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Neurotropic viruses have neural-invasive and neurovirulent properties to damage the 
central nervous system (CNS), leading to humans’ fatal symptoms. Neurotropic viruses 
comprise a lot of viruses, such as Zika virus (ZIKV), herpes simplex virus (HSV), rabies 
virus (RABV), and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). 
Effective therapy is needed to prevent infection by these viruses in vivo and in vitro. 
However, the blood-brain barrier (BBB) usually prevents macromolecules from entering 
the CNS, which challenges the usage of the traditional probes, antiviral drugs, or neutralizing 
antibodies in the CNS. Functionalized nanoparticles (NPs) have been increasingly reported 
in the targeted therapy of neurotropic viruses due to their sensitivity and targeting 
characteristics. Therefore, the present review outlines efficient functionalized NPs to further 
understand the recent trends, challenges, and prospects of these materials.

Keywords: neurotropic viruses, SARS-CoV-2, functionalized nanoparticles, drug delivery, prevention, targeted 
therapy

INTRODUCTION

In human viral diseases, a large number of viruses have been reported in neurological diseases 
to invade the central nervous system (CNS) and cause severe damage to neuron cells, astrocytes, 
or microglia, leading to serious cerebral edema, encephalitis, and myelitis (Leung et  al., 2007; 
Lafon, 2011; Lekgwara and Kelly, 2020; Masmejan et  al., 2020). Common neurotropic viruses 
include Zika virus (ZIKV), herpes simplex virus (HSV), rabies virus (RABV), and recently 
reported SARS-CoV-2 (Ludlow et  al., 2016; Alimonti et  al., 2018; Tavčar et  al., 2021). These 
viruses seriously endanger human life worldwide (Saiz et  al., 2016; Fooks et  al., 2017; Huang 
et  al., 2020; Lee et  al., 2020).

Neurotropic viruses are extremely pathogenic and have a high mortality rate. Especially 
for the patient infected by the RABV, there is almost no chance for disease recovery once 
the viral particle enters the CNS and starts replication (Leung et  al., 2007). ZIKV was reported 
to be  related to neurodevelopmental disorders in newborn children. Most of them suffered 
from microcephaly (van de Beek and Brouwer, 2017). In subsequent studies, the causal 
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relationship between ZIKV infection and neurodevelopmental 
disorders has been further confirmed (Garcez et  al., 2016; 
Baud et  al., 2017). HSV is a typical neurotropic virus causing 
severe infection in the CNS, with the clinical symptoms of 
headache, fever, seizures, and cognitive impairment (Yordy 
et  al., 2012). Since December 2019, SARS-CoV-2 infection 
broke out in Wuhan, China. At that time, viral genome 
sequencing and virus isolation were performed by Chinese 
scientists in January 2020 (Li et  al., 2020; Zhou et  al., 2020; 
Zhu et al., 2020). In a previous study, mammalian coronaviruses 
can infect the CNS, causing nerve cell damage (Hirano et  al., 
2004). Recent studies reported evidence for direct CNS invasion 
to confirmed that the SARS-CoV-2 exhibits neurotropism, 
leading to headache, loss of smell, confusion, and disabling 
stroke (Lekgwara and Kelly, 2020; Virhammar et  al., 2020). 
In addition, the SARS-CoV-2 was found to infect hiPSC-derived 
neurons, astrocytes, and brain organoids, with astrocytes 
exhibiting a more severe response to viral infection (Iadecola 
et  al., 2020; Wang et  al., 2021b). So far, SARS-CoV-2 has 
caused severe damage to the safety of human life all over the 
world, leading to over 4 million deaths and 200 million 
confirmed cases (WHO 2021). The severe damage of SARS-
CoV-2 to the safety of human life also caused social and 
economic crises (Meyer et  al., 2021).

It takes a long time for human society to fight against 
emerging viral infectious diseases. With the development of 
nanotechnology, NPs-based viral vaccines have exhibited more 
design strategies and construction methods. The limitations of 
traditional viral vaccines, such as antigen stability, cell delivery, 
and targeted delivery, may be  overcome by nanotechnology. 
Rapid and effective treatment of neurotropic virus infection 
is critical for human health. But it will be  late for antiviral 
therapy using common drugs since the damage of neuronal 
cells is generally irreversible when neurotropic viruses replicate 
in large numbers in the brain (Wouk et  al., 2021). For a 
desirable targeted therapy, the antiviral compound should not 
only be  delivered to a specific tissue but should be  accurately 
delivered to the virus-infected cells. In this case, antiviral agents 
can inhibit the virus in different ways, such as blocking the 
binding of the virus to the receptor on the cell membrane, 
inhibiting the replication of the virus in the cytoplasm, and 
inhibiting viral budding (Li et  al., 2016; Park et  al., 2016; 
Chen et  al., 2021). Thus, targeted delivery of infected cells 
plays an essential role in promoting the therapeutic effect of 
antiviral drugs. On the other hand, the blood-brain barrier 
usually prevents drugs from entering the brain (Zhou et  al., 
2021). The drugs can be  metabolized and lose their antiviral 
effect after blood circulation in vivo.

Given the challenges in the prevention and treatment of 
viral infection, it is vital to develop novel strategies for improving 
the efficacy of NPs-based vaccines and antiviral therapy. Thus, 
the principal aim of this review was to summarize the different 
functionalized NPs that were utilized for the infection of 
neurotropic viruses in vitro and in vivo. This review hopes to 
provide a fundamental understanding in designing the targeted 
nanoparticles for prevention and antiviral therapy of these 
diseases with neurotropism properties, especially COVID-19.

CONVENTIONAL PREVENTION AND 
TREATMENT OF NEUROTROPIC VIRAL 
INFECTION

Common components for traditional prevention and treatment 
of neurotropic viruses include vaccines and antiviral drugs to 
promote the host antiviral innate and adaptive immunity for 
viral clearance (Vere Hodge and Field, 2013; Kamiyama et  al., 
2017; Smreczak et  al., 2019).

According to previous studies, vaccines of neurotropic viruses 
have been extensively developed, including DNA vaccines, 
purified inactivated virus vaccines, mRNA vaccines, and viral 
vector vaccines (Johnston et  al., 2016; Li et  al., 2017; Tebas 
et  al., 2017). Vaccines have a good therapeutic effect on most 
viral diseases because the viral immunogenic protein in the 
vaccine can stimulate the host to induce neutralizing antibodies 
to eliminate the virus. However, vaccination still has some 
limitations and challenges in conventional treatment. RABV 
vaccine has been studied for many years, and it has also played 
a critical role in the post-exposure prophylaxis (PEP; Conzelmann 
et al., 1990; Kessels et al., 2019). However, patients who received 
the neural tissue anti-rabies vaccine may have side effects in 
individual clinical cases, such as Guillain-Barre syndrome (Wajih 
Ullah et  al., 2018). For the vaccine development of ZIKV, 
phase III clinical efficacy trials may be  challenging to perform 
with the recent decrease of ZIKV transmission, although 
promising data were reported in some animal and phase 
I  clinical trials (Abbink et  al., 2018). From 2019 to 2021, the 
widespread of the virus has been controlled to some extent 
after humans were previously vaccinated with inactivated vaccines, 
recombinant spike protein expression vaccines, or mRNA 
vaccines all over the world (Amanat and Krammer, 2020). 
However, the emerging B.1.617.2 (Delta) variant might escape 
the neutralizing antibodies generated by vaccination or previous 
infection with SARS-CoV-2 (Planas et  al., 2021). The vaccine 
effectiveness against the delta variant was found to exhibit 
modest differences compared to the alpha variant after two 
doses of vaccination (Lopez Bernal et  al., 2021).

Antiviral compounds, such as ribavirin, remdesivir, and 
favipiravir, are broad-spectrum antiviral drugs that effectively 
inhibit viral replication through RNA-dependent RNA polymerase 
(RdRp; Vogt et  al., 1987; Wang et  al., 2020b; Kokic et  al., 
2021). These small molecule compounds were widely researched 
in antiviral therapy of different neurotropic viruses.

Favipiravir, namely, T-705 (6-fluoro-3-hydroxy-2-pyrazine 
carboxamide), is a selective and potential inhibitor for a broad 
spectrum of RNA viruses (Furuta et  al., 2017). For example, 
this compound inhibited the viral replication of ZIKV in Vero 
cells at an EC50 of approximately 3.5 μg/ml and was effective 
against RABV in murine neuroblastoma Neuro-2a cells with an 
EC50 of about 5.1–7.0 μg/ml (Yamada et  al., 2016; Zmurko et  al., 
2016). Favipiravir is an adenosine analog and has been recently 
reported as a potential antiviral agent for inhibiting SARS-CoV-2 
at an EC50 of approximately 61.88 μm/l in the Vero E6 cell 
model (Wang et  al., 2020a). Ribavirin, a guanine nucleotide 
analog, was found to be  effective for the viral inhibition of 
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ZIKV and RABV replication in vitro (Kamiyama et  al., 2017; 
Anindita et  al., 2018). However, the application of ribavirin 
against SARS-CoV-2 is limited under the concentration of 100 μm/l, 
according to recent studies (Choy et  al., 2020). Its antiviral 
efficacy to inhibit viral replication needs high-dose and combination 
treatment, let alone its hematologic toxicity (Stockman et al., 2006).

For in vivo treatment, it was reported that favipiravir could 
reduce the peak median viral load of ZIKV by about 3 logs 
when the patients received a dose of 150 mg/kg twice a day 
(Best et  al., 2017). But the in vivo activity of T-705 against 
RABV is limited since it just delayed the onset of clinical 
symptoms when the virus was inoculated intramuscularly at 
106.8 TCID50/ml in a mouse model (Banyard et  al., 2017). In 
clinical treatment, it is necessary to give a hefty dose of antiviral 
drugs to achieve the antiviral effects. On the other hand, side 
effects usually limit the in vivo therapy, such as hemolytic anemia, 
teratogen, and contraindicated in pregnancy caused by ribavirin 
(Stockman et  al., 2006; Altınbas et  al., 2020). For the antiviral 
treatment of COVID-19, although antiviral agents can inhibit 
the virus in vitro, the efficacy of treatment is still limited in vivo.

PREVENTION AND ANTIVIRAL 
TREATMENT BY FUNCTIONALIZED NPs

After years of research, various types of functionalized NPs 
have been developed and validated in antiviral studies of different 
neurotropic diseases. For targeted treatment, antibodies, peptides, 
nucleic acid fragments, and antigenic components are usually 
conjugated with NPs to ensure the targeting of viral antigens 
or viral receptors (Figure  1). In addition, targeted delivery of 
drug nanocarriers is another crucial part of antiviral therapy, 
while functionalized NPs can achieve more efficient drug delivery 
compared with administration with conventional drugs alone.

Peptide-Functionalized NPs
Peptide-NPs Mediated Prevention of Viral 
Infection
Peptide vaccines are widely used in anti-virus, anti-tumor, 
anti-bacterial, and anti-parasitic infection research. Peptide 
vaccines also have the advantages of low price, safety, strong 
specificity, and easy storage. However, its poor immunogenicity, 
insufficient efficacy, and short half-life also limit the application 
of traditional peptide vaccines.

The development of NPs vaccines is a crucial response against 
viral diseases. The rationally designed NPs vaccines can lead 
to improved immunogenicity of peptides since the peptides can 
be  enriched on the nanosized nanoparticles to be  abundantly 
displayed. Through different design strategies, peptide nanoparticles 
can enhance the biological stability of the peptide itself. Peptides 
derived from different viral antigens can also be  used for the 
functionalization of NPs to trigger a strong immune response. 
For HSV infection, the virus spread by the cell-to-cell contact 
promotes the viral escape from the host immune response. Thus, 
a Toll-like receptor (TLR) 9 ligand CpGm conjugated biodegradable 
calcium phosphate (CaP) NPs was coated with a neutralizing 

peptide to mimic a conformational epitope on HSV-1 gB to 
induce antibodies for inhibiting lethal infection in vivo (Kopp 
et al., 2019). Another AuNP was modified with a peptide derived 
from the B-cell epitope (S461-493) on the S protein of SARS-
CoV-2, which exhibited a superior immune response compared 
to the soluble peptide (Farfán-Castro et  al., 2021).

From the perspective of the compatibility of multiple peptides, 
the design of NPs also has more functional feasibility. In 
previous studies, a dendritic cells (DCs) binding peptide was 
expressed on the surface of recombinant viral particles by 
fusing to RABV glycoprotein protein (Zhang et  al., 2018). This 
design can also be  used in the construction of functional NPs. 
As a potential universal platform, NPs displaying different viral 
antigens could be combined to DCs binding peptides to enhance 
the activation of DCs and the generation of follicular helper 
T (TFH) cells and germinal center (GC) B cells. In addition, 
DCs binding peptides can be  synthesized and modified in a 
controlled manner according to the dose ratio for functionalized 
NPs. Besides, the construction of recombinant chimeric virus 
vaccines requires complicated screening of the insertion sites 
of DCs binding peptides, but NPs only require simple surface 
modification. Therefore, the design of peptide-NPs vaccines 
shows a more flexible possibility than traditional peptide vaccines.

Peptide-NPs Mediated Antiviral Therapy
Artificially synthesized peptides are often used for the functional 
modification of NPs. For viruses, the envelope structure plays 
an essential role in binding the virus to host cells. Therefore, 
destroying the integrity of the envelope structure can effectively 
inhibit virus entry. In antiviral research, some peptides have 
antiviral capabilities, such as a synthetic peptide, namely, AH, 

FIGURE 1 | Schematic design of different types of nanoparticles in antiviral 
targeted therapy research.
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which was found to cause rupture and disintegration of enveloped 
viruses by transforming the envelope membrane into planar 
bilayer (Cho et al., 2009; Jackman et al., 2013). In later studies, 
this peptide has been reported to target viral envelopes of 
HIV, west nile virus (WNV), and dengue virus (DENV; Bobardt 
et  al., 2008; Cheng et  al., 2008; Hanson et  al., 2016).

Another targeting peptide (gH625-644) conjugated at the 
termini of a poly(amide)-based dendrimer was derived from 
the HSV-1 glycoprotein H and has been found to interact 
with membrane to inhibit infection of both HSV-1 and HSV-2 
(Tarallo et  al., 2013). Similarly, LL-37 is a 37 amino acid 
peptide exhibiting antimicrobial and antiviral effects derived 
from the C-terminal of the human cationic antimicrobial protein 
(hCAP18; Lehrer and Ganz, 2002). This peptide was reported 
as a modified component on a composite nanoparticle-hydrogel 
corneal implant, showing antiviral activity against HSV-1 infection 
by blocking the viral binding to the cells (Lee et  al., 2014). 
For ZIKV, a synthetic peptide derived from the stem region 
of viral envelope protein could interact with the viral surface 
antigen to destroy the integrity of the envelope structure. It 
was found to penetrate the placental barrier to inhibit ZIKV 
infection in both pregnant mice and fetuses (Yu et  al., 2017). 
Another peptide derived from the stem of the Japanese 
encephalitis virus (JEV) envelope glycoprotein also exhibited 
the ability to block ZIKV infection (Chen et  al., 2017).

For peptide-mediated target treatment of SARS-CoV-2 infection, 
the angiotensin-converting enzyme 2 (ACE2) cellular receptor 
and the receptor-binding domain (RBD) of spike protein (S 
protein) are significant targets for blocking the virus from binding 
to human cell receptors. Many peptides are screened and identified 
based on these two target molecules. In early research, some 
α-helix fragments on ACE2 were found to interact with the 
residue on RBD and a full cover of the RBD surface, which 
provides a theoretical basis for the subsequent research on peptide-
functionalized NPs and peptide-based vaccines (Han and Král, 
2020; Lim et  al., 2021). As reported in a later study, a truncated 
ACE2 peptide was conjugated on the surface of gold nanoparticle 
(AuNP) and was found to bind with the SARS-CoV-2 RBD 
with a high affinity of 41 nm, demonstrating a potential application 
in antiviral research against COVID-19 (Mesias et  al., 2021).

The BBB mainly consists of the tight brain endothelium 
surrounded by the basal lamina and mediated by neurons, glia, 
and pericytes (Abbott et al., 2010). In the conventional treatment 
of the neurotropic virus, it is difficult for the antiviral compounds 
to pass through the BBB, let alone further inhibition of viruses 
in the CNS. Therefore, improving the CNS delivery efficiency 
is critical for the therapy of viral diseases with neurotropism 
properties. In recent research, the mechanisms of transport 
pathways of BBB shuttles include receptor-mediated transcytosis, 
carrier-mediated transport, transcellular passive diffusion, and 
adsorptive-mediated transcytosis. The receptor-mediated 
transcytosis is the main pathway for BBB crossing by peptides, 
including transferrin (TfR1), low-density lipoproteins (LDLRs), 
and insulin (Figure  2; Duffy and Pardridge, 1987; Dehouck 
et  al., 1997; Qian et  al., 2002). Especially TfR1 and LDLRs are 
highly expressed in the brain endothelium cells. Peptide-
functionalized NPs are easier to enter or bind the neural cells 

to perform their antiviral function, such as drug and antigen 
release, neutralizing antibody binding, antiviral photothermal effect.

For the treatment of neurotropic virus infection, promoting 
brain delivery efficiency is vital to improve the therapeutic 
effect. As a component, short peptides have been reported to 
enhance the CNS tropism of brain delivery NPs, for example, 
the RABV glycopeptide (RVG; Figure  3; Lee et  al., 2017). 
This peptide contains 29 amino acids derived from RABV 
glycoprotein, promoting the viral transportation from the 
peripheral nerve to the CNS (Oswald et  al., 2017). In terms 
of mechanism, the RVG peptide can bind the γ-aminobutyric 
acid receptor (GABA) and the nicotinic acetylcholine receptor 
(nAChR) to enter the peripheral nerve cells and CNS (Kumar 
et  al., 2007; Liu et  al., 2009). Thus, the RVG peptide has been 
applied in brain-targeted functionalized NPs in recent studies.

In a rabies treatment, an RVG and DNA aptamer conjugated 
gold nanorod (AuNR) has been found to display improved CNS 
tropism and targeting ability to viral glycoprotein (Ren et al., 2021). 
Specifically, by surface modification of RVG peptide, this AuNR 
was delivered into CNS post intravenous (i.v.) injection in a mouse 
model. The nAChR receptor is also expressed on neuronal cells 
and astrocytes (Lendvai and Vizi, 2008; Matta et  al., 2021). The 
RVG functionalized AuNR can be  accumulated at the cell surface 
receptor or enter the cells, promoting viral inhibition since RABV 
mainly infects these two cells in CNS (Piccinotti and Whelan, 
2016; Tian et al., 2017). As is indicated in this study, the functionalized 
AuNR inhibits the viral infection by blocking the receptor site 
on the neuronal cells and astrocytes while targeting the membrane 
antigen on virions by a DNA aptamer to inactivate the virus by 

FIGURE 2 | Schematic showing the brain delivery of NPs across the BBB, which 
can be administered via the intravenous route. NPs penetrate the BBB through 
receptor-mediated transcytosis by coupling peptides or antibodies that enable 
nanoparticles to bind to receptors on the surface of endothelial cells. Such NPs 
encapsulate the antiviral drugs and specifically release them in the infected cells.
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photothermal effect induced by AuNR and near-infrared spectrum 
(NIR) irradiation (Ren et  al., 2021).

In addition to entering the CNS through the peripheral 
nerves, another strategy is to increase the permeability of the 
blood-brain barrier to enhance the BBB crossing efficiency. 
For example, a cell-penetrating peptide that derived from the 
nucleolar translocation signal peptide of the LIM Kinase 2 
protein improved the BBB crossing efficiency of a dendrigraft 
poly-L-lysines (DGL)- and polyethyleneglycol (PEG)-based gene 
vector in a mouse model (Yao et  al., 2015). An engineered 
brain-penetrating peptide, namely, AH-D, has also shown the 

ability to cross the BBB to reduce the viral loads in ZIKV-
infected mouse brains and protected against the damage of 
BBB induced by ZIKV (Kamiyama et  al., 2017).

Antibody, Receptor, and Antigen 
Functionalized Nanoparticles for 
Prevention and Targeted Treatment
Prevention of Viral Infection by Antigen 
Functionalized NPs
NPs enriched with antibodies or receptor molecules can be used 
to directly bind and block viruses to inhibit the virus from 

FIGURE 3 | Schematic diagram of CNS delivery and viral-targeting photothermal therapy by a rabies virus glycopeptide (RVG) peptide-functionalized NPs.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Ren et al. Functionalized NPs Against Viral Diseases

Frontiers in Microbiology | www.frontiersin.org 6 November 2021 | Volume 12 | Article 767104

infecting the host cells. Unlike directly blocking viral particles 
to target cells by antibodies or receptors, the viral glycoprotein 
can be  enriched and displayed on the surface of the NPs to 
induce a strong immune response for antiviral prevention. Like 
traditional protein subunit vaccines, the antigenic proteins 
displayed on the NPs have good safety and easy to obtain. 
As a universal vaccine technology platform, viral antigen protein 
enriched NPs can be  used as a promising vaccine candidate 
for preventing infection of different viruses.

In a previous study, a synthetic virus-like particle (VLP), called 
RBD-SpyVLP, was abundantly modified with the spike glycoprotein 
RBD. This RBD-SpyVLP has induced a robust neutralizing antibody 
immune response in mice, even when administered at a low 
dosage. Interestingly, the antibody response is negligible in the 
mice vaccinated with an equal dose (0.1 or 0.5 μg) of purified 
RBD. In previous studies, the purified RBD can induce neutralizing 
antibodies in vivo under higher dosage and more frequent injections 
(Zhang et  al., 2016; Yang et  al., 2020). However, the antibody 
response is significantly strong when the RBD is abundantly 
displayed on the RBD-SpyVLP. In virus neutralization experiments, 
antibodies elicited by this VLP were able to inhibit the pseudovirus 
or wild-type SARS-CoV-2. In addition, this RBD-SpyVLP is 
thermally stable and retains immunogenicity after being lyophilized, 
which promotes the popularization of vaccines and cold-chain 
transportation (Tan et al., 2021). As a promising vaccine platform 
to facilitate conjugation with other antigens, more than one RBD 
variant can be co-displayed on the NPs to provide cross-protection 
for different variants of SARS-CoV-2, such as Alpha variant and 
Delta variant.

Self-assembling protein vaccine is another method to display 
the glycoprotein on the surface of NPs to develop a robust 
immune response for antiviral therapy. In the treatment of 
ZIKV, a self-assembling nano-vaccine has been established after 
supplying flanking sequences at both the N- and C-terminal 
of nonstructural protein 1 (NS1) by genetic engineering. 
According to their results, this vaccine formed a 3-dimensional 
structure by self-assembling with enhanced immunogenicity 
and improved longevity in comparison with unmodified NS1 in 
vaccinated mice (Favaro et  al., 2021).

Antibody and Receptor-Modified NPs for Antiviral 
Therapy
Monoclonal antibodies and polyclonal antibodies can be  easily 
obtained through conventional antibody preparation technology. 
For most virions, the immunogenic protein is located on the 
surface of the virus particle. Specific targeting by antibodies 
to bind structural protein on the surface of the viral particles 
can inhibit viral surface antigen-mediated cell receptor binding 
to prevent virus invasion into host cells (Magnani et al., 2017). 
As a result, the viral life cycle is interrupted since the virus 
cannot enter the host cells to complete genome replication 
and progeny virus assembly.

In a recent study, liposomal-based Nanotrap surfaces  
were functionalized with SARS-CoV-2 neutralizing antibody 
and phagocytosis-specific phosphatidylserines (Chen et  al., 
2021). This Nanotrap has been found to completely inhibit 

SARS-CoV-2 infection by blocking the binding of S protein 
to ACE2 of host cells. It significantly inhibited the infection 
by a pseudotyped and authentic SARS-CoV-2  in an ex vivo 
lung perfusion system (Chen et  al., 2021). Moreover, this 
Nanotrap promotes the phagocytosis of macrophages without 
being infected themselves after surface modification of the 
phagocyte-specific phosphatidylserine ligands. The ACE2 protein 
is another ideal bait to trap S protein to block SARS-CoV-2 
infection. In a membrane extrusion ACE2-NPs derived from 
human embryonic kidney-293 T cells, ACE2 was abundantly 
expressed on the surface at the dose concentration of 265.1 ng/
mg. As a result, the ACE2-NPs significantly suppressed the 
cell entry of pseudotyped SARS-CoV-2 and inhibited viral 
infection in vitro and in vivo (Wang et  al., 2021a). In addition, 
the ACE2-NPs were found to reduce the apoptosis caused by 
promoting the expression of optic atrophy 1 (OPA1) protein 
to inhibit the release of cytochrome C (Wang et  al., 2021a).

Prevention and Antiviral Therapy by 
Nucleotide Nanoparticles
Prevention of Viral Infection by Nucleotide-NPs
Artificially designed and synthesized DNA or RNA is usually 
one of the components of NPs to obtain specific properties. 
Nucleotide vaccine is a promising technology to induce an 
immune response to prevent virus infection. However, the 
traditional mRNA vaccines often face the challenges of delivery, 
cellular uptake, and degradation in vivo. The naked mRNA 
vaccine is degraded and eliminated by RNases and endonucleases 
in the serum when administered intravenously (IV). In addition, 
the viral mRNAs can activate the pattern-recognition receptors 
(PPP) as a pathogen-associated molecular pattern (PAMP). For 
example, the viral single-stranded RNA (ssRNA) can be recognized 
by TLR to trigger innate immune activation, causing inflammation 
and immunogenicity (Diebold, 2008). Besides, mRNA vaccines 
need to enter cells to express antigen proteins to induce adaptive 
immunity. The naked mRNA also exhibited poor cellular uptake 
due to their negatively charged surface potential. The lipid 
nanoparticles (LNPs) can encapsulate and deliver nucleic acid 
vaccines to particular tissues or cells to express antigen proteins 
to cause host immune response (Reichmuth et  al., 2016). In a 
ZIKV antiviral study, a replicating viral RNA of ZIKV antigens 
has been combined with a highly stable nanostructured lipid 
vector, demonstrating a single dose as low as 10 ng could 
completely protect an acute virus challenge in a mouse model 
(Erasmus et  al., 2018). This strategy was found to reduce the 
duration of viremia of ZIKV with a single dose as low as 
10 ng. In addition, intracellular delivery by the NPs also reduced 
the reactogenicity through less formulation per dose. Another 
mRNA vaccine expressing ZIKV prM and E proteins encapsulated 
in lipid NPs has been reported to generate robust neutralizing 
antibody response in female mice and restrict in utero transmission 
of ZIKV to the fetus after being pregnant (Richner et al., 2017).

Antiviral Therapy by Nucleotide-NPs
Aptamer usually consists of single-strand DNAs or RNAs, 
exhibiting high affinity to target molecules, such as receptors 
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on the surface of living cells, viral antigen proteins, and chemical 
compounds (Zhou and Rossi, 2017). Due to the flexibility to 
form complementary secondary structures, aptamers can recognize 
specific molecules through three-dimensional interactions using 
unique tertiary structures. Like antibodies binding to the antigens, 
the selected aptamers can generate aptamer-target complexes 
by different types of interaction, such as hydrogen bonding, 
hydrophobic interaction, and van der Waals forces (Gelinas 
et al., 2016). In the past decades, aptamer-based NPs for antiviral 
therapeutics have been widely studied. Although the development 
in clinical research is not as good as that of antibodies, 
aptamer-NPs are advantaged in their flexibility to recognize 
those unique binding sites which may not be  accessible to 
antibodies. Thus, the therapeutic nucleic acid aptamer-NPs also 
have great potential in the field of antiviral researches.

Similar to antibodies, the ectodomains of viral glycoprotein 
are usually an ideal target for the specific selection of DNA/
RNA aptamer in some antiviral research. For example, two RNA 
aptamers have been selected and isolated to specifically interact 
with the gD protein of HSV-1 with robust affinity. According 
to their results in plaque assays, the aptamer-NPs inhibited 
HSV-1  in a dose-dependent manner with the 50% inhibitory 
concentration (IC50) of 0.8 μm (Gopinath et  al., 2012). Another 
45-nt-long DNA aptamer has also been selected and showed
high affinity to HSV-1 gD protein, with an affinity constant of
50 nm. This study has demonstrated that this 45-nt-long DNA
aptamer significantly restricts the viral entry and replication
both in vitro and in vivo (Yadavalli et  al., 2017). According to
the above two studies, the glycoprotein should be  a suitable
target for aptamer design to locally reduce the viral spread of
infection. The spike protein of SARS-CoV-2 is a necessary
immunogenic antigen binding to the ACE2 receptor on the
host cells. In recent studies, specific aptamers have been isolated
to interact with ACE2 to block SARS-CoV-2 infection. For
example, a DNA aptamer, namely, cb-CoV2-6C3, has been
confirmed stable in serum solution for at least 12 h with a
strong affinity (Kd of 0.13 nm) to target ACE2 for viral inhibition
at an IC50 of 0.42 nm. Moreover, this aptamer cb-CoV2-6C3
can be sustained under room temperature for more than 14 days
(Sun et  al., 2021). At the molecular level, the aptamer mainly
targets the amino acid sites Phe 486 and Gln 474 at the C-terminal
of the RBD domain of S protein. Another DNA aptamer, called
SP6, has also been demonstrated binding to S protein with the
potential to inhibit SARS-CoV-2 infection. However, the inhibition
mode of aptamer SP6 distinguishes it from that of antibodies
targeting the RBD domain of S protein. Since, according to
this study, the inhibitory of SP6 does not cause by interfering
with the binding of SP6 aptamer to RBD on the S protein.
The authors indicated that the inhibitory molecular mechanism
needs to be  further studied to provide knowledge of S protein
fusion to the host cell membranes (Schmitz et  al., 2021).

The selected aptamers are usually smaller than the purified 
antibodies. Compared with antibodies, more aptamer molecules 
can be  accommodated in an equal volume around the target 
molecule, promoting the local concentration of administrated 
aptamers to obtain better antiviral efficacy. In addition, the 
smaller size also provides aptamers a potential to be  directly 

delivered into CNS or the respiratory system, instead of being 
obstructed by the blood-gas barrier or blood-brain barrier. 
Notably, the antiviral treatments of COVID-19 by traditional 
unmodified neutralization antibodies have been reported facing 
potential problems of antibody-dependent enhancement (ADE; 
Arvin et  al., 2020). But this potential risk has not yet been 
found in the researches of aptamer antiviral therapeutics, 
especially for SARS-CoV-2 infection.

Other Applications of Inorganic and 
Modified Compound Nanoparticles
The direct antiviral researches by inorganic NPs are gradually 
increasing. For example, gold- and silver-based NPs have received 
increasing attention due to their anti-bacterial and antiviral 
properties. A new gold nanoparticle family was found to inhibit 
the infection of HSV-1 in a neural-derived cell model (Rodriguez-
Izquierdo et  al., 2020). Similarly, silver nanoparticles (Ag-NPs) 
were reported to inhibit the viral replication of HSV-2 when 
administered previous to virus infection (Hu et  al., 2014).

The glycyrrhizic acid (GA), namely, glycyrrhizin, is a usual 
ingredient in the Chinese herb licorice which has been applied 
in antiviral research against various viruses and viral diseases, 
such as SARS-associated coronaviruses and viral hepatitis (Cinatl 
et  al., 2003; Li et  al., 2019). According to this property, a kind 
of highly biocompatible glycyrrhizic acid nanoparticles (GANPs) 
has been synthesized in antiviral research of SARS-CoV-2 
infection in vitro and in vivo. In this study, the GANPs have 
exhibited no significant toxicity and improved biocompatibility. 
The anti-inflammatory effect has been found to relieve the 
excessive inflammation induced by SARS-CoV-2 since the GANPs 
could target the locations of severe inflammation by enhanced 
permeability and retention (EPR) effect in a mouse model (Zhao 
et  al., 2021). Thus, the modified compound also can be  a 
possible antiviral candidate against COVID-19 in future studies.

CONCLUSIONS AND FUTURE 
PERSPECTIVES

The neurotropic viruses and their related diseases have 
caused an unprecedented economic crisis and a massive 
threat to life safety, such as ZIKV, HSV-1, HSV-2, RABV, 
and especially SARS-CoV-2. Since the initial outbreak of 
SARS-CoV-2  in December 2019, more than 4 million deaths 
and 200 million confirmed cases have been reported 
worldwide. Conventional antiviral agents, such as ribavirin, 
remdesivir, and favipiravir, have been widely studied for 
the treatment of infections induced by these viruses. But 
the drug targeting ability, permeability of blood-brain barrier 
and blood-gas barrier, in vivo stability, and pharmacokinetics 
are major challenges preventing the further application for 
antiviral therapy in clinical researches. If these technical 
difficulties cannot be  overcome, clinical medications will 
have to be treated with high-dose and frequent administration, 
which will aggravate the cytotoxicity of the drug and damage 
the kidney and liver of the patient. Based on the above 
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considerations, we  reviewed various functionalized NPs in 
targeted therapy of viral diseases with neurotropism properties, 
especially COVID-19. The various morphology, diversity, 
and possibility to surface modification with different types 
of compounds have demonstrated that biomaterials have 
the potential in nanomedicine against these viral diseases.

For the construction of functionalized NPs, there are 
multiple ways to target different kinds of molecules. By 
modifying antibodies, peptides, and aptamers on the surface 
of NPs, the NPs can strongly and specifically recognize 
viral antigenic proteins, which provides a theoretical basis 
and technical support to enhance the specificity of traditional 
antiviral drugs. Further, nanoparticles with viral specificity 
can be  designed to inhibit major steps of the viral life 
cycle. In the case of antibody-modified NPs, for example, 
glycoproteins on the surface of vesicular virions and viral 
antigenic proteins displayed on the surface of infected cells 
can directly interact with the antibody-modified NPs, thereby 
blocking viral particle binding to cellular receptors or 
inhibiting the assembly and budding of the virus within 
the infected cells.

No matter what kind of component is used to modify the 
functionalized NPs, the fundamental mechanism is to target 
viral antigens or cell surface receptors through their surface 
molecules to block viral particles from binding to target cells. 
In such a process, different types of functionalized NPs have 
specific features, advantages, and limitations. When designing 
therapeutically targeted nanoparticles, the applicability of various 
components in in vivo experiments should be  fully considered. 
Therefore, these targeted NPs have also been statistically compared 

to better understand their characteristics in the further application 
(Table 1). Besides, NPs can also inhibit viral genome replication 
by facilitating drug delivery in viral-infected cells (Figure  4). 
NPs with viral specificity also promote cellular transcytosis, 
making it easier for nanoparticles to enter the infected cells 
and thus perform different functions. For instance, after the 
drug-encapsulated nanoparticles enter the infected cells, the 
release of antiviral drugs can inhibit viral replication more 
effectively than direct administration. On the one hand, some 
viruses escape the innate immune response intracellularly to 
promote viral replication, for example, by inhibiting the activation 
of inflammation-related signaling pathways. In such cases, viral-
specific NPs encapsulated with TLR agonists or reactive oxygen 
species (ROS) are designed to artificially enhance innate immune 
response and inhibit immune escape in the early stages of 
viral infection, thereby promoting dendritic cells (DCs) activation, 
antigen presentation, and adaptive immune response. On the 
other hand, some viral infections also cause intense cellular 
inflammation. Viral-specific NPs can suppress the inflammation 
in infected cells by encapsulating and releasing anti-inflammatory 
inhibitors or cytokines such as interleukins 4, 10, 13 (Opal 
and DePalo, 2000). Similarly, the antiviral therapy by 
photothermal effect stimulated by NIR spectroscopy also benefits 
from virus-targeted NPs. When NPs with photothermal properties 
are clustered explicitly on the surface of virus particles, NIR 
irradiation causes the nanoparticles to convert light energy 
into heat energy, which inactivates the adjacent virions.

The molecular weight, as well as the unit volume of the 
antibodies, are relatively larger compared to the general NPs. 
It may limit the number of NPs aggregated near the antigen 

TABLE 1 | Summary of the functionalized NPs in targeted therapy of viral infections.

Components Advantages and features Application examples Possible limitations References

Peptide-NPs Broad-spectrum targets different 
molecules. Easily synthesized. Small 
molecular weight to penetrate 
tissues

Peptide (AH)-NP can target viral 
envelopes of HIV, WNV, DENV. SARS-
CoV-2 related peptide-NPs can target 
the ACE2 receptor and RBD domain of 
viral antigen

Recognize a single epitope and 
cannot completely cover all epitopes 
on one molecule. Its sequence 
fragments need to be strictly 
screened

Bobardt et al., 2008;  
Ren et al., 2021; Hanson 
et al., 2016; Han and Král, 
2020; Lim et al., 2021

Antibody-NPs High affinity to viral antigens or host 
cell surface receptors. The 
neutralizing antibody itself can 
neutralize the virus to promote the 
therapy. Cover multiple epitopes on 
one molecule

Capture and block infection of SARS-
CoV-2 while promoting the 
phagocytosis of macrophages by a 
liposomal-based Nanotrap NP

Due to the relatively large molecular 
weight, it is more difficult for antibody-
NPs to penetrate tissues in drug 
delivery systems

Chen et al., 2021

Receptor-NPs High affinity to viral antigens to block 
virus binding to the host cell 
receptors

Capture and block infection of SARS-
CoV-2 by an ACE2-NP in vitro and in 
vivo

The tertiary receptor structure needs 
to be considered before constructing 
receptor-NPs to ensure its epitopes 
are not blocked

Wang et al., 2021a

Antigen-NPs Competitively binds virus target cell 
receptors to inhibit virus invasion 
while stimulating the host immune 
response to eliminate the virus 
further

An RBD-SpyVLP abundantly displayed 
the RBD domain of SARS-CoV-2 to 
induce a robust neutralizing antibody 
immune response

In acute infections, competitive 
inhibition is not as effective as the 
direct neutralization of antibodies. The 
immune response may occur later 
than the infection treatment window

Tan et al., 2021

Nucleotide-NPs Broad-spectrum targets different 
molecules. Easily synthesized. 
Multifunctional sensors based on 
nucleotide aptamers can 
be constructed, such as virus 
targeting and visualization

DNA aptamer (cb-CoV2-6C3) targets 
the ACE2 for SARS-CoV-2 inhibition at 
an IC50 of 0.42 nm

The naked nucleotide components 
are vulnerable to degradation and 
charge effect, which need stable NPs 
to deliver

Ren et al., 2021; Gopinath 
et al., 2012; Yadavalli et al., 
2017; Sun et al., 2021
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proteins or targeted molecules. In this regard, nucleic acid 
aptamers and specific peptides can be  used as alternatives to 
antibodies for the modification of NPs due to their lower 
molecular weight and space size. However, they may do not 
cover the entire site of antigenic epitopes, so it is an optional 
strategy to use peptides or aptamers with different antigenic 
epitopes in combination if necessary. Moreover, smaller molecules 
like peptides can be  used to facilitate the functionalized NPs 
crossing the BBB due to their ability to specifically target nerve 
cells or BBB endothelial cell surface receptors. Besides, the 
covalent coupling of antibodies to NPs may exist in a variety 
of forms. It is possible that NPs have the potential to bind 
in the variable regions of the antibody molecule if simply 
coupling the amino and carboxyl of both molecules. Such NPs 
cannot capture the target molecule, as they block the antigen 
recognition site on the antibody. For example, an optimal 
modification strategy may need to consider coupling NPs to 
the heavy chain constant region of the antibody.

So far, a large number of functionalized nanoparticles 
with different functions and properties have been studied 

and reported. Here, we  focus on their targeting, delivery 
efficiency, and antiviral effects against several viral diseases 
with neurotropism properties, especially COVID-19. An 
in-depth understanding of the design and construction of 
functionalized nanoparticles can provide a dual perspective 
of biology and chemistry to examine and address the 
difficulties faced by conventional biology or pharmacology 
in antiviral treatment. However, despite the advantages of 
functional NPs, their metabolism, degradation, and in vivo 
non-specific adsorption are inherent problems. Generally 
speaking, the NPs-based therapy needs to consider biological 
safety in vivo. Excessive accumulation of NPs may cause 
cell damage and even affect the normal function of tissues 
and organs (Piscatelli et  al., 2021). After the NPs are 
metabolized by blood circulation, it is common to accumulate 
in the liver to a certain extent. In severe cases, it will 
affect the kidneys (Zarska et  al., 2018). Since the liver and 
kidney play a vital role in the circulation and metabolism 
of the body, the externally injected nanoparticles will 
inevitably accumulate in such internal organs, which need 

A

B

FIGURE 4 | Schematic diagram of virus recognizing cell surface receptors to invade and replicate in host cells through receptor-mediated endocytosis (A). 
Schematic diagram of viral inhibition by functionalized NPs with different surface modifications (B).
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TABLE 2 | Examples of NPs inducing potential complications and adverse events in some clinical trials.

Examples in 
clinical trials.
gov (Identifier 
No.)

Administration 
routes

General 
disorders

Musculoskeletal 
and connective 
tissue disorders

Gastrointestinal 
disorders

Nervous 
system 
disorders

Blood and 
lymphatic 
disorders

Skin and 
subcutaneous 
tissue 
disorders

Construction 
strategies

NCT00629499 Intravenously Fatigue NA Hemorrhage, vomiting Mental 
Status

Hemoglobin, 
neutrophils

Rash, alopecia Nab-paclitaxel-
containing 
adjuvant NPs

NCT01620190 Interventional 
therapy

Fatigue NA NA Peripheral 
Neuropathy

Hypotension, 
Neutrophil 
count 
decreased, 
White blood 
cells 
decreased

NA Paclitaxel 
albumin-stabilized 
NPs

NCT02009332 Intravesical Malaise Worsening of 
edema of 
extremities

Nausea Headache Anemia, Mucositis A sterile 
lyophilized 
powder of 
albumin-bound 
sirolimus NPs

NCT00748553 Interventional 
therapy

Chills, 
Edema, 
Fever

Arthralgia, Muscle 
Weakness

Constipation,Diarrhea, 
Dry mouth, 
Hemorrhoids

Dizziness, 
Dysgeusia

Anemia, 
Thrombocy-
topenia

Alopecia Hypomethylating 
agent azacitidine 
(Vidaza) with the 
NPs albumin-
bound paclitaxel 
(Abraxane)

All data in Table 2 were obtained from the database of the clinical trials.gov (https://clinicaltrials.gov/ct2/home) NA: not applicable.

to be  gradually excreted from the body during an extended 
period of recovery. However, complications and possible 
adverse reactions may occur simultaneously and cause 
unexpected disorders, such as gastrointestinal, blood, 
lymphatic, and nervous system disorders (Table 2). Therefore, 
in the future antiviral research of functionalized NPs, while 
paying attention to the antiviral efficacy, biological safety 
cannot be  ignored as well. More efforts are needed to 
improve the metabolism of NPs in vivo and reduce potential 
complications and adverse events while maintaining sufficient 
curative efficacy.
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