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Abstract: This study investigated a model to assess the role of climate fluctuations on dengue (DENV)
dynamics from 2010 to 2019 in four Brazilian municipalities. The proposed transmission model was
based on a preexisting SEI-SIR model, but also incorporates the vector vertical transmission and
the vector’s egg compartment, thus allowing rainfall to be introduced to modulate egg-hatching.
Temperature and rainfall satellite data throughout the decade were used as climatic model inputs. A
sensitivity analysis was performed to understand the role of each parameter. The model-simulated
scenario was compared to the observed dengue incidence and the findings indicate that the model
was able to capture the observed seasonal dengue incidence pattern with good accuracy until 2016,
although higher deviations were observed from 2016 to 2019. The results further demonstrate that
vertical transmission fluctuations can affect attack transmission rates and patterns, suggesting the
need to investigate the contribution of vertical transmission to dengue transmission dynamics in
future assessments. The improved understanding of the relationship between different environment
variables and dengue transmission achieved by the proposed model can contribute to public health
policies regarding mosquito-borne diseases.

Keywords: dengue; transmission model; Aedes aegypti; environment variables; tropical diseases

1. Introduction

Dengue is a viral mosquito-borne disease that has four serotypes (DENV-1, DENV-
2, DENV-3 and DENV-4) and is transmitted by Aedes aegypti [1] and Aedes albopictus [2]
mosquitoes. Dengue is an endemic disease in many countries worldwide, displaying
marked seasonality. The ecology of the DENV vector has been widely studied and modelled
taking into account temperature-dependency, which is regarded as the main seasonality
driver of this disease [3–5]. Deterministic models, such as the SIR/SEIR (Susceptible (S),
Exposed (E), Infectious (I) and Recovered (R)) model have often been employed to model
DENV transmission dynamics [6–8]. In these transmission models, the explicit inclusion of
the vector population compartment is usually represented by the adult stage, which is the
stage responsible for transmitting the DENV virus to humans [9,10]. This representation
limits the ability to study the effects of certain environmental factors on specific immature
stages of the vector. Mosquito vertical transmission, for example, requires an explicit egg
compartment of the model that can incorporate egg longevity in the environment, allowing
them to act as a long-term virus reservoirs.

Existing DENV transmission models vary substantially [11,12], but many recognize
that environmental fluctuations are key to understanding mosquito population dynamics.
Temperature, for example, modulates oviposition, survival rates, biting rates and the
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extrinsic incubation period of DENV [13–15], whereas rainfall is an egg hatching trigger,
as it provides oviposition breeding sites and the development of the mosquito’s aquatic
stages [16]. These environmental aspects contribute to mosquito populations displaying
strikingly seasonality and geographically distribution between tropical and subtropical
regions, such as Brazil [17].

Huber et al. [7] demonstrated that a SEI-SEIR model including human and vector
compartments with temperature dependence can be implemented in such a way that
transmission is more effective at higher temperatures and decreases at lower temperatures.
Rainfall is also an important component when predicting dengue incidence, although most
models do not include this weather variable [6,7]. Including rainfall in any model by itself
is a challenge, as eggs can survive for months during dry seasons [18]. On the other hand,
excessive and prolonged rain may wash out larvae from breeding sites [16]. Moreover,
a lag between the beginning of the rainy season and increasing dengue incidence is also
observed [19].

In the present study a new model based on Huber et al. [7] is proposed. This new
model also includes temperature-driven biological responses related to DENV transmission
dynamics, while also adding an egg compartment to the Aedes population, thus allowing
rainfall to be introduced as a modulating variable in egg-hatching. Vertical transmission of
DENV has been demonstrated in the laboratory for Ae. aegypti and Ae. albopictus [20] and
has the potential to sustain endemic transmission in the long term [21], so it is featured in
the model as well.

Satellite-based temperature and rainfall data, as well as reported dengue incidence
from the Brazilian Unified Health System (SUS) were obtained for four municipalities
from January 2010 to December 2019 to be used in case studies. Brazil has experienced
seasonal dengue epidemics since 1986, registering the largest epidemics of all American
continent countries [22]. In 2019 alone, the country reported over 2 million cases [23]. All
four DENV serotypes circulate in Brazil, and the main vector is the Ae. aegypti mosquito,
found throughout the entire country [22]. Therefore, the following questions are addressed
in this work: (1) How is the dynamics of DENV transmission modulated by weather
variables? and (2) Is vertical mosquito transmission a significant mechanism for the long-
term persistence of DENV in a certain area?

2. Materials and Methods

Our study proposes a model, implemented as a system of ordinary differential equa-
tions, to describe the dynamics of DENV transmission in eggs (SI), adult mosquitoes (SI)
and humans (SIR). The model, henceforth denoted SI-SI-SIR, does not include recovered
compartments for Ae. aegypti populations, as mosquitoes are assumed to remain infected
for their entire life [24]. Figure 1 presents the model diagram.

The following Equations (1) explain the interactions between each population compartment.

dSE
dt

= o(T)SV + (1 − vt)o(T)IV − (µe + d(R))SE (1a)

dIE
dt

= vto(T)IV − (µe + d(R))IE (1b)

dSV
dt

= d(R) fvsa(T)SE

(
1 − NV

KNH

)
−

(
a(T)phm(T)

(IH + im)
NH

+ µv(T)−1
)

SV (1c)

dIV
dt

= d(R) fvsa(T)IE

(
1 − NV

KNH

)
+

(
a(T)phm(T)

(IH + im)

NH

)
SV − µv(T)−1 IV (1d)

dSH
dt

= uhNH − a(T)pmh(T)IV
SH
NH

− µhSH (1e)

dIH
dt

= a(T)pmh(T)IV
SH
NH

− (γ + µh)IH (1f)

dRH
dt

= γIH − µhRH (1g)
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The Equation (1a) and Equation (1b) represent the egg population, where SE comprises
the susceptible egg compartment (1a) and IE, the infected eggs (1b). o(T) represents the
number of eggs laid by female mosquitoes as a function of temperature. d(R) comprises the
egg development rate as a function of rainfall. fv is the female portion of the population, vt
is the vertical transmission rate and µe is the egg mortality rate. Temperature and rainfall
time series are denoted, respectively, by T and R.

Equation (1c) and Equation (1d) represent adult mosquitoes with SV standing for
susceptible (1c) and IV , for infected adult mosquitoes (1d). sa(T) comprises the egg-to-
adult temperature-dependent survival rate and µv(T), the adult temperature-dependent
mortality rate. The aquatic phase (larvae and pupae) is not explicitly represented in the
model and, therefore, survival and mortality rates are absorbed into the egg-to-adult
rates described above. NV represents the total vector population size (Sv + Iv). K is the
environmental carrying capacity, which constrains the growth of the mosquito population.
a(T) is the mosquito biting rate, phm is the probability of a human infecting a mosquito per
bite, im is the rate of pendular immigration (defined below) of infected humans and NH
consists in the total number of humans in the model (SH + IH + RH).

The SIR submodel (Equation (1e), Equation (1f) and Equation (1g)) represents a human
population with compartments SH , IH and RH governed by (1e), (1f) and (1g). The human
population was assumed as constant, i.e., same birth and death rates (µh) plus a small
pendular migration rate, defined as residents that inhabit one municipality and work or
study in another [25]. Pendular migration does not affect the model population size, but
does affect the infection force, as mosquitoes can bite infected humans originated from
other areas. γ represents the human recovery rate after infection. Finally, pmh(T) comprises
the probability of a mosquito infecting a human by biting.

This model exhibits a time resolution of 8 days instead of the commonly applied
daily resolution, due to the time resolution of the employed satellite data of 8 days.
Because of this, the exposed compartment, originally present in the model developed
by Huber et al. [7], was removed for the mosquito and human population in the pro-
posed model.

Figure 1. SI-SI-SIR model compartments. SE, IE, SV and IV , SH , IH and RH represent the non-
infected and infected eggs of the vector population; the susceptible and infectious compartments of
the adult mosquito population; and the susceptible, infectious and recovered portions of the human
population, respectively. Solid arrows indicates transmission direction.
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2.1. Initial Conditions

The constant model parameters are presented in Table 1. The sex-ratio of the mosquito
population was assumed to be 1:1 [26]. Egg and adult mosquito mortality rates were
obtained from the literature as daily time resolution and converted to 8 days. Human
Birth and mortality rates were based on 2010 data [27] considering the 8-day average.
As an initial condition, this study assumed a 10% vertical transmission rate from female
mosquitoes to offspring, but also evaluated transmission values from 0% to 20%, as the
literature points to substantial vertical transmission rate variability [28–30].

Concerning carrying capacity K, Neira et al. [31] reported a ratio of 0.7 female
mosquitoes per person in a given area, and, as this value is in accordance with other
studies [32], it was employed herein as the initial carrying capacity value (Figure S1 in
Supplementary Materials File S1). Finally, 0.1% of the total number of immigrants (or
tourists) were considered infected, which still allows for effective reinvasion.

Table 1. Constant model parameters. † these values were obtained from the literature as daily rates
and were converted to 8 day−1. ‡ converted from annual rates.

Parameter Definition Value Source

fv Mosquito sex ratio 0.5 [26]

µe Egg mortality rate (8 day)−1 0.077255 † [3]

vt Vertical transmission rate 0.1 [21]

γ Dengue recovery rate (8 day)−1 1 [33]

im Infected immigrants 0.001

µh Human birth and mortality rate (8 day)−1 0.0003656 ‡ [27]

K Carrying Capacity 0.7 [31]

The temperature- and rainfall-dependent parameters are given in Table 2. Temperature-
dependency is represented by a Brière or quadratic function fitted in previous studies
employing experimental laboratory data [34]. Brière is a function that assumes lower and
upper thresholds, asymmetry concerning the optimum parameter, and a sharp decline
in values above optimum parameters (Figure S2 in Supplementary Materials File S1); in
contrast to a quadratic function, where symmetry concerning the optimum parameter is ob-
served [35]. Mordecai et al. [34] applied these functions to calculate a minimum (Tmin) and
maximum, (Tmax) temperature, and a constant rate (c) for each temperature-driven rates.
The rainfall-dependent variable consists in the egg hatching rate, d(R). The mean hatching
rate reported by Alto and Juliano [36] was applied to a quadratic function (Figure S3 in
Supplementary Materials File S1). This fit reflects a positive correlation between egg hatch-
ing and rainfall, although excessive rainfall volumes can lead to negative effects, as they
may cause a flushing event, emptying mosquito breeding sites [16].

The initial value for a susceptible human population (SH(0)) was determined empiri-
cally when fitting the model to the data. IH(0) was set as the dengue prevalence for the first
week of January 2010, comprising the beginning of the analyses. The number of tourists
was provided by the Ministry of Tourism [37]. The total number of tourists in 2010 was
converted to an 8 days time resolution by multiplying the value by 8

365 . RH(0) was set to
NH(0)− SH(0)− IH(0).

The adult mosquito populations were directly proportional to the human populations
according to the 0.7 mosquitoes per person ratio reported by Neira et al. [31]. Thus, SV(0)
and IV(0) were directly proportional to SH(0) + RH(0) and IH(0), respectively, multiplied
by 0.7. This ratio was also used for the egg compartment, where SE(0), the initial state of
susceptible eggs, was equal to 0.7(SH(0) + RH(0)), while IE(0), the initial state of infected
eggs, was set as 0.7IH(0).
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Table 2. Temperature- and rainfall-dependent responses for Aedes aegypti biological traits. Traits were noted as Brière [aT(T−
b)(c− T)

1
2 ] or quadratic [a(T − b)(T − c)], [a(R2 + bR)] functions, where T represents temperature and R represents rainfall.

Variable Definition Function a b c Source

a(T) Biting rate (8 day)−1 Brière 0.00161 13.35 40.08 [34]

o(T) Oviposition rate per 8 days Brière 0.06848 14.58 34.61 [34]

sa(T) Aquatic survival rate Quadratic −0.00599 13.56 38.29 [34]

phm(T)
human to mosquito infection

prob. per bite Brière 0.000491 12.22 37.46 [34]

pmh(T)
mosquito to human infection

prob. per bite Brière 0.000849 17.05 35.83 [34]

µv(T)
Adult mosquito mortality rate

(8 day)−1 Quadratic −0.0185 9.16 37.73 [34]

d(R) Development rate Quadratic −2.29574 −1.18161 [36]

2.2. Case Studies

Four Brazilian municipalities with different DENV transmission dynamics and envi-
ronmental patterns were chosen to evaluate the model, namely Rio de Janeiro, Fortaleza,
Foz do Iguaçu and Porto Alegre (Figure 2). All of them, except for Porto Alegre, have
suffered multiple severe dengue outbreaks between 2010 and 2019 [38].

Fortaleza, the capital of the state of Ceará, is located on the northern coast of Northeastern
Brazil, near the equator line. It exhibits a high demographic density of 8390.76 people/km2,
with a population size of 2,452,185 inhabitants according to the 2010 Census [39]. Fortaleza
displays a warm and sub-humid tropical climate [40], with an average temperature of
29 ± 1.4 ◦C in the last decade [41]. Periods of intense droughts with occasional rains are
common; with an average rainfall of 14 ± 21 mm for an 8-day cycle in the last decade [42],
the lowest average rainfall levels of all municipalities considered in this assessment. Due to
its tropical climate and high population density, it is highly receptive to infestation by Ae.
aegypti. Although it is a coastal area, Fortaleza does not receive the same influx of tourists
as other municipalities in Brazil [37].

The municipality of Rio de Janeiro, the capital of the state of Rio de Janeiro, also
exhibits a high demographic density, of 5556 people/Km2, and a population size of
6,320,446 inhabitants [39]. It shares some weather characteristics with Fortaleza, with
a tropical humid and warm climate weather [43], with an average temperature of 26 ± 3 ◦C
in the last decade [41]. Occasionally, winters can comprise warm weeks with an average
temperature of 30 ◦C [43]. Average rainfall values from last decade indicate 18 ± 19 mm
per an 8-day cycle [42], characterizing dry weather, although with heavy rains, especially
in the fall.

Foz do Iguaçu is located in western Paraná, in southern Brazil. It is set at an altitude
of 164 m, with a demographic density of 418.5 people/Km2, and a population size of
256,088 inhabitants [39]. The climate is subtropical humid mesothermal, with an average
temperature of 24 ± 4 ◦C [41] and average rainfall of 26 ± 25 mm [42] in the last decade.
The municipality shares borders with two countries, Paraguay and Argentina, an obligatory
trade route stop between these countries [44]. At the same time, it is known by its tourist
activities [45]. Therefore, in spite of the fact that it has a relatively small resident population
and is located far from the coast, Foz do Iguaçu receives thousands of tourists every
day [37].

Porto Alegre, the capital of the state of Rio Grande do Sul, is the southernmost munic-
ipality among those analyzed in this study. It displays a humid subtropical climate [46],
and is located on the state coast, similarly to Rio de Janeiro and Fortaleza. Porto Alegre has
a demographic density of 2837.52 people/Km2 and a population size of 1,409,351 inhabi-
tants [39]. It receives thousands of tourists from Argentina and Uruguay, that border Rio
Grande do Sul [37]. Porto Alegre is the coldest municipality considered herein, averaging



Int. J. Environ. Res. Public Health 2021, 18, 9493 6 of 15

21 ± 4 ◦C in the last decade [41]. The average rainfall per 8 days is 22 ± 20 mm [42] during
the same period.

Figure 2. Brazilian municipalities as noted in a South America satellite view: (A) Foz do Iguaçu; (B)
Porto Alegre; (C) Rio de Janeiro; (D) Fortaleza [47].

2.3. Data
2.3.1. Epidemiological Data

Dengue notifications are mandatory in Brazil and were obtained from the InfoDengue
API [38]. InfoDengue provides a reported incidence of dengue per municipality per week.
The obtained incidences were transformed to daily resolution by dividing the values per 7.
Subsequently, the values for an eight-day period were summed to match the periodicity of
the satellite-based weather data.

2.3.2. Temperature Data

The Earth Surface Temperature (LST) data were obtained from the MODerate Resolu-
tion Imaging Spectroradiometer (MODIS / MOD11A2) sensor on the Terra satellite [41],
which exhibits an 8-day Emissivity and a 1 square km Sine Grid resolution. The satellite
data emitted refer to the average daily (LST Day) and night (LST Night) temperatures
every 8 days. The averages between day and night temperatures were employed for all
pixels within the municipality borders to obtain the average for the entire municipality
(Figure S4, Supplementary Materials File S1).

2.3.3. Rainfall Data

Rainfall data were obtained from the Climate Hazards Group InfraRed Precipitation
with Station Data (CHIRPS) database at the Climate Hazard Center belonging to the
University of California, Santa Barbara (UCSB-CHG) [42]. The CHIRPS has operated for
over 30 years, with a daily resolution of 5 km. Rainfall data was obtained per municipality
using the same method described for temperature (Figure S5, Supplementary Materials
File S1).

Initial model conditions for each municipality are displayed in Table 3.
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Table 3. Initial municipality-specific conditions for simulations.

Municipality NH SH(0) IH(0) Tourists (8 day)−1

Rio de Janeiro 6320.446 327,259 40 21,535

Fortaleza 2452.185 87.734 70 2099

Porto Alegre 1409.351 171,628 2 14,325

Foz do Iguaçu 256,088 37,332 35 15,892

2.4. Model Calibration

A Sobol sensitivity analysis was conducted to determine the leverage of each pa-
rameter concerning the fit between the simulated and observed data [48]. The sensitivity
analysis identified the parameters that more substantially affect model adherence to the
observed data. The Python Sensitivity Analysis Library (SALib) was used [49]. The sum
of squared errors (SSE) between the simulated and observed time series was applied as
the model output. The following parameters and respective ranges were scanned in this
analysis: o(T) (0.5–2), vt (0–0.3), K (0.5, 3), a(T) (0.5–2), im (0.00001–0.01), pmh (0.5–2),
phm (0.5–2), fv (0.3–0.7), ue (0.01–0.15), uv (0.3–0.7), γ (0.4–1.6), uh (0.00001–0.001), sa(T)
(0.5–2). For constant parameters, the range represents the exact variable value; for depen-
dent parameters, the range represents a multiplier applied to the constant a in the Brière
[aT(T − b)(c − T)

1
2 ] and quadratic [a(T − b)(T − c)], [a(R2 + bR)] functions.

Following the sensitivity analysis, constant and climate-dependent parameters ob-
tained from the literature were adapted for each municipality, in order to better adapt to the
climate context of each municipality. This process was performed empirically, observing the
analysis result. We sought to alter the parameters as little as possible from those reported
in the literature, and even with the employed adaptations, the same order of magnitude
of the original values was always maintained. The adaptations were performed based on
the understanding that mosquitoes adapt differently to the climate of each municipality,
maintaining all remain biologically realistic, as slightly different biological parameters
than those observed in the laboratory under controlled and fixed conditions are, therefore,
possible and likely.

3. Results
3.1. Sensitivity Analysis

According to the sensitivity analysis, the dengue recovery rate (γ), human birth and
mortality rate (µh) and biting rate (a(T)) affect the model behavior more strongly than the
other evaluated parameters. When averaging the values for the four municipalities, the
following parameters had first and total order sensitivity coefficients higher than 5%: γ, µh
and a(T) (Figure 3). The second order sensitivity coefficients revealed that mosquito-to-
human infection probability per bite (pmh(T)), human-to-mosquito infection probability
per bite (phm(T)) and carrying capacity (K) exhibited dependent associations between
each other and the other assessed parameters (Figures S6–S9, Supplementary Materials
File S1). The recovery rate (γ) was the only parameter that exhibited a negative correlation
with SSE (R2 > 80%) for all municipalities (Figures S10–S13, Supplementary Materials
File S1). The other evaluated parameters exhibited weak correlations with SSE, less than
50% and greater than −50% for the Pearson Correlation Index. When comparing parameter
sensitivities between municipalities, Rio de Janeiro was the only municipality where µv(T)
comprised over 0.5% of the total order sensitivity coefficient, while Fortaleza was the only
municipality not sensitive to im, the rate of infectious immigrants.
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Figure 3. Sensitivity analysis for each model parameter. From top to bottom, from left to right: Fortaleza, Foz do Iguaçu,
Porto Alegre and Rio de Janeiro.

3.2. Calibration Process

The SI-SI-SIR model was qualitatively evaluated under four weather regimes across
different Brazilian municipalities. Starting with parameter values from the literature
(Tables 1 and 2), the vicinity of their values was explored to see how they would affect
the model’s fit to data. These changes aimed at bringing the parameters values closer
to representing local mosquito population while keeping values in the same order of
magnitude of original values (Table 4). The constant coefficients to the carrying capacity (K),
biting rate (a(T)), development rate (d(R)) and the probabilities of transmission between
human and mosquito (pmh(T) and phm(T)) were adapted for each municipality.

The most significant changes in this qualitative process were observed in the munici-
pality of Fortaleza, as, similarly to Foz do Iguaçu, the carrying capacity was 5-fold higher
than that of Rio de Janeiro and Porto Alegre. Furthermore, d(R) and phm(T) were reduced
to a third. Foz do Iguaçu’s pmh(T) was also 50% lower, while d(R) decreased to 5%. Porto
Alegre variables displayed at least a half decrease, while Rio de Janeiro exhibited small
changes to d(R) and K.

Table 4. Adapted parameter values resulting from the exploratory analysis in four different geo-
graphical contexts. Concerning the temperature and rainfall dependent functions, the new value
substitutes the a variable within their function.

Municipality phm(T) pmh(T) a(T) K d(R)

Rio de Janeiro 0.000491 0.0003396 0.00161 0.6 −0.1607018

Fortaleza 0.0001473 0.0003396 0.0012075 3 −0.229574

Porto Alegre 0.0002946 0.0002547 0.000966 0.6 −0.688722

Foz do Iguaçu 0.000491 0.0001698 0.00161 3 −0.0114787
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Simulations obtained with the parameter values from Table 4 are displayed in Figure 4.
Fortaleza and Rio de Janeiro most often presented simulated epidemic peaks resembling
the observed peaks. This contrasts with Porto Alegre and Foz do Iguaçu, which exhibited
less agreement between the simulated and observed peaks. From 2010 to 2016, simulations
adhered to the observed series, both in terms of peak magnitudes and seasonality, while
the simulated incidence began to stray away from the observations both in magnitude and
in phase in all cities after 2016.

Figure 4. Observed (black dots) and simulated (red line) dengue incidence time series for the four studied municipalities.

Table 5 indicates the attack rates for each municipality, i.e., the sum of all infected
individuals during the period divided by the size of the population at risk. This differed
between the simulated and observed time series. Foz do Iguaçu presents a lower simulated
attack rate than the observed (9.64% difference), while epidemic overestimation in 8.05%,
6.02% and 0.09% were observed for Rio de Janeiro, Fortaleza and Porto Alegre respectively.

Table 5. Observed and simulated attack rates (%) by municipality.

Municipality Observed Attack Rate (%) Simulated Attack Rate (%)

Rio de Janeiro 6.52 14.57

Fortaleza 10.34 16.36

Porto Alegre 0.37 0.46

Foz do Iguaçu 35.96 26.32

3.3. Vertical Transmission

Figure 5 compares simulations with and without vertical transmission. Removing
vertical transmission influenced the epidemic peak size. Foz do Iguaçu and Rio de Janeiro,
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for example, exhibited a minor incidence peak in 2011, which have increased consistently
since 2013, and sometimes, as in 2015, presented higher differences. In Fortaleza, removing
vertical transmission increased dengue incidence in certain epidemic peaks, especially in
2013. Porto Alegre did not exhibit significant epidemic size variations, although vertical
transmission smoothed the epidemic peaks.

Figure 5. Observed (dots) and simulated (solid line) dengue incidence time series, with (blue lines) and without (red lines) vertical
transmission, for the four studied municipalities. Parameter values used in the simulations are shown in Table 4.

Figure 6 indicates the influence of vertical transmission on attack rates. Vertical
transmission was positively correlated with attack rates for every municipality, indicating
that with increasing vertical transmission accompany higher attack rates. In Rio de Janeiro,
increasing the vertical transmission value from 3% to 13% [28–30] caused a 2% disparity
in attack rates between the simulations, indicating an 126, 408 increase in dengue cases.
Porto Alegre, on the other hand, requires a vertical transmission success rate of over 50%
to begin displaying epidemic behavior.
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Figure 6. Increased attack rates (%) with different vertical transmission levels. The gray area indicates
the range of vertical transmission reported in the literature.

4. Discussion

This work proposed and analyzed a transmission model to represent the dynamics
of DENV transmission. It was validated employing data from 2010 to 2019 in four Brazil-
ian municipalities. The model provides a framework for understanding weather-driven
dengue transmission considering rainfall dependency, one of the challenges for these type
of models [50,51]. The addition of susceptible and infected egg states allowed for the
inclusion of rainfall dependency and vertical transmission in the studied model.

This work was inspired by the model developed by Huber et al. [7] whose perfor-
mance was tested using different sinusoidal functions to represent temperature. Here,
we used temperature and rainfall time series derived from weather satellite data. Other
works in the literature usually employ sinusoidal functions to represent temperature
variations [7,50,52,53] or constant temperature [24,54,55]. Our model was capable of pro-
ducing similar patterns to those observed for dengue incidence, presenting both seasonality
and similar epidemic sizes. In contrast to Huber et al. [7], our simulations displayed sharper
epidemic peaks, more similar to observed peaks, due to the use of observed temperature
data and the addition of the egg compartment, which drove the force of infection even
higher, as adult mosquitoes are almost always at the carrying capacity level when the
temperature permits.

Environmental variables affected the dynamics, as expected: in Fortaleza, Rio de
Janeiro and Foz do Iguaçu, that display warmer climates where transmission is facilitated,
both the simulated and observed time series exhibited higher dengue incidence and the
same epidemic pattern. In Porto Alegre, a municipality exhibiting a colder climate, a
lower dengue incidence was observed, not enough to generate epidemic cycles, instead
producing only sporadic outbreaks. Nonetheless, the qualitative calibration process mostly
affected parameters which, in the literature, are highly variable. The colder weather of
Porto Alegre represents unfavorable conditions for the vector, which explains the fact that
most parameter values are smaller than in other cities. While Fortaleza and Foz do Iguaçu
present favorable climates, allowing for higher carrying capacity leading to a better fit to
data. Lastly, the sensitivity analysis clarified how each parameter affected the model’s
ability to match the observed dynamics. It further demonstrated that the parameters,
especially dengue recovery rate (γ), can be better adapted to the Brazilian environment,
since a higher γ reduced the SSE.
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With respect to the discordance between the simulated and observed time series, most
of the inaccuracies concerning epidemic size and peak dates were noted after 2016, which
can be explained by the following factors: (a) the model conflates all dengue serotypes into
only one, and though this simplification is common in conceptual framework articles, it
does not adequately represent the susceptible population, which can accumulate errors over
time; (b) after 2016, Zika and chikungunya were introduced in the studied municipalities
(Figures S14 and S15 in Supplementary Materials File S1), and this disease co-circulation can
lead to their misdiagnosis, as they result in similar clinical conditions [56]; (c) in 2015–2016,
extreme weather changes due to the El Niño phenomenon were observed [57], which may
cause changes in epidemiology scenarios [58–60]; (d) not all developmental Ae. aegypti
stages were accounted for in the model, with the aquatic phase not explicitly represented.

The sensitivity analysis demonstrates that parameters related to egg compartment
(such as o(T), vt, sa(T) and µe) did not play a strong role in model uncertainty. When
tracking the egg population, it is clear that an abrupt growth occurs, forcing the adult pop-
ulation quickly towards its carrying capacity, even when its parameters are underestimated
(Figure S1 in Supplementary Materials File S1). It is noteworthy, however, that this growth
behavior demonstrates the relevance of an explicit egg compartment in the model.

Rainfall influence on epidemic peaks is related to the timing of egg hatching. Low
rainfall rates can bring the mosquito adult population size to its carrying capacity, but
cannot alter the general dengue impact. Other aspects of mosquito biology such as eggs,
larvae and pupae mortality and oviposition rates, are also influenced by rainfall rates [61].
Although the presented model did not assess this impact, this should be a concern in future
studies if the model should be improved.

The last investigated parameter was vertical transmission. Most dengue transmission
models do not include vertical transmission [11,34], as it complicates the model too much
and it is assumed it would not bring significant changes in the model output. However,
in this study, vertical transmission played an important role. When removed, it altered
the transmission dynamics, modifying the timing of the dengue epidemic peaks and the
overall burden. The effect of different transmission values was assessed as indicated in
Figure 6, and the higher the vertical transmission, the higher the overall burden calculated
by the attack rate in the simulations. This finding suggests the need to further investigate
the contribution of vertical transmission to dengue transmission dynamics, and more
studies are required concerning the biology of the vector and its interaction with the virus
to benefit future models.

The introduced framework highlighted the importance of tracking the egg compart-
ment of the mosquito population, including vertical transmission and rainfall dependence.
Overall, the simulations indicate similar patterns to observed data. Future assessments
should include further improvements, such as the inclusion of the four dengue serotypes,
simplifying the model by removing parameters that did not affect the model results and
curves shape, adapting variables for each municipality environment, adding compartments
for aquatic mosquito stages, and improving rainfall dependency and vertical transmission.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph18189493/s1, Figure S1: Simulations of adult Aedes aegypti populations from 2010 to
2019 for Fortaleza, Foz de Iguaçu, Porto Alegre and Rio de Janeiro municipalities, Figure S2: Brieré
equation curve: 2.59R(R − 0)((1 − R)

1
2 ), Figure S3: Association between egg eclosion rate (day−8)

and rainfall represented by the quadratic function: −2.29574834 ∗ R2 + b ∗ 2.71268315, Figure S4:
Average temperature per 8 days from 2010 to 2019 in Fortaleza (blue), Foz de Iguaçu (orange), Porto
Alegre (green) and Rio de Janeiro (red) municipalities, Brazil, Figure S5: Mean rainfall per 8 days
from 2010 to 2019 in Fortaleza (blue), Foz de Iguaçu (orange), Porto Alegre (green) and Rio de Janeiro
(red), Brazil, Figures S6–S9: first, second and total order sensitivity analyses: interactions between
Ot(T) (0.5–2), vt (0–0.3), K (0.5–3), a(T) (0.5–2), im (0.00001–0.01), pmh (0.5–2), phm (0.5–2), fv (0.3–0.7),
ue (0.01–0.15), uv (0.3–0.7), γ (0.4–1.6), uh (0.00001–0.001), sa(T) (0.5–2) and model output sum of
square errors (SSE), Figures S10–S13: Sensitivity Analysis residues regarding the sum of square errors
(SSE) from model simulations and simulation parameters with their respective range of possibilities:
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Ot(T) (0.5–2), vt (0–0.3), K (0.5, 3), a(T) (0.5–2), im (0.00001–0.01), pmh (0.5–2), phm (0.5–2), fv (0.3–0.7),
ue (0.01–0.15), uv (0.3–0.7), γ (0.4–1.6), uh (0.00001–0,001), sa(T) (0.5–2), Figure S14: Chikungunya
incidence in Fortaleza from 2010 to 2020 according to Infodengue data, Figure S15: Zika incidence in
Rio de Janeiro from 2010 to 2020 according to Infodengue data.
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