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The objectives of the present study were to characterize the MC1R gene, its transcripts and the single nucleotide polymorphisms
(SNPs) associated with coat color in alpaca. Full length cDNA amplification revealed the presence of two transcripts, named as
F1 and F2, differing only in the length of their 5-terminal untranslated region (UTR) sequences and presenting a color specific
expression. Whereas the F1 transcript was common to white and colored (black and brown) alpaca phenotypes, the shorter F2
transcript was specific to white alpaca. Further sequencing of the MC1R gene in white and colored alpaca identified a total of
twelve SNPs; among those nine (four silent mutations (c.126C>A, c.354T>C, c.618G>A, and c.933G>A); five missense mutations
(c.82A>G, c.92C>T, c.259A>G, c.376A>G, and c.901C>T)) were observed in coding region and three in the 3UTR. A 4 bp deletion
(c.224 227del) was also identified in the coding region. Molecular segregation analysis uncovered that the combinatory mutations
in theMC1R locus could cause eumelanin and pheomelanin synthesis in alpaca. Overall, our data refine what is known about the
MC1R gene and provides additional information on its role in alpaca pigmentation.

1. Introduction

Coat color in mammals depends on the synthesis and dis-
tribution of the relative amounts of eumelanin and pheome-
lanin, which are influenced by more than 350 genes [1]. The
single exon geneMC1R has recently received much attention
it encodes for the melanocortin 1 receptor (MC1R), which
is a G-protein coupled receptor [2] specifically expressed
by melanocytes. MC1R is a seven-transmembrane protein
that plays a crucial role in melanogenesis stimulation upon
binding to its physiological ligand agouti/𝛼-MSH [3, 4].
In mammals and birds, increased MC1R activity enhances
the production of eumelanin (dark, brown/black pigment),
whereas decreased MC1R activity results in the production
of pheomelanin (yellow/red pigment) [5, 6]. TheMC1R gene
was cloned at the beginning of the 1990s and has since

been established as a major determinant of skin and hair
pigmentation. Great efforts have been made to extensively
genotype animals for useful information and associations
with different coat color. MC1R has been extensively studied
inmammals includingmouse [5], cattle [7], horse [8], fox [9],
sheep [10, 11], dog [12–14], rabbit [15], chicken [16], fish [17],
and to some extent alpaca [18, 19].

Furthermore, there is a lack of information regarding
MC1R molecular segregation, cDNA structure, and expres-
sion in different colors, which would reveal the mechanisms
behind pigmentation. In this study, we report the cloning
and characterization of MC1R full length transcripts and
their relative levels of expression in white and colored (black
and brown) Peruvian alpaca skin samples using RT-PCR
analysis. These results will help to reveal how theMC1R gene
is regulated in varying alpaca coat colors.
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Table 1: Primer sequences used in coding sequence amplification, 5 and 3 RACE experiments, and expression analysis ofMC1R gene.

Primer name Primer sequence (5-3)
MCRF3 ATGCCTGTGCTCGGCCCCCAGAGGA

MCfw GGCTCCCTCAACTCCACC

MC1RFw AGACCCTTTCCTGCTCCCTG

MCR5R1 TCACCAGGAGCACTGCAGCACTTC

MCR5R2 GTTCTCCACGAGGCTCACCAG

MCR5R3 GCAGCAGATGAAGTAATACATGGGAG

GAPFw ATCACTGCCACCCAGAAGAC

GAPRv CTGCTTCACCACCTTCTTGA

O dTmodi GAGAGAGAGAGAGACAGAGAACTAGTCTCGAGTTTTTTTTTTTTTTTTTT

NSTodt GAGAGAGAGAGAGACAGAGAACTAGTCTCGAG

SA AAGCAGTGGTATCAACGCAGAGTGNNNNN

ASA p-ACTCTGCGTTGATACCACTGCTT (5-phosphorylated)

2. Materials and Methods

2.1. Collection and Storage of Skin Biopsies. Skin biopsies from
white and colored (brown andblack) alpacaswere collected in
March 2008 by disposable biopsy punch (8mm diameter) in
RNAlater (SIGMA, Germany). Alpacas were from the ILPA-
Puno, Quimsachata Experimental Station, Instituto Nacional
de Innovacion Agraria (INIA), Peru, which is located at
4300m.a.s.l. The alpacas analyzed in the present study were
part of a previous phenotypic segregation study on coat
color inheritance [20]; these animals were also used for the
molecular characterization of the agouti gene [21].

In respect to other countries, such as the USA and
Australia, Peru accounts for about 90% of the worldwide
alpaca population; thus this South-American country can be
considered the largest reserve of alpaca biological resources
in the world. All sampled white alpacas possessed only dark
and not blue eyes. Peruvian breeders particularly consider the
blue-eyed white phenotype as a defect and/or an undesirable
trait and thus these animals are excluded from reproduction
[22]. The biopsies were transferred to the School of Environ-
mental Science, the University of Camerino, Camerino, Italy.
Subsequently, the biopsies were removed from the RNAlater,
blotted with sterile blotting paper, and stored at −196∘C
(liquid nitrogen) for further analysis. All experiments were
approved and performed according to the guidelines of the
Animal Ethics Committee of the University of Camerino.

2.2. Nucleic Acid Extraction and cDNA Synthesis. Total RNAs
from stored skin biopsies were extracted using the RNAeasy
fibrous tissue mini kit (Qiagen S.A., Courtaboeuf, France)
and treated with RNase-free DNase to remove contaminant
genomic DNA according to the manufacturer’s instructions.
Genomic DNA was also isolated using the DNAeasy tis-
sue kit (Qiagen S.A., Courtaboeuf, France) according to
the manufacturer’s instruction. The quality and quantity of
isolated RNA and DNA were measured using a GENESYS
10UV spectrophotometer (Thermo, USA) and by calculat-
ing the ratio of optical density at A260/A280. RNA and
DNA integrity were checked using 1.5% formamide-agarose

gel electrophoresis and 0.8% agarose gel electrophoresis,
respectively. RNA and DNA samples with good quantity
and quality were stored at −80∘C for further analysis. The
first strand cDNA was synthesized using 2𝜇g of total RNA
with 10 pmol OdTm primer (Table 1), 0.5mM dNTPs, 1 × RT
buffer, 20U RNase inhibitor, and 200U PrimeScript Reverse
Transcriptase (Takara Biotech, Japan) in a 20𝜇L total reaction
volume according to the manufacturer’s instructions. The
reaction mixture was incubated for 45min at 50∘C and then
at 70∘C for 15min; the resulting cDNA was used in coding
sequence and 3UTR amplification. All PCR reactions were
carried out using a Perkin-Elmer Thermal Cycler (Perkin-
Elmer Corporation, Norwalk, CT, USA).

2.3. Primer Design and PCR Amplification of Full Length
cDNAs. Orthologous sequences of the MC1R gene from
mammals were retrieved from the NCBI GenBank
(http://www.ncbi.nlm.nih.gov/) and aligned using EMBL
ClustalW (http://www.ebi.ac.uk//Tools/clustalw/) to identify
conserved regions for the design of primers for coding region
amplification. PCR amplification of the complete coding
sequence (CDS) was carried out with the forward (MCfw)
and reverse (MCR5R1) primers (Table 1). Amplification of
MC1R cDNA was performed at 95∘C for 3min, followed
by 30 cycles of 95∘C for 30 sec, 62∘C for 30 sec, and 72∘C
for 1min, with a final extension at 72∘C for 7min. Next, 5
rapid amplification of cDNA end (RACE) was carried out as
previously reported by [23] using the SA, ASA, and reverse
MCR5R3 primers (Table 1).The 3 RACE amplifications were
completed using the NSTodt primer and a specific forward
primer (MC1RFw) (Table 1). The PCR reaction included an
initial denaturation step of 3min at 95∘C, followed by 35
cycles of denaturation at 95∘C for 30 s, annealing at 62∘C
for 30 s, and extension at 72∘C for 1min 30 sec, with a final
extension at 72∘C for 7min. All PCR amplifications were
carried out in a final 50 𝜇L PCR reaction mixture containing
1 × Expand High Fidelity PCR System buffer (1.25mM
MgCl

2
), 0.3mM dNTP, 0.3 𝜇mol of each primer, and 3.5U

of Expand High Fidelity enzyme mix (Roche S.p.A., Milan,
Italy). To limit the possible PCR artifacts for each analyzed
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Figure 1: 5UTR and 3UTR nucleotide sequences of MC1R transcripts. The two different 5UTR nucleotide sequences (transcripts F1 and
F2) and the common 3UTR of MC1R transcripts are presented separately under the appropriate headings. The predicted TOP regulatory
motifs and IRES in 5UTR are indicated in black bold letters and box, respectively. The uORF start codons (atg) in the 5UTR sequences are
underlined andnamed immediately and the various uORFs and STOPcodons sharing the same frames are colored identically. In all transcripts
themainORF is indicated in uppercase and bold letters.ThemiRNA seed sites in the 3UTRare underlined and colored identically.Thepoly-A
signaling sequence (aataaa) is in bold and green colored and the poly-A tail sequence is in bold in the 3UTR sequence.

alpaca, three-four white colonies were selected from at least
three independent RT-PCR reactions and sequenced on both
strands.

2.4. Amplification of the MC1R Coding Sequence from DNA.
The amplification of the complete coding sequence was per-
formed using the MCRF3 and MCR5R1 primers (Table 1) in
a 50𝜇L reaction volume containing 1 × Expand High Fidelity
PCRbuffer (1.25mMMgCl

2
), 0.3mMdNTP, 0.3 𝜇mol of each

primer, and 3.5U Expand High Fidelity enzyme mix (Roche
S.p.A., Milan, Italy) with the following cycling conditions:
initial denaturation at 95∘C for 3min, followed by 35 cycles
of 95∘C for 30 s, 64∘C for 30 s, and 72∘C for 1min, with a
final extension at 72∘C for 7min. Three white colonies were
selected from at least three independent PCR reactions and
sequenced on both strands.

2.5. Cloning and Sequencing of the PCR Products. The PCR
products were electrophoresed on a 1.2% agarose gel. The
amplified fragments were gel-eluted using a NucleoSpin
gel extraction kit (Qiagen, Milan, Italy) according to the

manufacturer’s instructions.The purified products were then
ligated into the PGEM-T easy vector system (Promega, USA)
according to the manufacturer’s instruction. Approximately
5 𝜇L of the ligated products was transformed into DH

5
𝛼

E. coli competent cells. Transformed colonies were selected
using the blue-white colony screening method and sent to
BMR Genomics, Italy, and StarSeq, Germany, for sequen-
cing.

2.6. Sequence Analysis and Alignment. Nucleic acid and pro-
tein database searches were performed using BLAST from
the NCBI server. The cDNA sequence data were analyzed
usingDNASTAR 5.0 [24]. Alignment ofMC1R protein amino
acid sequences proteins was performed using ClustalW [25].
The mRNA motif and secondary structure predictions were
performedusingRegRNA [26]. In silico functional analysis of
missense mutations was obtained using PANTHER [27] and
SNP tool [28].

2.7. Expression of AlpacaMC1R in Skin and Statistical Analysis.
To detect differences between MC1R mRNA expressions
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in white, black, and brown alpacas, we performed RT-
PCR analysis using a pair of MC1R gene-specific primers
(MC1RFw andMCR5R2). Equal amounts (2 𝜇g) of total RNA
extracted from skin biopsies of white (𝑛 = 5), black (𝑛 =
5), and brown (𝑛 = 5) alpacas were reverse-transcribed
into cDNA using Takara reverse transcriptase following the
manufacturer’s instructions (Takara Biotech, Japan). Synthe-
sized cDNAs were used as templates for RT-PCR reactions
with the following conditions: initial denaturation at 95∘C
for 3min, followed by 30 cycles at 95∘C for 40 s, 60∘C for
30 s, and 72∘C for 15 s followed by a 7min incubation at
72∘C. A pair of primers (GAPFw and GAPRv) (Table 1)
was used to amplify constitutively expressed glyceraldehyde
3-phosphate dehydrogenase (GADPH) gene cDNA as an
internal control using the PCR conditions mentioned above.
Identical volumes of the PCR products were applied to a 1.5%
agarose gel, stained with ethidium bromide, and evaluated by
band densitometry using Qscan 3.0 software. All reactions
were carried out in three independent experiments. The
relative levels of gene expression were analyzed via one-way
ANOVA (analysis of variance) and are shown as the mean
± SD. Individual mean comparisons were performed using
Duncan’s test. Differences of 𝑃 < 0.05 were considered
significant. All statistical analysis was carried out using
BioEstat v.5.3 [29].

3. Results and Discussion

3.1. Cloning and Characterization of MC1R Transcripts. We
performed RACE experiments using total RNA isolated from
white and pigmented (brown and black) alpaca. Sequence
analysis revealed two types of transcripts hereafter named
F1 and F2 of 1810 and 1728 bp, respectively. The F1 and F2
transcripts possess an open reading frame (ORF) of 954 bp,
a common 3UTR of 602 bp, and they differed exclusively
in the length of their 5UTRs of 236 and 154 bp, respec-
tively (Figure 1) (GenBank accession numbers HQ645018
and HQ645019). The 5UTR of the shorter F2 transcript
had an 82 bp deletion at the 152–233 bp position (Figure 1).
Blast analysis of the F1 5UTR against the 2X genome of
alpaca in Ensembl showed that this sequence was identical to
the corresponding genomic DNA. The main characteristics
of F1 are the presence of a predicted internal ribosome
binding site (IRES), which mediates translation initiation
using an internal ribosome binding mechanism [30, 31], of
five TOP regulatory motifs which play a critical role in the
translational coordination control mechanism [32], and of
three AUGs. ORFs have been shown to function as cis-acting
regulatory signals that are able to moderate expression of the
downstream reading frame [33]. The shorter F2 transcript
includes a uAUG, an IRES of 28 bp, and three TOP regula-
tory motifs. The features observed in the F2 5UTR could
portray a nonfunctional mRNA. It has been reported that
translation is severely hampered in long 5UTRs containing
AUGs, uORFs, and/or secondary structures [34]. Alternative
mRNAs differing only in their 5UTR are quite common
and their expression may be regulated through alternative
promoter usage [35, 36]. Interestingly and similarly to alpaca

Table 2: Mutations observed inMC1R of Peruvian alpaca.

SNP observed Amino acid change Effect on protein due
to amino acid change

c.82A>G p.T28A Polar to nonpolar
c.92 C>T p.T31M Polar to nonpolar
c.126C>T No change NA
c.224 227del Frame shift Frame shift
c.259C>T p.M87V Nonpolar to polar
c.354T>C No change NA
c.376A>G p.S126G Polar to nonpolar
c.618G>A No change NA
c.901G>A p.R301C Polar to slightly polar
c.933G>A No change NA
c.∗5T>C NA NA
c.∗166C>T NA NA
c.∗398G>A NA NA
NA: not applicable.

agouti transcripts [21],MC1R transcripts appear to have color
specific expression as F2 transcripts have only been identified
in white and not colored alpaca.

The common 3UTR had a typical polyadenylation signal
(AATAAA) followed by an additional 18 bp poly-A tail and
eight microRNA seeds (Figure 1) as predicted by RegRNA.
The fact that many microRNAs have short, perfect seeds of
at least 6–8 bases near the 5 end of the microRNA that
are complementary to sequences within the 3UTRs that can
regulate translation [37–39] is established. 3UTR elements
may also controlmRNA subcellular localization, stability, and
translation efficiency [40, 41]. Further studies are required to
investigate the predicted motif and to validate the regulatory
functions of the observed 5UTRs and 3UTRs.

3.2. Polymorphisms in MC1R. To analyze MC1R’s associa-
tion with coat color in Peruvian alpaca, a panel from the
segregation analysis of DNA from three different solid col-
ored alpaca (black 17, brown 15, andwhite 15) was screened for
polymorphisms. In our analysis, there were a total of twelve
SNPs; among those four were silent mutations (c.126C>A,
c.354T>C, c.618G>A, and c.933G>A), five were missense
mutations (c.82A>G, c.92C>T, c.259A>G, c.376A>G, and
c.901C>T) (Table 2), and three were from the 3UTR region
(c.∗5T>C, c.∗166C>T, and c.∗398G>A) and there was a
four-base pair deletion (c.224 227del) (Table 2). Since the
mutations resulting in an amino acid sequence change could
possibly be causative for coat color variation, a further
analysis of the missense mutations was conducted by means
of the SNPannotation tools (cSNPand SNAP tool) to evaluate
if the identified mutations may produce deleterious effects
on the stability and function of the protein (Table 2). Hence
the amino acid changing mutations were further consid-
ered for the association analysis. The missense mutations
observed in the study were genotyped by direct sequencing
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Table 3: TheMC1R genotypes and phenotype of Peruvian alpaca.

c.A82G (p.T28A) c.A259G (p.V87M) c.A376G (p.G126S) c.C901T (p.R301C) Color Number of animals ProposedMC1R alleles
A/A A/A A/A C/C Black 15 EE

G/G G/G G/G T/T White 14 ee

A/G A/G A/G C/T Brown 15 Ee

A/G A/G A/G C/T Black 01 Ee

A/G A/G A/G C/C Black 01 Ee

G/G G/G G/G T/C White 01 Ee

in our segregation analysis samples and individual genotypes
with phenotypes were compared for coat color association.
The c.901C>T nucleotide mutation resulting in the p.R301C
amino acid change (Table 2) showed significant correlation
with the brown phenotypes of our population [18]. A similar
type of mutation (C901T or chestnut) was also observed in
horse [42]. In our population, 15 out of 17 black animals
were homozygous for the C901 mutation and two were
heterozygous for C901T. All the brown animals analyzed
in the present study were heterozygous for C901T. And 14
out of 15 white animals were homozygous for T901 and
one was observed to be heterozygous for C901T. The C-
terminus of a GPCR is a functionally important domain
involved in ligand receptor complex interactions with G-
proteins, placing the receptor within the membrane and
providing signals for its intercellular trafficking [43, 44].
Moreover, c.901C>T is near a potential phosphorylation
site and mutation of this domain is reported to impair
function [43, 44]. Interestingly in our molecular segregation
analysis, animals homozygous for themutation combinations
A82/A259/A376/C901 (Table 3) expressed black phenotypes.
The combination of G82/G259/G376/T901 mutations was
observed (Table 3) to have white phenotypes. Brown pheno-
types were observed to have a heterozygous condition for the
following observed mutations: A82G/A259G/A376G/C901T.
In vitro and in vivo functional analyses are needed to further
confirm the effect of combinatorialmutations on phenotypes.
In some species there are several alleles at the MC1R locus,
with varying effects on phenotypes. A functional MC1R
allele can lead to eumelanin production depending upon
which allele is present at the agouti locus. Nonfunctional
MC1R alleles result in nonblack phenotypes by preventing
MSH from binding to MC1R. This loss of function can
cause a range of phenotypes from red to as light as white
as reported in the black bears [45]. Some species have a
dominant black allele that allows MSH to bind to MC1R
even in the presence of agouti. In pigs, there are 7 MC1R
alleles with 4 distinct phenotypes [42] and in humans 30
MC1R alleles with only 2 phenotypes have been reported
[46]. A similar association has been found between MC1R
nonfunctional homozygotes and a red phenotype in many
species including horses, dogs, and cattle [7, 12, 47]. Hence,
the screening of these mutation combinations may better
unveil the MC1R background for the selective breeding of
alpaca.

3.3. Structure of MC1R. The amino acid sequence deduced
from the MC1R cDNA sequence showed an ORF of 954 bp
and was found to encode a putative protein containing 317
amino acid (aa) residues with an estimatedmolecularmass of
35006.95 daltons. The amino acid sequence of alpaca MC1R
was comparedwith other knownMC1Rs; the results indicated
that the amino acid sequence of alpaca MC1R shared high
identity with that of camel, sheep, goat, and cow 97%, 89%,
and 88%, respectively (Figure 2).

The hypothetical structure of alpaca MC1R was highly
conserved amongmammals including theN-terminus, extra-
cellular loops, intracellular loops, transmembrane regions,
and the cytosolic C-terminal extension. Comparative analysis
of human and alpaca MC1R revealed the position of an N-
glycosylation site, a potential phosphorylation target, Cys
residues for disulfide bonds, a dileucine-like motif, and a
potential acylation site [43] that were highly conserved.
In alpaca, 10 mutations in the CDS have been reported
for the MC1R gene ([18, 19] and our study); among those
mutations 6 (Table 2) have been reported as amino acid
changing mutations. This polymorphic condition within the
population shows that alpacamay be under selective pressure
and the polymorphisms reported in the locus do not affect the
potential posttranslational modification sites (Figure 3). The
occurrence of synonymous and nonsynonymous polymor-
phisms without functional implications at various regions
of the gene indicates the maintenance of structural integrity
and regulation despite selection pressure. Functional analysis
of MC1R with mutations in the potential posttranslational
modification site may give more insight into the function
behind this.

3.4. MC1R Expression in White, Black, and Brown Alpacas.
To identify possible difference(s) between expression levels of
MC1RmRNA in white, black, and brown alpacas, a total of 15
randomly chosen animals (5 for each phenotype under study)
were analyzed using RT-PCR approaches. A 240 bp MC1R
fragment and a 250 bpGAPDH gene fragment were amplified
from each of the total RNAs extracted from the white
and colored phenotypes; subsequently their expression levels
were compared between the phenotypes. Analysis of variance
showed thatMC1R expression significantly varied with color
(Figure 4(a)). The expression levels were comparatively high
in black (0.76 ± 0.03), moderate in brown (0.65 ± 0.04),
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Figure 2: ClustalW alignment of MC1R amino acid sequences from alpaca, camel, goat, cow, and sheep shows the degree of identity.

and low in white (0.38 ± 0.04) skin biopsies (Figure 4(b)).
This assay shows thatMC1R transcript levels are upregulated
in the skin of black alpacas. Increased MC1R expression
enhances the production of eumelanin, while diminished
MC1R activity results in the production of pheomelanin
[5, 6]. MC1R is located specifically on melanocyte mem-
branes [2, 48–50] where it functions by switching the type
of melanin produced from the red/yellow pheomelanin to
the black/brown eumelanin [43, 51]. Our results suggest
that eumelanin synthesis is dependent on MC1R expression

levels [34] and may therefore enhance cell sensitivity to
melanogenic stimuli.

In conclusion, the genetic dissection ofMC1R in alpaca is
the first step for development of marker based selection for
coat color. The alleles identified in pheomelanic and eume-
lanic individuals could be used as markers for animal selec-
tion in breeding programs. Moreover, the results presented
here refine the existing knowledge on the melanogenesis
pathway and could also help in understanding its regulatory
mechanisms.
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Mutations observed in alpaca
N-Glycosylation site
Potential phosphorylation site

Cys residue likely involved in disulfide bounds
Dileucine-like motif
Potential acylation site

V
S
L
F
L
V
N
V
A
I

L

D

L

T

V

E

Y

K
V
V

L
V

S

P
E

G
L
G
S
E
L
A

Q
V
M
C
S
S
L
A
I

V

L

R

N

N

D
V

S
L

M

V
D

D
I
S
S
C
G
A

L
E
L
S
M
A
A
F
Y

S

A

Y

M

C
C

L
D

N

VT
V
M
L
S
L
I

F
L
V
S
A
A

A

S

R
A

V
W

S
I
T
L
A
I
I

W

S
M
L
V
L
L
A
H

L

F

Q C
A
H

M
V

V
F
A
A
A
Y
M
R

L
H
G
W
I
G
L
T
K

L

F

G

F

V
A
I

F
L

F

L
I

L
P
C
F
L
T
G

V

V
L

N
L
A
N
S
L
I

L

Y A
D
V

I
I

NF
F
L
C
I
P

M

K
P

N S
L H

L Q
L

T W A

F

L

Y

A

A

V
G T

A L A

D
Y
Y
T

I
S

I
S P

R

H

I

T A V L

HYRL

V
T

L
C
L

V
L
C C

G

I
F

K

P
CTPHQ

Q

F

L
R

V
E

S
R

C

Q
L

SK

E

S
W

Q
L

I GA
Q

I
P

G
R

F
G

A

RQ
H

L H
Q

L

K R

A
T T A Q TL PG L H

Q

C

T
G

N
T

G L L RS RN L S Q P G L V P M

P
Q

1528
29

31

35

71

87
126

145
157

154

191 269

273

276

301
302

308

313
312

315 316

Plasma membrane

N-Terminus

C-Terminus

Intracellular

Extracellular

EL-1
EL-2

EL-3

IL-1
IL-2 IL-3

TM-1 TM-2 TM-3 TM-4 TM-5 TM-6 TM-7

Figure 3: Structure of the alpaca MC1R. N-Terminus, extracellular loops (Els), intracellular loops (ILs), transmembrane (TM) regions, and
the cytosolic C-terminal extension are labelled. The potential posttranslational modification sites and mutations reported in alpaca are also
highlighted.

1.20

0.90

0.60

0.30

0.00

A

B

C

White Brown Black

Re
lat

iv
e e

xp
re

ss
io

n 
of

M
C
1
R

m
RN

A

(a)

M
ar

ke
r

W
hi

te

Br
ow

n

Bl
ac

k

M
ar

ke
r

W
hi

te

Br
ow

n

Bl
ac

k

300bp
200 bp

MC1RGAPDH

(b)

Figure 4: Gene expression of MC1R mRNA in white, brown, and black alpaca. (a) Relative expression of MC1R transcripts was measured
using RT-PCR methodology and normalized against the reference gene GAPDH. Data are shown as the mean ± SE (𝑛 = 5) (𝑃 < 0.05). The
distinct capital letters above the bars indicate a statistical significance among white and color morphs. (b) An ethidium bromide stained gel
ofMC1R and GAPDH amplicons.



8 The Scientific World Journal

Conflict of Interests

The authors declare that there is no conflict of interests re-
garding the publication of this paper.

Acknowledgments

The authors would like to thank the Alpaca Research Foun-
dation (ARF) for their financial support.They would also like
to thank INIA, Peru, and people who helped in the sampling
and three anonymous reviewers for improving the original
paper with helpful suggestions and constructive criticisms.

References

[1] L.Montoliu,W. S. Oetting, andD. C. Bennett, In European Soci-
ety for Pigment Cell Research, 2014, http://www.espcr.org/mice-
mut/.

[2] K. G. Mountjoy, L. S. Robbins, M. T. Mortrud, and R. D. Cone,
“The cloning of a family of genes that encode the melanocortin
receptors,” Science, vol. 257, no. 5074, pp. 1248–1251, 1992.

[3] R. D. Cone, K. G. Mountjoy, L. S. Robbins et al., “Cloning
and functional characterization of a family of receptors for the
melanotropic peptides,” Annals of the New York Academy of
Sciences, vol. 680, pp. 342–363, 1993.

[4] Z. A. Abdel-Malek, M. C. Scott, I. Suzuki et al., “The
melanocortin-1 receptor is a key regulator of human cutaneous
pigmentation,” Pigment Cell Research, vol. 13, supplement 8, pp.
156–162, 2000.

[5] L. S. Robbins, J. H. Nadeau, K. R. Johnson et al., “Pigmentation
phenotypes of variant extension locus alleles result from point
mutations that alter MSH receptor function,” Cell, vol. 72, no. 6,
pp. 827–834, 1993.

[6] S. Takeuchi, H. Suzuki, S. Hirose et al., “Molecular cloning and
sequence analysis of the chick melanocortin 1-receptor gene,”
Biochimica et Biophysica Acta—Gene Structure and Expression,
vol. 1306, no. 2-3, pp. 122–126, 1996.
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