed the two-dimensional Hénon map (Hénon,
1976) and a fan-in SNN model involving Morris-Lecar neurons
(Morris and Lecar, 1981) and modified Rall synapses (Rall,
1967). We found that the mixed trimmed IA/AA method
and extended internal precision are most advantageous when
the ratio of overhead error to range diameter is high, but
are less significant when the converse is true, and when the
computation is too unstable for ranges to recover. When using
Arpra’s deviation term condensing strategies, a small overhead
rounding error cost was demonstrated when using the lossless
arpra_reduce_last_n routine in the Hénon map problem.
However, the benefits were an approximate 85% reduction of
deviation terms and a large decrease in both the runtime and
memory usage. We saw even more aggressive reduction of
deviation terms using the lossy arpra_reduce_small_rel
routine, with an over 99% reduction of deviation terms

using the relative threshold 0.1. However, due to the loss of
correlation information, it was found that this routine should
be used sparingly to avoid catastrophic range growth, and
is most effective when used in combination with other term
reduction strategies.

Here, we feel compelled to repeat that, while the computed
ranges can appear loose compared to the variability of plain
floating-point computations observed in practice, the Arpra
library is behaving correctly. Arpra obeys the ‘fundamental
theorem of interval arithmetic’. That is to say that the range
computed by arithmetic operations must always contain the
result for every single point inside the operand ranges. It
always computes the worst-possible-case error boundaries of all
computations, no matter how extreme. While, rounding errors
are certainly not random, it stands to reason that floating-point
rounding errors incurred using IEEE-754 ‘round to nearest’
mode are a somewhat even mixture of positive and negative
errors. If one were to make the simplifying assumptions that
rounding errors are uniformly distributed in some constant
interval [−k, k], and these rounding errors are independent, then
the central limit theorem states that a floating-point number
containing n rounding errors should be normally distributed
about a mean somewhere near the centre of the corresponding
Arpra range, with a standard deviation of k

√
n, which can be

much smaller than a worst case error of k · n.
Arpra can still be a useful tool for examining the short-

term trajectory divergence and identifying points of instability in
chaotic systems. One could simply begin analysis at or slightly
before points of specific interest. Although Arpra performs well
in most linear computations, and reasonably well in sufficiently
stable nonlinear computations, its performance begins to decline
as the nonlinear dynamics begin to dominate the computation.
Since the AA method consists of linear functions of the
centre and deviation terms, the logical progression for range
analysis would be to allow higher-order terms in the range
representations. For instance, one might approximate the
exponential function with nth-order deviation terms, with n + 1
order approximation error. These ideas were proposed in Berz
and Hoffstätter (1998) and Berz and Makino (1998), under
the name ‘Taylor methods’. They were subsequently used to
successfully model near-Earth object trajectories in space, given
intervals of initial conditions (Berz et al., 2001). We leave the
implementation of Taylor method range analysis for future work.

Frontiers in Neuroinformatics | www.frontiersin.org 17 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

Comprehensive analysis packages like the Astrée static
analysis package (Cousot et al., 2007) are often proprietary and
expensive, which rules out their use in the analysis of open
source numerical software. Arpra (Turner, 2019), on the other
hand, is open source and freely available under the terms of the
GNU lesser general public license version 3.0. Arpra also has
the advantage of being built on top of the arbitrary-precision
MPFR library (Fousse et al., 2007), and benefits from arbitrary
floating-point precision and correct rounding for all arithmetic
functions in all software and hardware environments. Stolfi
and de Figueiredo (2007) give plenty of examples where the
AA method is useful, such as function root finding and global
optimisation. Arpra has many more uses besides these, such as
for the verification of numerical libraries, both proprietary and
otherwise. Open source libraries can lack tight accuracy bounds
for functions in their documentation. Given the improved
performance of Arpra in linear computations, the analysis of
software like glibc and many linear algebra packages could also
be prime use cases for Arpra.

DATA AVAILABILITY STATEMENT

The Arpra software is available at https://github.com/arpra-
project/arpra. Scripts to generate the data underlying the
figures are included at https://github.com/arpra-project/arpra/
tree/master/extra.

AUTHOR CONTRIBUTIONS

JT developed Arpra, ran the numerical experiments and made
the figures. JT and TN wrote the manuscript and revised
it. Both authors contributed to the article and approved the
submitted version.

FUNDING

This work was partially supported by EPSRC (Brains on
Board project, grant number EP/P006094/1) the European
Union’s Horizon 2020 research and innovation program
under Grant Agreements 785907 (HBP SGA2) and 945539
(HBP SGA3).

ACKNOWLEDGMENTS

We would like to thank Vincent Lefèvre for numerous valuable
suggestions during the interactive review of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2021.632729/full#supplementary-material

REFERENCES

Berz, M., and Hoffstätter, G. (1998). Computation and application of taylor

polynomials with interval remainder bounds. Reliable Comput. 4, 83–97.

doi: 10.1023/A:1009958918582

Berz, M., and Makino, K. (1998). Verified integration of odes and flows using

differential algebraic methods on high-order taylor models. Reliable Computing

4, 361–369. doi: 10.1023/A:1024467732637

Berz, M., Makino, K., and Hoefkens, J. (2001). Verified integration

of dynamics in the solar system. Nonlinear Anal. 47, 179–190.

doi: 10.1016/S0362-546X(01)00167-5

Bouissou, O., Goubault, E., Goubault-Larrecq, J., and Putot, S. (2012). A

generalization of p-boxes to affine arithmetic. Computing 94, 189–201.

doi: 10.1007/s00607-011-0182-8

Chesneaux, J. M., Graillat, S., and Jézéquel„ F. (2009). “Rounding

errors,” in Wiley Encyclopedia of Computer Science and Engineering,

Vol. 4, ed B. Wah (Hoboken, NJ: John Wiley & Sons), 2480–2494.

doi: 10.1002/9780470050118.ecse582

Cousot, P., Cousot, R., Feret, J., Mine, A., Mauborgne, L., Monniaux, D., aet al.

(2007). “Varieties of static analyzers: a comparison with ASTREE,” in First Joint

IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE

’07), Shanghai, 3–20.

de Figueiredo, L. H. and Stolfi, J. (2004). Affine arithmetic:

concepts and applications. Num. Algor. 37, 147–158.

doi: 10.1023/B:NUMA.0000049462.70970.b6

Diamond, A., Nowotny, T., and Schmuker, M. (2016a). Comparing

neuromorphic solutions in action: implementing a bio-inspired

solution to a benchmark classification task on three parallel-

computing platforms. Front. Neurosci. 9:491. doi: 10.3389/fnins.2015.

00491

Diamond, A., Schmuker, M., Berna, A. Z., Trowell, S., and Nowotny, T.

(2016b). Classifying continuous, real-time e-nose sensor data using

a bio-inspired spiking network modelled on the insect olfactory

system. Bioinspir. Biomim. 11:026002. doi: 10.1088/1748-3190/11/2/

026002

Fousse, L., Hanrot, G., Lefàvre, V., Pàlissier, P., and Zimmermann, P.

(2007). MPFR: a multiple-precision binary floating-point library with correct

rounding. ACM Trans. Math. Softw. 33, 15. doi: 10.1145/1236463.1236468

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Goldberg, D. (1991). What every computer scientist should know about floating-

point arithmetic. ACM Comput. Surv. 23, 5–48. doi: 10.1145/103162.103163

Hénon, M. (1976). A two-dimensional mapping with a strange attractor. Commun.

Math. Phys. 50, 69–77. doi: 10.1007/BF01608556

Higham, N. J. (2002). Accuracy and Stability of Numerical Algorithms, 2nd Edn.

Philadelphia, PA: Society for Industrial and Applied Mathematics.

Hollingsworth, B. (2012). New “Bulldozer” and “Piledriver” Instructions: A Step

Forward for High Performance Software Development. Santa Clara, CA:

Advanced Micro Devices, Inc. Available online at: https://developer.amd.com/

wordpress/media/2012/10/New-Bulldozer-and-Piledriver-Instructions.pdf

Huckle, T., and Neckel, T. (2019). Bits and Bugs: A Scientific and Historical

Review of Software Failures in Computational Science. Software, Environments,

and Tools. Philadelphia, PA: Society for Industrial and Applied Mathematics.

doi: 10.1137/1.9781611975567

IEEE (1985). IEEE 754-1985-IEEE Standard for Binary Floating-Point Arithmetic.

Piscataway, NJ: IEEE. Available online at: https://standards.ieee.org/standard/

754-1985.html

IEEE (2008). IEEE 754-2008-IEEE Standard for Binary Floating-Point Arithmetic.

Piscataway, NJ: IEEE. Available online at: https://standards.ieee.org/standard/

754-2008.html

IEEE (2019). IEEE 754-2019-IEEE Standard for Binary Floating-Point Arithmetic.

Piscataway, NJ: IEEE. Available online at: https://standards.ieee.org/standard/

754-2019.html

Intel (2018). Intelr 64 and IA-32 Architectures Software Developer Manuals, Santa

Clara, CA: Intel Corporation. Available online at: https://software.intel.com/

en-us/articles/intel-sdm

Frontiers in Neuroinformatics | www.frontiersin.org 18 June 2021 | Volume 15 | Article 632729

https://github.com/arpra-project/arpra
https://github.com/arpra-project/arpra
https://github.com/arpra-project/arpra/tree/master/extra
https://github.com/arpra-project/arpra/tree/master/extra
https://www.frontiersin.org/articles/10.3389/fninf.2021.632729/full#supplementary-material
https://doi.org/10.1023/A:1009958918582
https://doi.org/10.1023/A:1024467732637
https://doi.org/10.1016/S0362-546X(01)00167-5
https://doi.org/10.1007/s00607-011-0182-8
https://doi.org/10.1002/9780470050118.ecse582
https://doi.org/10.1023/B:NUMA.0000049462.70970.b6
https://doi.org/10.3389/fnins.2015.00491
https://doi.org/10.1088/1748-3190/11/2/026002
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1145/103162.103163
https://doi.org/10.1007/BF01608556
https://developer.amd.com/wordpress/media/2012/10/New-Bulldozer-and-Piledriver-Instructions.pdf
https://developer.amd.com/wordpress/media/2012/10/New-Bulldozer-and-Piledriver-Instructions.pdf
https://doi.org/10.1137/1.9781611975567
https://standards.ieee.org/standard/754-1985.html
https://standards.ieee.org/standard/754-1985.html
https://standards.ieee.org/standard/754-2008.html
https://standards.ieee.org/standard/754-2008.html
https://standards.ieee.org/standard/754-2019.html
https://standards.ieee.org/standard/754-2019.html
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Kashiwagi, M. (2020). Verified Numerical Computation and kv Library, Tokyo:

Waseda University.

Kiel, S. (2012). “YalAA: yet another library for affine arithmetic,” in Reliable

Computing, Vol. 16, 114–129.

Krämer, W. (2006). Generalized intervals and the dependency problem. PAMM 6,

683–684. doi: 10.1002/pamm.200610322

Lefèvre, V. (2021). Test of Mathematical Functions of the Standard C Library.

Available online at: https://www.vinc17.net/research/testlibm/index.en.html

(accessed June 11, 2021).

Loh, E., and Walster, G. W. (2002). Rump’s example revisited. Reliable Comput. 8,

245–248. doi: 10.1023/A:1015569431383

Loosemore, S., Stallman, R. M., McGrath, R., Oram, A., and Drepper, U. (2020).

The GNU C Library Reference Manual. Boston, MA: Free Software Foundation,

Inc. Available online at: https://www.gnu.org/software/libc/manual/pdf/libc.

pdf

Monniaux, D. (2008). The pitfalls of verifying floating-point computations.

ACM Trans. Program. Lang. Syst. 30, 12:1–12:41. doi: 10.1145/1353445.135

3446

Morris, C., and Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle

fiber. Biophys. J. 35, 193–213. doi: 10.1016/S0006-3495(81)84782-0

Muller, J.-M., Brunie, N., Dinechin, F. d., Jeannerod, C.-P., Joldes, M., Lefàvre,

V., et al. (2018). Handbook of Floating-Point Arithmetic, 2nd Edn. Basel:

Birkhäuser.

Nethercote, N., and Seward, J. (2007). “Valgrind: a framework for heavyweight

dynamic binary instrumentation,” In Proceedings of the 28th ACM SIGPLAN

Conference on Programming Language Design and Implementation PLDI ’07,

(San Diego, CA; New York, NY: ACM), 89–100.

NVIDIA (2018). CUDA C Programming Guide, Santa Clara, CA: Nvidia

Corporation. Available online at: http://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html

Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for

different soma-dendritic distributions of synaptic input. J. Neurophysiol. 30,

1138–1168. doi: 10.1152/jn.1967.30.5.1138

Revol, N., and Rouillier, F. (2005). Motivations for an arbitrary precision

interval arithmetic and the MPFI library. Reliable Comput. 11, 275–290.

doi: 10.1007/s11155-005-6891-y

Rump, S. M. (1988). “Algorithms for verified inclusions: theory and practice,” in

Reliability in Computing, ed R. E. Moore (San Diego, CA: Academic Press),

109–126.

Rump, S. M. (1999). “INTLAB—INTerval laboratory,” in Developments in Reliable

Computing, ed T. Csendes (Dordrecht: Springer), 77–104.

Rump, S. M. (2012). Error estimation of floating-point summation and dot

product. BIT Num. Math. 52, 201–220. doi: 10.1007/s10543-011-0342-4

Rump, S. M., and Kashiwagi, M. (2015). Implementation and improvements

of affine arithmetic. Nonlinear Theory Appl. IEICE 6, 341–359.

doi: 10.1587/nolta.6.341

Stolfi, J., and de Figueiredo, L. H. (2007). “Self-validated numerical methods and

applications,” 21st Brazilian Mathematics Colloquium, Rio de Janeiro.

Traub, R. D., and Miles, R. (1991). Neuronal Networks of the Hippocampus. New

York, NY: Cambridge University Press.

Turner, J. P. (2019). Arpra: Arbitrary-Precision Range Analysis.

Vignes, J. (2004). Discrete stochastic arithmetic for validating

results of numerical software. Num. Algor. 37, 377–390.

doi: 10.1023/B:NUMA.0000049483.75679.ce

Whitehead, N. and Fit-florea, A. (2011). Precision & Performance: Floating Point

and IEEE 754 Compliance for NVIDIA GPUs. Technical report, NVIDIA.

Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework

for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/srep18854

Zimmermann, P. (2021). Accuracy of Mathematical Functions in Single, Double,

Extended Double and Quadruple Precision.

Ziv, A. (1991). Fast evaluation of elementary mathematical functions with

correctly rounded last bit. ACM Trans. Math. Softw. 17, 410–423.

doi: 10.1145/114697.116813

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Turner and Nowotny. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 19 June 2021 | Volume 15 | Article 632729

https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1002/pamm.200610322
https://www.vinc17.net/research/testlibm/index.en.html
https://doi.org/10.1023/A:1015569431383
https://www.gnu.org/software/libc/manual/pdf/libc.pdf
https://www.gnu.org/software/libc/manual/pdf/libc.pdf
https://doi.org/10.1145/1353445.1353446
https://doi.org/10.1016/S0006-3495(81)84782-0
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1152/jn.1967.30.5.1138
https://doi.org/10.1007/s11155-005-6891-y
https://doi.org/10.1007/s10543-011-0342-4
https://doi.org/10.1587/nolta.6.341
https://doi.org/10.1023/B:NUMA.0000049483.75679.ce
https://doi.org/10.1038/srep18854
https://doi.org/10.1145/114697.116813
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

APPENDIX

The following are proofs that the mix_trim procedure in
Algorithm 1maintains correctness of ranges computed by affine
Chebyshev and Min-Range approximations of a univariate
function ŷ = f (x̂), so long as the second derivative of
f does not change sign within the input range (i.e., f is
convex/concave on x̂). The proofs are largely based on the ideas
of Stolfi and de Figueiredo (2007).

A. Chebyshev Approximation
Let f :[xa, xb] → R be some twice differentiable real-valued
function on the interval [xa, xb] = x̂.t, which second derivative
does not change sign within [xa, xb]. We assume infinite floating-
point precision in this proof.

Let α = f (xb)−f (xa)
xb−xa be the slope of the the linear Chebyshev

approximation of f , and let da = f (xa)− αxa, db = f (xb)− αxb,
and du = f (u)− αu, where u ∈ [xa, xb] is a point where the first
derivative of f is equal to the slope α of the approximation - i.e.,
f ′(u) = α. The existence of u is guaranteed by the mean value
theorem. The choice of α ensures that da = db.

Let γ = da+du
2 and δ = |da−du|

2 . The Chebyshev
approximation then is given as αx+ γ .

For definiteness and without loss of generality we assume f is
convex on [xa, xb] (if it is concave, use−f to find a similar result).
Then, because f is convex, f (x) ≥ αx+ du for all x ∈ [xa, xb], the
distance to the tangent αx+du is increasing monotonically to the
left and the right of u, and hence, by construction, the maximum
errors above and below the linear approximation are equal, and
occur at, respectively, xa (and xb) and u (see Figure A1A):

max{f (x)− (αx+ γ) : x ∈ [xa, xb]} = f (xa)− (αxa + γ)

= da −
da + du

2

= da − du

2
= δ, and (A1)

max{αx+ γ − f (x) : x ∈ [xa, xb]} = αu+ γ − f (u)

= −du +
da + du

2

= da − du

2
= δ. (A2)

Therefore, δ is the amplitude for the new deviation coefficient. Let
ŷ.c = αx̂.c + γ , ŷ.d[i] = αx̂.d[i] for i < ŷ.n and ŷ.d[n] = δ, and
let ŷ.r =

∑

i |ŷ.d[i]|, as per standard AA. Intersecting AA and IA
ranges, we have

ŷ.t = T ∩ f ([xa, xb]), where T = [(ŷ.c− ŷ.r), (ŷ.c+ ŷ.r)]. (A3)

The mixed trimmed method then trims ŷ.d[ŷ.n] by w =
min{wlo,whi}, where wlo = ŷ.t.lo− T.lo and whi = T.hi− ŷ.t.hi.
If f (xb) ≥ f (xa) then α ≥ 0 and we find

whi = αx̂.c+ γ + αx̂.r + δ − f (xb) = αxb + γ − f (xb)+ δ = 0,
(A4)

and if f (xb) < f (xa) then α < 0 and we find

whi = αx̂.c+ γ + |αx̂.r| + δ − f (xa)

= αxa + γ − f (xa)+ δ = 0 (A5)

as well. Because the IA interval is always smaller than T, wlo and
whi are bounded by 0 from below, and hence (A4) and (A5) imply
w = 0 (except for rounding errors not treated here because we
assumed infinite precision). Because the trim w is 0, the range is
guaranteed not to be invalidated by trimming.

B. Min-Range
Let, again, f :[xa, xb] → R be twice differentiable with second
derivative that does not change sign within [xa, xb] and assume
infinite floating-point precision.

If f is non-monotonic, then the Min-Range approximation
is equivalent to the IA interval, which means the trim is
automatically 0 and the AA range will not be compromised
by trimming.

If f is monotonic, let u = argmin{|f ′(xa)|, |f ′(xb)|} and α =
f ′(u). Define da = f (xa) − αxa and db = f (xb) − αxb and

let γ = da+db
2 be the midway point between da and db. Let

δ = |da−db|
2 be half the distance from da to db. The Min-Range

approximation is then given as αx+ γ .
Assume for definiteness that f is convex in [xa, xb] and α ≥ 0,

and hence u = xa, see Figure A1B (all other combinations of
convex or concave, α ≥ 0 or α < 0 work in a similar way).
Because f is convex and u = xa, f (x) ≥ αx + da on [xa, xb] and
the distance of f to the tangent αx + da increases monotonically
for increasing x. Hence, by construction, the maximum errors
below and above the linear approximation are equal, and occur
at, respectively, xa and xb (Figure A1B):

max{αx+ γ − f (x) : x ∈ [xa, xb]} = αxa + γ − f (xa)

= −da +
da + db

2

= db − da

2
= δ, and (A6)

max{f (x)− (αx+ γ) : x ∈ [xa, xb]} = f (xb)− (αxb + γ)

= db −
da + db

2

= db − da

2
= δ. (A7)

Therefore, δ is the amplitude for the new deviation coefficient. Let
ŷ.c = αx̂.c + γ , ŷ.d[i] = αx̂.d[i] for i < ŷ.n and ŷ.d[n] = δ, and
let ŷ.r =

∑

i |ŷ.d[i]|, as per standard AA. Intersecting AA and IA
ranges, we then have

ŷ.t = T ∩ f ([xa, xb]), where T = [(ŷ.c− ŷ.r), (ŷ.c+ ŷ.r)]. (A8)

The mixed trimmed method then trims ŷ.d[ŷ.n] by w =
min{wlo,whi}, where wlo = ŷ.t.lo− T.lo and whi = T.hi− ŷ.t.hi.
This is

wlo = f (xa)− (αx̂.c+ γ − αx̂.r − δ)

= f (xa)− (αxa + γ)+ δ = 0, and (A9)

whi = αx̂.c+ γ + αx̂.r + δ − f (xb) = αxb + γ − f (xb)+ δ = 0.
(A10)

Frontiers in Neuroinformatics | www.frontiersin.org 20 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Turner and Nowotny Arpra Library

FIGURE A1 | Illustration of the two function approximations used in Arpra. (A) Chebyshev approximation and (B) Min-Range approximation. Note how by

construction, the maximal errors δ are incurred at the end points xa and xb of the range in both approximations.

So, as for the Chebyshev approximation above, the eventual trim
is w = 0 (except for rounding errors not treated here because of
our assumption of infinite precision).

In summary, both Chebyshev andMin-Range approximations
only trim additional rounding errors and leave the correctness of
the mixed IA/AA method intact.

Frontiers in Neuroinformatics | www.frontiersin.org 21 June 2021 | Volume 15 | Article 632729

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Arpra: An Arbitrary Precision Range Analysis Library
	1. Introduction
	1.1. Background
	1.1.1. Numerical Errors
	1.1.2. Reproducibility
	1.1.3. Error Bounding

	2. Materials and Methods
	2.1. Features of the Arpra Library
	2.1.1. Function Structure
	2.1.2. Arbitrary-Precision
	2.1.3. Mixed Trimmed AA/IA
	2.1.4. Term Reduction Functions

	2.2. Neural Network Model

	3. Results
	3.1. Accuracy of the Arpra Library
	3.2. The Hénon Map
	3.3. Spiking Neural Networks

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References
	Appendix
	A. Chebyshev Approximation
	B. Min-Range

