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Despite mounting evidence linking pyroptotic cell death to tumor growth, the clinical significance and disease mechanism of
pyroptosis in cancer remain uncertain. In this study, we established a unique gene signature (π signature) that can be used as a
predictive and prognostic tool in pyroptosis-related cancer subtypes. We found that the 13 core pyroptosis genes exerted opposite
prognostic effects in different cancer types, which were subgrouped as pyroptosis positively related cancer and pyroptosis
negatively related cancer. Subsequently, π signature was identified separately from the hub genes in pyroptosis positively related
cancer and pyroptosis negatively related cancer subtypes. It was shown that π signature was well correlated with patient survival,
pathological stages, tumor lymphocyte infiltration, and immunotherapy response. π signature was also applied as a predictive tool
for chemotherapy drug responses and used as an independent factor for patient overall survival prediction. In short, this
elaborated genetic signature could help us understand the oncogenic mechanism and pave the way for further therapeutic
strategies based on pyroptosis.

1. Introduction

Programmed cell death (PCD), such as apoptosis, pyrop-
tosis, and autophagic cell death, is regulated by specific
signaling pathways that mediate the process of cell mortality
induced by intrinsic or extrinsic factors. Many oncogenic or
tumor suppressor molecules in these pathways have been
identified and are being applied as drug targets in cancer
therapeutics [1, 2]. Pyroptosis is morphologically charac-
terized by bubble-like cell swelling and plasma membrane
rupture. When compared with nonlytic apoptotic or auto-
phagy-related cell death, pyroptosis belongs to immuno-
genic cell death (ICD) associated with the release of
proinflammatory cytokines and priming of immune re-
sponses [3]. Recent advances have revealed that pyroptosis is
directly executed by gasdermin (GSDM) family proteins
including gasdermin A (GSDMA), gasdermin B (GSDMB),

gasdermin C (GSDMC), gasdermin D (GSDMD), gasdermin
E (GSDME/DFNA5), and pejvakin (PJVK/DFNB59) [4].
)ese paralogues share strong sequence similarity in their
cytotoxic N-terminal domain, which is repressed by intra-
molecular C-terminal domain. A flexible linker between the
N- and C-terminal domains is proteolytically activated by
upstream proteases, mostly by caspases [5, 6]. )e canonic
pyroptosis pathway, originally discovered in macrophages, is
mediated by caspase-1 (CASP1), which undergoes self-
cleavage activation after assembling into inflammasome
(CASP1/ASC/Pyrin/AIM2/NAIP/NLRC4/NLRP complex)
in response to pathogen-associated molecular patterns
(PAMPs) [7]. )e activated CASP1 then cleaves GSDMD,
pro-IL-18, and IL-1β, and the cleaved GSDMD could
eventually trigger pyroptosis [8, 9]. In the noncanonical
pyroptosis pathway, lipopolysaccharide (LPS) from Gram-
negative bacteria directly binds to and activates CASP4/5 or
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mouse CASP11, which also cleaves GSDMD to induce
pyroptosis [10, 11]. In response to certain stimuli, other
proteases, such as CASP3, CASP8, Granzyme A (GZMA),
and Granzyme B (GZMB) [12–15], can also activate GSDMs,
resulting in pyroptosis.

Pyroptosis is a ubiquitous biological process involved in
many different cell types responding to different PAMPs or
DAMPs [16, 17]. Extensive evidence implies that it plays an
important role in many cancers. Pyroptotic factors such as
CASPs or GSDMs activation or proinflammatory cytokine-
related immune responses are significantly associated with
tumorigenesis and cancer progression [3, 18]. Apoptotic and
pyroptotic cell death suppress tumor progression, which
means pyroptosis could be a feasible way to inhibit tumor
growth. Indeed, various tumoricidal substances, such as
chemotherapy drugs or granzymes released from NK cells or
cytotoxic T cells, could eliminate tumors via canonical or
noncanonical pyroptotic pathways [15, 19]. However, it has
also been reported that pyroptosis promotes the progression
of some cancer types, which is attributed to its proin-
flammatory effects. As a type of ICD, pyroptosis happening
in tumor or nontumor cells may induce a tumor’s favorable
microenvironment to promote disease progression [20, 21].
Importantly, pyroptosis-induced immune responses are a
double-edged sword since they could also help to activate or
normalize patients’ compromised immune systems and
modulate the tumor microenvironment (TME) through
DAMP-induced tumor infiltrating lymphocytes (TILs)
[14, 15, 18]. Immunotherapy such as immune checkpoint
inhibition (ICI) has achieved remarkable success in the
clinics [22–24]. Studies have shown that the efficacy of ICI
can be substantially improved when combined with irra-
diation-induced or chemotherapy-induced tumor pyrop-
totic cell death [15, 18, 25, 26]. )us, it would be interesting
to test if pyroptosis inducible compounds could be com-
bined with ICI immunotherapy to improve efficacy. Such
combinational therapies are therapeutically necessary, es-
pecially for patients with immunologically “cold” tumors.

)ere is no conclusive evidence that pyroptosis induc-
tion improves cancer prognosis, and the precise roles of
pyroptosis and the genetic background required for anti-
tumor immunity remain unknown. To conquer this ambi-
guity, we analyzed several public tumor databases and
developed integrated prediction models for different
pyroptosis-related cancer subtypes with elaborated gene
signatures.

2. Results

2.1. PyroptosisCoreGenesAre StronglyCorrelatedwithTumor
Immunity. To evaluate the predictive or prognostic values of
pyroptosis-related molecules in cancer, we defined 13 core
genes that are directly involved in pyroptosis signaling
(Supplementary Figure 1A). )e mRNA expression, somatic
mutation, and the follow-up information were extracted
from 8 different cancer types in )e Cancer Genome Atlas
(TCGA) database (Table 1). For comparison, we selected the
other 2 groups of PCD core genes (Supplementary
Figures 1A-B). PCD scores were calculated for each patient

from 8 cancer types, including breast invasive carcinoma
(BRCA), glioblastoma multiforme (GBM), kidney renal
clear cell carcinoma (KIRC), lower grade glioma (LGG), skin
cutaneous melanoma (SKCM), mesothelioma (MESO),
pancreatic adenocarcinoma (PAAD), and uveal melanoma
(UVM) (Figure 1(a), Supplementary Figure 1C). As shown
in Supplementary Figure 2, higher expression of 13
pyroptosis core genes resulted in the higher pyroptosis score.
No difference was observed for tumor somatic mutation
frequencies among the 3 groups of core genes, although a
higher mutation frequency existed in some cancer types such
as SKCM and PAAD for almost all analyzed genes
(Figure 1(b)). Notably, tumor mutational burden (TMB)
significantly correlated with pyroptosis and apoptosis scores
of patients in 7 out of 8 cancer types (Figure 1(c)). As ex-
pected, the pyroptosis score, compared with the other 2 PCD
scores, had the strongest correlation with both the immune
score and the TME score (Figure 1(d), Supplementary
Figures 1D-F). )ese results indicated that the 13 pyroptosis
core genes were closely correlated with tumor immunity,
consistent with the immunogenic nature of pyroptosis.

2.2. Classification of Cancer Subtypes by the Pyroptosis Score.
Next, we grouped patients with high and low pyroptosis
scores (Table S1), and Kaplan–Meier (KM) curves revealed
that patients fromGBM, KIRC, LGG, PAAD, and UVMwith
high pyroptosis scores showed poor outcomes (Figure 2(a)),
while patients from BRCA, MESO, and SKCM with high
pyroptosis scores had favorable outcomes (Figure 2(b)).
Each of the 13 core pyroptosis genes was further assessed for
their prognostic effects in different cancer patients, and
consequently, the pyroptosis genes’ prognostic distinctions
divided cancers into 2 subgroups: the BRCA, MESO, and
SKCM subgroup with a hazard ratio (HR)> 1 for most of the
13 pyroptosis core genes, and the GBM, KIRC, LGG, PAAD,
and UVM subgroup with an HR< 1 for most of the 13
pyroptosis core genes (Figure 2(c)). As such, we subgrouped
8 cancer types into two following subtypes: pyroptosis
positively related cancer (PPRC) and pyroptosis negatively
related cancer (PNRC) (Figure 2(d)). Association between
the pyroptosis score and tumor clinical features further
confirmed this notion. PNRC patients with a higher
pyroptosis score showed more advanced pathology in both
theM andN categories (Figures 2(e) and 2(f )), whereas most
PPRC patients with a high pyroptosis score showed no or
less progressive pathology (Figures 2(e) and 2(f)). Overall,
two cancer subtypes (PPRC and PNRC) were identified with
the opposite correlation between pyroptosis and prognosis.

2.3. Identification of π Signature in PPRCandPNRCSubtypes.
Hub genes of PPRC and PNRC were identified by intersecting
differential expressed genes (DEGs) (Supplementary Figure 3)
from the PPRC subgroup or PNRC subgroup separately
(Figures 3(a) and 3(b)), and as a result, 186 hub genes of PPRC
and 139 of PNRC were identified (Supplementary Figures 4A-
B, Table S2) and showed strong correlations with the
pyroptosis score (Supplementary Figures 4C-D). Gene on-
tology (GO) enrichment analysis of hub genes enriched 308
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Table 1: Tumor cohort datasets included in this study.

Data source Cancer type Number of samples
Training cohort
BRCA )e Cancer Genome Atlas (TCGA) Breast cancer 1059
GBM )e Cancer Genome Atlas (TCGA) Glioblastoma 167
KIRC )e Cancer Genome Atlas (TCGA) Kidney clear cell carcinoma 528
LGG )e Cancer Genome Atlas (TCGA) Lower grade glioma 524
MESO )e Cancer Genome Atlas (TCGA) Mesothelioma 84
PAAD )e Cancer Genome Atlas (TCGA) Pancreatic cancer 174
SKCM )e Cancer Genome Atlas (TCGA) Melanoma 406
UVM )e Cancer Genome Atlas (TCGA) Ocular melanoma 79

Validation cohort
CGGA Chinese Glioma Genome Atlas (CGGA) Glioma 657
RECA-EU International Cancer Genome Consortium (ICGC) Kidney clear cell carcinoma 91
GSE42568 Gene Expression Omnibus (GEO) Breast cancer 104
GSE65904 Gene Expression Omnibus (GEO) Melanoma 210
GSE78220 Gene Expression Omnibus (GEO) Melanoma 26
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Figure 1: )irteen pyroptosis core genes strongly correlated with tumor immunity. (a) Box plots showed the 3 programmed cell death
(PCD) scores (apoptosis, autophagy, and pyroptosis scores) of cases in each cancer type. (b))e heatmap showed the mutation frequency of
genes related to apoptosis, autophagy, and pyroptosis. (c) )e heatmap showed the correlation between the tumor mutational burden
(TMB) and 3 PCD scores in each cancer type. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗∗P< 0.0001. (d) Radar charts showed the correlation between 3 PCD
scores and 3 tumor immunity-related scores calculated by XCELL (Immune score, Stroma score, and tumor microenvironment (TME)
score), and the number denotes Pearson correlation coefficients (R).
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biological processes (BPs) in PPRC and 207 BPs in PNRC,
respectively (Tables S3-4), and the top ten enriched BPs from
both subtypes were related to immune response, with T cell
activation at the top (Figures 3(c) and 3(d)). BPs enriched in
PPRC were mainly from interferon signaling (Figure 3(c)),
while BPs enriched in PNRC were mainly from lymphocyte
cell-cell adhesion or differentiation signaling (Figure 3(d)).
Univariate Cox regression analysis revealed that 132 of 186
hub genes from PPRC and 85 of 139 hub genes from PNRC
were significantly related to the overall survival (OS) of pa-
tients (P< 0.05) (Tables S5-6). We performed Lasso Cox re-
gression analysis and constructed an 11-gene signature for
PPRC and another 39-gene signature for PNRC (Supple-
mentary Figures 5A-D, Tables S7-8). )ereafter, these sig-
natures were designated as “π” signature (onset syllable of
pyroptosis) and quantified as π score (PP score for PPRC and
PN score for PNRC). High and low π score patients were
grouped (Table S9), and KM analyses revealed that the high PP
score group had poor prognosis (P< 0.0001) in PPRC patients
(Figure 3(e), Supplementary Figures 6A-C). Receiver oper-
ating characteristic (ROC) curves showed the accuracy of the
PP score (Figure 3(f)). )e area under the curve (AUC) values
for the OS of PPRC patients were 0.787 at 1 year, 0.774 at 3
years, and 0.748 at 5 years (Figure 3(f)). Similar results were
obtained from PNRC patients (Figure 3(g), Supplementary
Figures 6D-H), and AUC values were 0.844 at 1 year, 0.861 at 3
years, and 0.829 at 5 years (Figure 3(h)).We further confirmed
the predictive ability of π score in 5 validated cohorts (Table 1).
By comparing the AUC of π score to previously established
pyroptosis signatures, we found the AUC of our π signature
was higher than most of them (Table 2). )ese results dem-
onstrate that π signature is a strong prognostic marker for
tumors with different genetic backgrounds.

2.4. 3e Prognostic and Predictive Relevance of π Signature.
Correlation analysis showed that the PP score was negatively
correlated with pyroptosis genes, whereas the PN score was
positively correlated with the pyroptosis genes

(Supplementary Figure 7). )is is expected as the PP score
behaved oppositely to the pyroptosis score in the prognosis of
PPRC patients (Figures 2(b) and 3(e)), while the PN score
behaved consistently to the pyroptosis score in the prognosis
of PNRC patients (Figures 2(c) and 3(g)). Indeed, high
pyroptosis scores in BRCA and SKCM were associated with a
low PP score, while high pyroptosis scores in all PNRC pa-
tients were associated with a high PN score (Figure 4(a)).
Although MESO patients did not show statistically significant
correlations like those of BRCA and SKCM, most of the
pyroptosis core genes did show negative correlations with the
PP score (Figure 4(a), Supplementary Figure 7). Consistent
with Figure 3, these results consolidated the prognostic value
of π signature. Besides, π score in PPRC and PNRC were
significantly higher in more advanced pathological stages
(Figures 4(b)–4(d)), implicating remarkable predictive rele-
vance of π signature. Oncogenic mutations profoundly affect
tumorigenesis. However, the prognosis of these mutations in
different cancer types is mostly unclear or controversial. To
clarify, we selected the top 3 mutated genes of each cancer
(Table S10), and significant changes of π score were observed
upon the mutation happened, such as isocitrate dehydroge-
nase 1 (IDH1), tumor protein P53 (TP53), or ATRX chro-
matin remodeler (ATRX) mutation in GBMLGG exhibited
lower PN score, SETdomain containing 2 (SETD2) mutation
in KIRC and Kirsten rat sarcoma oncogene homolog (KRAS)
or TP53 mutation in PAAD-exhibited higher PN scores, and
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha (PIK3CA) or glutamate ionotropic receptor
NMDA type subunit 2A (GRIN2A) mutation in PPRC pa-
tients exhibited higher PP scores (Figure 4(e)). Importantly,
mutation data were consistent with the survival analyses as
shown in Supplementary Figure 8.)ese results agree with the
current molecular prognosis paradigm that some mutations
of oncogenes or tumor suppressor genes are not necessarily
prognostic detrimental (more details in the Discussion sec-
tion). )us, our findings suggested that π signature could be
applied as a prognostic and predictive reference for different
cancer subtypes.
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Figure 2: )e classification of cancer subtypes by the opposite correlation between the pyroptosis score and prognosis. (a-b) Kaplan–Meier
(KM) survival curves for pyroptosis positively related cancer (PPRC) (a) and pyroptosis negatively related cancer (PNRC) (b).)e high (red)
and low (blue) pyroptosis scores were stratified by the optimal cutoff values calculated by the R package “survminer.” (c) )e heatmap
showed the hazard ratio (HR) of each pyroptosis core gene in 8 cancer types (P> 0.05 was excluded). Eight cancer types fell into two
subgroups based on the significant difference in the prognostic value of pyroptosis core genes. (d) A schematic diagram of the PPRC and
PNRC subtype definitions. (e, f ) Association between the pyroptosis score and tumor pathological stages featured by pathology M (e) or
pathology N (f). Kruskal–Wallis one-way ANOVA was used to calculate the global P value among 4 stages of PPRC pathology N, and
Student’s t-test was used for pairwise comparisons. ∗P< 0.05, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001; ns, not significant; M0, cancer has not spread to
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number and location of lymph nodes that contain cancer, higher the number, the more lymph nodes that contain cancer.
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2.5. π Signature Is Related to Tumor Immunity and Immu-
notherapy Response. To pinpoint the mechanisms of how
pyroptosis contributes to tumor immunity (Figure 1(d)), we
analyzed the TILs in patients. 36 types of TILs were frac-
tionated by XCELL, and we found that π score had a sig-
nificant association with general immune cell infiltration
(Figure 5(a)). Specifically, the PP score was negatively
correlated with the infiltration of dendritic cell (DC), B cell,
CD4 T cell, CD8 T cell, and macrophage in PPRC patients,
whereas the PN score was positively correlated with several
TILs in GBM, KIRC, and LGG but negatively correlated with
TILs in PAAD and UVM (Figure 5(a)). In short, π signature
differentially reflected TME in cancer subtypes. As shown in
Table S2, programmed cell death 1 (PD-1) and CD274
molecule (PD-L1) were PPRC hub genes, and cytotoxic
T-lymphocyte associated protein 4 (CTLA-4) was a PNRC
hub gene. For further analyses, we selected well-known
immune checkpoint molecules: PD-1, PD-L1, lymphocyte
activating 3 (LAG3), hepatitis A virus cellular receptor 2
(TIM-3), CTLA-4, B and T lymphocyte associated (BTLA),
and selectin P ligand (SELPLG), and we found they exhibited

opposite prognostic effects in PPRC and PNRC subtypes
(Figure 5(b)), implying possible linkage between pyroptosis
and checkpoint molecules in different cancer subtypes.
Consistently, the expression of checkpoint molecules was
negatively correlated with the PP score and positively cor-
related with the PN score, showing the opposite mechanistic
association of checkpoint molecules with π signature
(Figure 5(c)). Subsequent analysis correlated the immuno-
therapy response with π signature, as we observed that a
higher π score in patients showed a higher TIDE score (poor
immunotherapy response) (Figures 5(d)–5(g)), suggesting
that π signature could be an auxiliary predictive tool for
immunotherapy response.

2.6. π Signature Is a Predictive Tool for Chemotherapy Drug
Responses. Chemotherapy drugs such as small molecule
inhibitors are still the mainstream in cancer treatment.
Pyroptosis induced by chemotherapy drugs could elicit
immune responses or TME modulation and affect the ef-
ficacy of immunotherapy when combined with immune
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Figure 3: Construction of π signature in PPRC and PNRC subtypes. (a) )e Venn diagram showed the 186 intersected differential
expressed genes (iDEGs) from PPRC samples. (b) )e Venn diagram showed the 139 iDEGs from PNRC samples. (c, d) Top 10 enriched
gene ontology (GO) pathways in the iDEGs from PPRCs (c) and PNRCs (d). )e x-axis indicated the gene ratio within each GO term. (e)
)e KM survival curve based on the π score from PPRC in TCGA cohort. )e survival curve was compared using the log-rank test. High
(red) and low (blue) PP scores were determined by the R package “survminer.” (f ) 1-, 3-, and 5-year overall survival (OS) receiver
operating characteristic (ROC) curves in the PPRC demonstrated relatively satisfactory predictive performance.)e area under the curve
(AUC) values were 0.787 (95% CI: 73.24–84.15) at 1 year, 0.774 (95% CI: 73.71–81.18) at 3 years, and 0.748 (95% CI: 70.88–78.75) at 5
years. (g) )e KM survival curve based on the π score from PNRC in TCGA cohort. )e survival curve was compared using the log-rank
test. High (red) and low (blue) PN scores were determined by the R package “survminer.” (h) )e 1-, 3-, and 5-year overall survival ROC
curves in PNRC demonstrated reasonably good predictive performance. AUC values of ROC curves were 0.844 (95% CI: 81.47–87.27) at
1 year, 0.861 (95% CI: 83.66–88.63) at 3 years, and 0.829 (95% CI: 79.76–86.13) at 5 years. (i–m) π signature was validated with five cancer
cohorts. KM survival curves showed the OS of patients of high (red) and low (blue) π scores in CGGA (i), RECA-EU (j), GSE42568 (k),
GSE65904 (l), and GSE78220 (m) cohorts.

Table 2: Comparison between π signature and the other previously established pyroptosis-related signatures.

Cancer
subtype Signatures Cancer types AUC at 1 year AUC at 3 years AUC at 5 years References

PPRC
π signature BRCA, MESO, and SKCM 0.787 0.774 0.748

Other
signatures

Breast cancer (BRCA) 0.756 0.752 0.723 [27]
Skin cutaneous melanoma (SKCM) — 0.64 0.711 [28]

PNRC

π signature GBM, KIRC, LGG, PAAD, and UVM 0.844 0.861 0.829

Other
signatures

Glioma (GBM and LGG) 0.669 0.713 0.709 [29]
Kidney renal clear cell carcinoma

(KIRC) 0.57 0.62 0.65 [30]

Pancreatic adenocarcinoma (PAAD) 0.596 0.687 0.732 [31]
Uveal melanoma (UVM) 0.79 0.854 0.886 [32]
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checkpoint inhibitors. Hence, the association between π
scores and IC50 of 198 drugs was assessed, and we found the
PP score was positively correlated with IC50 of most drugs
(177, 161, and 170 of 198 drugs showed positive correlation
in BRCA, MESO, and SKCM, respectively, but only 4, 2, and
10 of 198 drugs showed negative correlation) (Figure 6(a)),
indicating lower therapeutic efficacy of most drugs in higher
PP score patients. In contrast, 26, 34, 54, 95, and 17 of 198
drugs showed positive correlation in GBM, KIRC, LGG,
PAAD, and UVM, respectively, while 56, 94, 81, 36, and 1 of
198 drugs showed negative correlation (Figure 6(a),
Table S11).

Next, signaling pathways targeted by the top 20 corre-
lated drugs were analyzed in each cancer, and we found that

high PN score patients were more sensitive to drugs tar-
geting the WNTsignaling, ERK/MAPK signaling, and PI3K/
MTOR signaling pathway (Figure 6(b) A). In contrast, high
PP score patients were more resistant to drugs targeting the
WNT signaling, chromatin histone methylation signaling,
protein stability, and degradation signaling pathway, while
high PN score patients were more resistant to drugs tar-
geting the EGFR signaling and chromatin histone acetyla-
tion signaling pathway (Figure 6(b) B). As such, we tried to
predict the chemotherapy drug responses using π score in
different cancer subtypes. As we did in Table 3, the top 5
positively or negatively correlated drugs for each cancer type
were listed. )ose drugs in the left column could be po-
tentially applied to patients with a low π score (stable
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patients), and those drugs in the right column could be
potentially applied to patients with a high π score (pro-
gressive patients) (Table 3). In summary, π signature could
be a predictive tool for chemotherapy drug responses in
different cancer subtypes.

2.7. Application of π Signature as an Independent Predictive
Factor for OS Prediction. To further evaluate if π signature
could be used as an independent prognostic parameter for
OS prediction, univariate Cox regression analysis was
conducted, and the PP score or PN score, as well as other
clinicopathologic parameters such as age and tumor stage,
were independent prognostic factors affecting the OS of
cancer patients in both PPRC and PNRC (Supplementary
Figures 9A-B). We then developed 2 nomogram models for

PPRC and PNRC patients, respectively (Supplementary
Figures 10A-B). In these models, the score of each parameter
was identified by plotting a straight line upwards to cross the
point axis and the total points of each patient as the sum of
all individual parameter scores. )e survival rate of patients
in 1, 3, and 5 years was estimated by plotting a perpendicular
line downwards from the total point axis to the resulting
axis. )e concordance index (C-index) was 0.800 for the
PPRC nomogram model and 0.803 for PNRC. Favorable
calibrations were confirmed in Supplementary Figure 9C-H,
suggesting satisfactory consistency between nomogram
model predictions and practical observations in 1-, 3-, and 5-
year OS of patients. In conclusion, π signature is an inde-
pendent prognostic factor in the integrated nomogram
models providing satisfactory prediction of a patient’s OS in
cancer subtypes.

Table 3: Potential chemotherapy drugs recommended based on the R correlation between the π score and the drug sensitivity.

Positively correlated drug R FDR Negatively correlated drug R FDR

BRCA

Ruxolitinib 0.388 <0.0001 SB505124 −0.179 <0.0001
OF-1 0.383 <0.0001 ERK_2440 −0.104 0.0007

Gallibiscoquinazole 0.367 <0.0001 BI-2536 −0.084 0.0062
MN-64 0.363 <0.0001 Sepantronium bromide −0.067 0.0299

KRAS (G12C) inhibitor-12 0.362 <0.0001

MESO

AZD8055 0.675 <0.0001 SB505124 −0.338 0.0017
KU-55933 0.593 <0.0001 Dihydrorotenone −0.301 0.0055

Telomerase inhibitor IX 0.564 <0.0001
MIM1 0.544 <0.0001

Bortezomib 0.541 <0.0001

SKCM

SB216763 0.611 <0.0001 ERK_6604 −0.299 <0.0001
AZD8055 0.582 <0.0001 ERK_2440 −0.295 <0.0001
AMG-319 0.577 <0.0001 SCH772984 −0.230 <0.0001

PRIMA 1MET 0.571 <0.0001 Trametinib −0.220 <0.0001
GSK591 0.558 <0.0001 SB505124 −0.197 <0.0001

GBM

Vorinostat 0.401 <0.0001 Entospletinib −0.413 <0.0001
ABT737 0.393 <0.0001 ERK_2440 −0.403 <0.0001

WEHI 539 0.350 <0.0001 SCH772984 −0.365 <0.0001
Tamoxifen 0.324 <0.0001 Dasatinib −0.355 <0.0001
TAF1_5496 0.280 0.0003 ULK1_4989 −0.333 <0.0001

KIRC

SB505124 0.476 <0.0001 AGI 5198 −0.395 <0.0001
Erlotinib 0.291 <0.0001 XAV939 −0.354 <0.0001
OF-1 0.286 <0.0001 AZD8055 −0.351 <0.0001

BI-2536 0.261 <0.0001 ULK1_4989 −0.324 <0.0001
IAP_5620 0.253 <0.0001 Topotecan −0.318 <0.0001

LGG

NVP-ADW742 0.533 <0.0001 KU 55933 −0.460 <0.0001
SB505124 0.512 <0.0001 Entospletinib −0.444 <0.0001
Vorinostat 0.508 <0.0001 XAV939 −0.421 <0.0001
Linsitinib 0.473 <0.0001 AZD1332 −0.419 <0.0001
Lapatinib 0.421 <0.0001 AZD8055 −0.405 <0.0001

PAAD

Vorinostat 0.442 <0.0001 SCH772984 −0.499 <0.0001
BIBR-1532 0.427 <0.0001 Acetalax −0.492 <0.0001

Doramapimod 0.424 <0.0001 ERK_6604 −0.484 <0.0001
Sorafenib 0.417 <0.0001 Sapitinib −0.480 <0.0001
TAF1_5496 0.402 <0.0001 Trametinib −0.459 <0.0001

UVM

Sepantronium bromide 0.306 0.0061 XAV939 −0.235 0.0369
Docetaxel 0.293 0.0088
Epirubicin 0.292 0.0091
SB505124 0.287 0.0104
Sinularin 0.286 0.0105
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3. Discussion

Increasing evidence has implicated the essential and versatile
roles of pyroptosis in various cancers with different genetic
backgrounds, and it is commonly acknowledged that
pyroptosis functions as a double-edged sword in cancer
patients due to its divergent effects in tumor cell homeo-
stasis, tumor immunity, and TME modulation. )us, to
determine the precise involvement of pyroptosis in indi-
vidual cancers, a systematic study of pyroptosis in pan-
cancer is imperative. Furthermore, because tumor cells re-
spond differently to various pyroptosis-based treatments,
identifying the cancer type-specific gene signature as a
precise tool for predicting disease progression and patient
prognosis is vital.

To address these issues, we first investigated whether
pyroptosis activity, as manifested by the expression of 13
core genes, could affect the prognosis of different cancer
types. As expected, we discovered that the prognosis of 8
different cancer types was correlated with pyroptosis ac-
tivity. However, the correlations are divergent, as pyroptosis
positively correlated with patient survival in some cancer
types while negatively associated with patient survival in
others, which we labeled as PPRC and PNRC (Figures 2(a)–
2(d)). Notably, later identified hub genes are not directly
involved in pyroptosis signaling per se, so there should be
unexploited mechanisms linking them with pyroptosis-re-
lated cancer prognosis, possibly by tumor immunity related
biological processes (Figures 3(c) and 3(d)). Indeed, π sig-
nature is differentially correlated with immune cell infil-
tration in two cancer subtypes (Figure 5(a)), and the
substantial correlations with the TIDE score suggest that this
signature could be used as a predictor tool for immuno-
therapy responses (Figures 5(d) and 5(g)). )ese findings
suggested that the two batches of PPRC and PNRC signature
genes might reflect different tumor immunity responses in
different pyroptosis-related cancer subtypes, and the sig-
nature was further validated as a prognostic marker and a
pathological stage indicator in patients from several public
cancer databases (Figures 4(a)–4(d)), demonstrating its
prognostic and predictive relevance in pyroptosis-related
cancer subtypes.

Importantly, the π signature is also linked to other
important predictive and prognostic molecules such as
immune checkpoint molecules, traditional oncogenes,
and tumor-suppressor genes. Oncogene and tumor-
suppressor gene somatic mutations play a crucial role in
carcinogenesis, as they are linked to unchecked prolif-
eration and immune evasion. Oncogenic mutations in
TP53, KRAS, and IDH1 contribute to tumorigenesis, but
their role in patient prognosis is still unclear. For ex-
ample, IDH mutation plays an important role in the
progression of early stage of gliomas [33], but it is
beneficial for younger patients and associated with a
better prognosis when compared to patients with wild-
type IDH1 [34]. KRAS and TP53 mutations are carci-
nogenesis drivers that have been linked to poor patient
outcomes in a variety of cancers [35, 36]. However,
studies also found that TP53-mutated glioma patients

under the age of 70 have a better prognosis than TP53
wild-type glioma patients [37]. In our study, patients with
GRIN2A mutations in SKCM and IDH1, TP53, and
ATRX mutations in GBMLGG have a better prognosis
than wild-type patients, whereas patients with KRAS and
TP53 mutations in PAAD have a worse prognosis
(Supplementary Figure 7), and the π signature correlated
positively or negatively with several oncogenic molecules
(Figure 4(e)). )us, our data provided a novel sight that
these mutations might affect tumor progression and
patients’ prognosis through pyroptosis-related mecha-
nisms. Immune checkpoint molecules such as CTLA-4,
PD-1, and PD-L1 have been validated as targets in cancer
immunotherapy, but few studies have explored their roles
in cancer prognosis [38–40]. We discovered that the
expression of immune checkpoint molecules correlated
with π signature differentially between the cancer sub-
types (Figures 5(c) and 5(d)). It should be noted that PD-
L1 has been proven to be associated with pyroptosis
through upregulation of GSDMC [18], and since our
study found additional immune checkpoint molecules
have strong correlations with pyroptosis as well, further
studies are required in this area. )ese findings show that
π signature can be used as a precise tool for cancer type-
specific detection and prognosis at the molecular level.

Pyroptosis, which could be induced by chemotherapy, is
directly involved in tumor cell viability and indirectly in-
volved in tumor immunity and TME modulation via
DAMPs, so it is critical to assess chemotherapy drug re-
sponses in various cancers prior to pyroptosis-based in-
tervention or combinational therapy. We successfully
established a predicting model with the remarkable corre-
lations between the π signature and drug IC50 values in each
cancer subtype (Figures 6(a) and 6(b)). In this model, we
provided a list of potentially effective drugs for patients with
different scores in cancer subtypes (Table 3), providing a new
way to improve the efficacy of chemotherapy or combined
immunotherapy. Finally, we created nomogram models in
which π signature was used as an independent predictor of
OS in PPRC and PNRC patients (Supplementary
Figure 10A-B), further consolidating the prognostic value of
π signature.

Several studies have shown that the pyroptosis core
genes behave differently in different tumors, with GSDMC,
GSDMD, and GSDMB acting as oncogenes in colorectal
cancer, small-cell lung cancer, and breast cancer, respec-
tively [41–43], while GSDME acts as a tumor suppressor in a
variety of cancers [15, 44, 45]. In other investigations,
GSDMA, GSDMB, GSDMC, and GSDMD have also been
shown to have tumor-suppressing properties [14, 46, 47].
)us, diagnosis or prognosis by a single pyroptosis gene is
unreliable. Several reports also identified pyroptosis-related
multiple-gene signatures for specific cancers, with the ma-
jority of these studies focusing on 4–9 pyroptosis core genes
to construct prognostic models [28, 48–50]. In contrast to
these studies, we divided pyroptosis-related cancer types
into subgroups, exploited and elaborated hub genes found in
distinct genetic backgrounds, and expanded signature
genes to include tumor immunity-related biological
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processes but not those directly engaged in pyroptosis.
Despite the fact that the pathways linking those signature
genes to pyroptosis have not been experimentally tested, it
may reveal the underlying links between pyroptosis-related
tumor immunity and disease progression or prognosis. In
summary, we identified the π signature in various
pyroptosis-related cancer subtypes as a reliable prognostic
and predictive tool that could be both useful in mechanistic
and clinical studies.

4. Materials and Methods

4.1. DNA and RNA Sequencing Data of Pan-Cancer Samples.
All cohort datasets included in this study were summarized
in Table 1. Transcriptional mRNA data, somatic mutations,
and clinical data including age, gender, tumor stage, pa-
thology stage, and OS of training cohorts were obtained
from TCGA database. All 5 validation cohorts containing
mRNA expression data and overall survival were down-
loaded from the Chinese Glioma Genome Atlas (CGGA)
database, RECA-EU (International Cancer Genome Con-
sortium, ICGC), and Gene Expression Omnibus (GEO)
database under accession numbers GSE42568, GSE65904,
and GSE78220. Patients without OS information were re-
moved from our study.

4.2. Calculations of PCD Scores, TMB, and Gene Mutation
Frequency. )e pyroptosis core gene list was determined as
described in the introduction section. Gene lists for apo-
ptosis and autophagy were obtained from literature reviews
[51, 52]. Single sample gene set enrichment analysis
(ssGSEA) was applied to calculate PCD scores using [53].
TMB for each tumor tissue can be calculated by the R
package “maftools” using the VarScan method [54]. )e R
package “maftools” was also used to calculate the mutation
frequencies of genes from PCD gene lists in somatic mu-
tation analysis.

4.3. Identification of the Hub Genes of Pyroptosis Positively
Related Cancer (PPRC) and Pyroptosis Negatively Related
Cancer (PNRC). )e DEGs between the high and low
pyroptosis score groups across pan-cancer types were
identified using the R package “limma” [55]. DEGs were
defined using a P value less than 0.05 and an absolute log 2
fold change larger than 1. BP analysis of GO was used to
investigate the biological role of hub genes. Significantly
enriched BPs were defined as those with a P value less than
0.05.

4.4. Construction and Validation of π Signature Models.
Univariate Cox regression analysis and the Cox proportional
hazard model were adopted for the construction of the
optimal gene set from hub genes using R packages “survival”
and “glmnet” [56]. )e linear combination of gene ex-
pression weighted by regression coefficients (coeffs) was
established to generate each patient’s PP score or PN score
with the following formula:

PP − Score � 􏽘
n

a�1
Coeffa × Expa( 􏼁,

PN − Score � 􏽘
n

b�1
Coeffb × Expb( 􏼁,

(1)

where “a” stood for the 11 selected PPRC hub genes, “b” for
the 39 selected PNRC hub genes, and “Exp” for the mRNA
expression level. )ese signatures were termed “π” signature
(the onset syllable of pyroptosis), and the PP score and PN
score together were termed π score. )e optimal cutoff
values for π score were determined by the R package
“survminer.” In addition, the R package “survivalROC” was
used to develop time-dependent ROC curves with AUC
values in order to assess the predictive efficacy of the sig-
nature genes.

4.5. Association Analysis between the π Signature and Clinical
Features. )e tumor stages, pathology M (distant organ
metastasis), and pathology N (lymph node metastasis) stage
information were obtained alongside the transcriptome data
in the TCGA database. )e tumor stages of GBM and LGG
were not accessible, so we considered GBM patients as III/IV
stages and LGG patients as I/II stages. )e association be-
tween the pyroptosis score or π score and tumor stages and
pathology M, and pathology N stages was investigated using
Student’s t-test, with a P value< 0.05 considered statistically
significant.

4.6. Immune Cell Infiltration Analysis and Immunotherapy
Response Prediction. XCELL was used to estimate the
immune cell composition of patients with each cancer
type [57]. )e immune score, stromal score, and TME
score of patients were also calculated by XCELL. Potential
immune checkpoint blockade responses were predicted
with the Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm, which is a computational framework
that identifies factors underlying tumor immune escape
by multiple published transcriptomic biomarkers [58, 59].

4.7. Correlation Study of π Signature and Drug Sensitivity.
Chemotherapy responses for each patient were predicted
based on two public pharmacogenomics databases: Geno-
mics of Drug Sensitivity in Cancer (GDSC) and the Broad
Institute’s Cancer )erapeutics Response Portal (CTRP).
)e drug sensitivities of each sample were estimated using
the R package “oncoPredict” which enabled the generation
of anticipated drug response models that could be used as a
virtual screen for patient drug response [60]. )en, using
Pearson analysis, we investigated the association between the
π signature and drug sensitivity. Signaling pathways targeted
by the top 20 correlated drugs were analyzed in different
cancer subtypes.

4.8. Construction of Nomogram Models for Patient OS
Prediction. Univariable Cox regression analysis was
performed to select independent clinicopathologically
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prognostic factors for OS prediction, and as a result,
cancer type, π signature, as well as clinical characteristics
considering age and tumor stages were selected to con-
struct two visualized prognostic nomogram models. For
patients from various cancer subtypes, the R packages
“rms” and “survival” were used to predict the probability
of 1-, 3-, and 5-year overall survival. )e predictability of
the nomogram models was assessed using a bootstrap
approach with 1,000 resamplings to measure discrimi-
nation and calibration. Discrimination was accessed via
the C-index, which is used to evaluate the predictive value
of a nomogram. When the C-index is closer to 1, it
implies a more accurate predictive ability of the nomo-
gram. )e calibration curves evaluated the consistency
between the nomogram’s predicted and actual survival
probabilities.

4.9. Statistical Analysis. Data were analyzed using R 3.5.2
(https://www.r-project.org/) and GraphPad Prism 8.0
software. We used the D’Agostino and Pearson test to test
data for normality. Student’s t test or Kruskal–Wallis
one-way ANOVA were used to determine the relation-
ship between the pyroptosis score or π score and tumor
stages, gene mutations, and the TIDE score, with a P value
of 0.05 considered statistically significant. (Student’s t
test is used to compare the means between the two
groups, whereas ANOVA is used to compare the means
among three or more groups.) )e Pearson correlation
method was used for correlation analysis. )e
Kaplan–Meier method was used to calculate the survival
probability in terms of OS, and the log-rank test was used
to examine intergroup differences. Univariate, multi-
variate analyses, and lasso regression were performed
through a Cox proportional hazard model, and P val-
ue < 0.05 was considered as the statistical significance.
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