
Finite-Size Effects of Binary Mutual Diffusion Coefficients from
Molecular Dynamics
Seyed Hossein Jamali,† Ludger Wolff,‡ Tim M. Becker,† Andre ́ Bardow,‡ Thijs J. H. Vlugt,†

and Othonas A. Moultos*,†

†Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
‡Institute of Technical Thermodynamics, RWTH Aachen University, 52056 Aachen, Germany

*S Supporting Information

ABSTRACT: Molecular dynamics simulations were performed for the
prediction of the finite-size effects of Maxwell-Stefan diffusion coefficients of
molecular mixtures and a wide variety of binary Lennard−Jones systems. A
strong dependency of computed diffusivities on the system size was observed.
Computed diffusivities were found to increase with the number of molecules.
We propose a correction for the extrapolation of Maxwell−Stefan diffusion
coefficients to the thermodynamic limit, based on the study by Yeh and
Hummer (J. Phys. Chem. B, 2004, 108, 15873−15879). The proposed
correction is a function of the viscosity of the system, the size of the simulation box, and the thermodynamic factor, which is a
measure for the nonideality of the mixture. Verification is carried out for more than 200 distinct binary Lennard−Jones systems,
as well as 9 binary systems of methanol, water, ethanol, acetone, methylamine, and carbon tetrachloride. Significant deviations
between finite-size Maxwell−Stefan diffusivities and the corresponding diffusivities at the thermodynamic limit were found for
mixtures close to demixing. In these cases, the finite-size correction can be even larger than the simulated (finite-size) Maxwell−
Stefan diffusivity. Our results show that considering these finite-size effects is crucial and that the suggested correction allows for
reliable computations.

1. INTRODUCTION

The knowledge of diffusion in liquid mixtures is essential for
the design and optimization of various industrial processes.1−9

Although experimental methods are constantly improving,10−16

measurements of diffusion coefficients for multicomponent
systems are not always feasible or straightforward to perform.
Diffusion experiments may require specialized equipment and
materials and they can be very time-consuming and
expensive.11,17 For these reasons, semiempirical models such
as the Stokes−Einstein,18 Chapman−Enskog,19 and Wilke−
Chang20 models have been developed for predicting diffusion
coefficients.21−27 However, the applicability of these models is
usually limited to gases or infinitely dilute mixtures.
In this context, molecular dynamics (MD) simulations are a

powerful tool to complement or even, in some cases, substitute
experiments for computing diffusion coefficients.28−41 In MD
simulations, the trajectories of molecules in a simulation box are
obtained by integrating Newton’s second law. Conventional
MD simulations yield Maxwell−Stefan (MS) diffusion coef-
ficients, from which Fick diffusivities can be calculated using the
so-called thermodynamic factor.6−8,42−44

One of the advantages of MD is that these simulations are
not limited to diffusion in bulk fluids but can also be employed
for more complex systems like the diffusion of gases/liquids in
porous membranes.45−50 Due to the intrinsic inclusion of the
nonideal behavior of mixtures, MD simulations have the
potential to foster the deep understanding of diffusion

phenomena51−53 and verify empirical correlations for predicting
diffusivities.54−58 It is important to note that, even with modern
computers, the number of molecules considered in a typical
MD simulation is orders of magnitude lower than the
thermodynamic limit. Thus, it is important to take into account
finite-size effects when calculating diffusion coefficients.
Previously, simulations of thermodynamic and transport
properties for systems close to critical points59−61 and phase
transitions62−64 have also shown that corrections for the finite
size effects should be applied.
It has been shown that self-diffusivities computed from MD

simulations scale linearly with N−1/3, where N is the number of
molecules in the simulation box.65 Yeh and Hummer66

performed a detailed investigation of this behavior for
Lennard−Jones (LJ) particles and water molecules. The
authors found that the finite-size effects originate from
hydrodynamics and derived a correction term. By adding this
term to the computed self-diffusivity by MD simulation, the
self-diffusivity in the thermodynamic limit can be accurately
determined. Several studies verified the applicability of the YH
correction for systems of nonspherical molecules.67−69

According to Yeh and Hummer,66 the system size effects of
the diffusivity of charged molecules in a polar or ionic medium
cannot be accurately corrected with the proposed term. These
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deviations are due to the strong electrostatic interactions, and
thus, the correction term needs rescaling.
To the best of our knowledge, no study has focused on the

finite-size effects of MS or Fick diffusivities and noninfinitely
diluted mixtures, obtained from MD simulations. In this study,
we show that, depending on the size of the system, there can be
significant differences between the simulated (finite size) and
real (thermodynamic limit) MS diffusion coefficients in binary
mixtures. For systems close to demixing, the finite-size
correction can be even larger than the simulated diffusivity.
For self-diffusion, the finite-size effects depend only on the box
size, temperature, and viscosity, but for MS diffusivity, there is
also a strong dependence on the nonideality of the mixture
(represented by the thermodynamic factor). We propose a
finite-size correction for MS diffusion and verify its accuracy for
a large number of LJ and molecular mixtures.
This paper is organized in five sections. In Section 2,

theoretical aspects of self and MS diffusion are briefly discussed.
In Section 3, details of the MD simulations and the studied
mixtures are explained. A detailed analysis of the results of the
MD simulations and the proposed correction term to finite-size
mutual diffusivities is provided in Section 4. Finally, the
conclusions of this study are summarized.

2. THEORY

There are two approaches for obtaining transport properties
from MD simulations: (a) nonequilibrium molecular dynamics
(NEMD), which employ an external driving force generating a
net flux in the system,28,70−77 and (b) equilibrium molecular
dynamics (EMD), where transport coefficients are computed
from time-correlation functions in a system at equilibrium,
without the presence of external forces.9,75,77,78 In this work, we
perform only EMD simulations. Sampling time correlations can
be achieved via two formulations, which are intrinsically
identical: Einstein and Green−Kubo.75,77,78 The Einstein
formulation is used in this work. For an overview of EMD
and NEMD methods, the reader is referred to the reviews by
Liu et al.9 and Peters et al.11

The following three types of diffusion coefficients are
discussed in this manuscript: (1) the self-diffusion coefficient
(Dself), which is the diffusivity of a tagged particle in a medium
due to its Brownian motion; (2) the Fick diffusivity (DFick),
which is the coefficient of the linear relation between the mass
flux and the concentration gradient in the system; (3) the MS
diffusivity (ĐMS), which describes mass transport due to the
gradient in chemical potential of a species in a mixture. Dself has
to do with the motion of individual molecules, while DFick and
ĐMS are due to the collective motion of all molecules in the
system. Hence, for DFick and ĐMS, the term “collective” or
“mutual” diffusion is used. Although the MS diffusivity provides
a more general description of transport diffusion in multi-
component mixtures,42 the Fick diffusivity is widely used in
industry due to its simplicity. For homogeneous mixtures, the
Fick and MS diffusion coefficients are related by the so-called
thermodynamic factor (Γ), which is related to the nonideality
of the system.79,80 An extensive analysis and comparison of Fick
and MS diffusion coefficients can be found in literature.42−44 A
more detailed description of these three types of diffusion
coefficients is provided in the following two subsections.
2.1. Self-Diffusion Coefficients. The self-diffusion co-

efficient of species i (Di,self) can be expressed as the mean-
square displacement of each molecule of species i:
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where t is the correlation time, Ni is the number of molecules of
species i, and rj,i is the position of j-th molecule of species i. The
angle brackets denote an ensemble average. Self-diffusion
coefficients computed from MD simulations depend strongly
on the number of molecules, N, in the simulation box. More
specifically, it was shown that self-diffusivity scales linearly with
1/N1/3, which is equivalent to 1/L, where L is the side length of
the simulation box.65 Yeh and Hummer66 studied the size
dependency of computed self-diffusion coefficients and derived
an analytic correction term to compensate for the observed
system-size effects. The correction term was developed on the
basis of the hydrodynamic theory for a spherical particle in a
Stokes flow with imposed periodic boundary conditions. These
authors showed that the difference between the self-diffusivity
in an infinite (nonperiodic) and a finite (periodic) system is
due to the difference in hydrodynamic self-interactions.65,81 For
the rest of this manuscript, we will refer to their correction term
as the “YH correction”. Accordingly, the self-diffusion
coefficient of species i in the thermodynamic limit (Di,self

∞ ) can
be estimated from the finite-size self-diffusion coefficient
obtained from MD simulations (Di,self

MD) by adding the YH
correction (DYH):66

η
ξ
πη

= + = +∞D D D T L D
k T

L
( , , )

6i i i,self ,self
MD YH

,self
MD B

(2)

where kB is the Boltzmann constant, L is the side length of the
simulation box, and η is the shear viscosity of the system at
temperature T. ξ is a dimensionless constant equal to 2.837297
for cubic simulation boxes with periodic boundary conditions.66

Similar to the YH correction, equations have been derived for
simulations in noncubic boxes82−84 and for confined fluids.85 It
is important to note that the YH correction does not explicitly
depend on the size of molecules in a fluid or intermolecular
interactions. This means that all species of a multicomponent
mixture experience identical finite-size effects.
In EMD simulations, the required shear viscosity can be

computed from the autocorrelation of the off-diagonal
components of the stress tensor (Pαβ):

77,78,86,87
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where V is the volume of the system. The components of the
stress tensor are composed of two parts: an ideal and a virial
term. The first part is due to the total kinetic energy of particles,
and the second is constructed from intra- and intermolecular
interactions.77,88,89 The three off-diagonal components of the
stress tensor (Pxy, Pxz, and Pyz) yield three values for the shear
viscosity, which are equal for isotropic fluids. As shown in the
work of Yeh and Hummer66 and Moultos et al.69 as well as in
the current study (Supporting Information), the shear viscosity
is independent of the system size. Therefore, the viscosity is a
constant in eq 2.

2.2. Maxwell−Stefan and Fick Diffusion Coefficients.
MS diffusion coefficients can be obtained from the Onsager
coefficients (Λij), computed from the crosscorrelation of the
displacement of the molecules of species i and j:5−7,9,32,54
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where Ni and Nj are the number of molecules of species i and j,
respectively, and N is the total number of molecules in the
mixture. rl,j is the position of the l-th molecule of species j. The
Onsager coefficients (Λij) in eq 4 are defined in a reference
frame in which the velocity of the center of mass is zero.32

Hence, the Onsager coefficients of a binary mixture are
correlated by means of the molar masses of the two constituent
species (M1 and M2):
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The Onsager coefficient of species i (Λii) can be split into an
autocorrelation term, which is the self-diffusivity of species i
(Di,self), and a crosscorrelation term (CCii):

6,51
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The Onsager coefficient of two different species (Λij, where i
≠ j) is a displacement crosscorrelation of the constituent two
species:

Λ =≠ CCij i j ij, (7)

The MS diffusion coefficient of a binary system is a linear
combination of the Onsager coefficients. These relations for
binary, ternary, and quaternary mixtures are listed in the articles
by Krishna and van Baten32 and Liu et al.54 For a binary
mixture with mole fractions of x1 and x2, a single MS diffusion
coefficient is defined (Đ12,MS = Đ21,MS = ĐMS):
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Using the constraint of eq 5, eq 8 can be rewritten as separate
functions of the Onsager coefficients:
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Equations 8 and 9 are valid for both ideal and nonideal
diffusing binary mixtures. For ideal diffusing mixtures, the
crosscorrelation between the particles is rather small compared
to the self-diffusivities, which means that in eqs 6−8 (x2/x1)
CC11 + (x1/x2)CC22 − 2CC12 ≪ x2D1,self + x1D2,self, and
therefore, the MS diffusivity (eq 8) can be simplified to the
Darken equation (ĐDarken):

6,51,54

= +Đ x D x DDarken 2 1,self 1 2,self (10)

Converting MS to Fick diffusivities requires the so-called
thermodynamic factor Γ:7,42,79
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where Γ is the thermodynamic factor of a binary mixture and γ1
is the activity coefficient of species 1. For an n-component
mixture, the thermodynamic factor is defined as a matrix whose
elements are43
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γ
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where δij is the Kronecker delta. Σ indicates that the derivative
is taken at constant mole fractions of all species, except for the
nth species.43

A stable single-phase binary mixture requires that Γ > 0.79,80

For systems approaching phase separation, Γ approaches zero.
For ideal mixtures, Γ = 1 by definition. Binary mixtures with a
thermodynamic factor between 0 and 1 favor interactions
between the same species over interactions between different
species. Systems with a thermodynamic factor larger than one
exhibit associating behavior.28,43 Thermodynamic factors can be
calculated with equations of state,32,42 Kirkwood−Buff
integrals,9,90−92 or the permuted Widom test particle insertion
method.93,94 In this study, the thermodynamic factors for
binary systems are obtained from finite-size Kirkwood−Buff
coefficients. The finite-size Kirkwood−Buff integral equals:9
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where gij(r) is the radial distribution function, r = |r1 − r2|, and
the integration is over a finite spherical subvolume V with
radius R. As Gij

V scales linearly with 1/R, the Kirkwood−Buff
coefficient in the thermodynamic limit can be obtained by
extrapolating the linear regime to 1/R → 0.95 It is important to
note that one needs to correct for finite-size effects of the radial
distribution function. This correction is performed using the
procedure outlined by Ganguly and van der Vegt96 and Milzetti
et al.,97 For a binary system, the thermodynamic factor follows
from

Γ =
+ + −c x x G G G

1
1 ( 2 )t 1 2 11 22 12 (14)

Similar expressions exist for ternary and muticomponent
systems.91,92

3. SIMULATION DETAILS
All simulations in this study were performed in cubic simulation
boxes. Periodic boundary conditions were imposed in all
directions. All MD simulations were conducted with
LAMMPS98 (version 16 Feb. 2016). The initial configurations
and LAMMPS input files were constructed with PACKMOL99

and VMD.100

To study the finite-size effects of MS diffusion coefficients in
binary mixtures, two sets of MD simulations were carried out.
The first set consists of binary LJ systems. All parameters and
properties of these simulations are reported in dimensionless
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units with the ϵ and σ parameters of the first species as the base
units: σ1 = σ = 1, ϵ1 = ϵ = 1, and mass = m1 = m = 1. The
characteristics of the second species (ϵ2, σ2, and m2 = σ2

3), mole
fractions (x), and adjustable parameters (kij) of all studied LJ
systems are listed in Table 1. The applied temperature T and

pressure p in the simulations are 0.65 and 0.05, respectively.
The number density of the studied systems is between 0.14 and
0.89. A time step of 0.001 is used for the integration of
equations of motion. Displacement and stress correlation
functions are computed for a total length of 200 million time
steps. In total, 320 distinct LJ systems with four system sizes
(500, 1000, 2000, and 4000 particles) are simulated. To create a
sound data set, systems in which phase separation occurs or a
considerable deviation of the pressure or temperature from the
specified conditions is observed are excluded from the data
analysis. These systems correspond to a small fraction of the
total data set. The second set of MD simulations includes 9
binary mixtures consisting of molecular systems. An overview of
these mixtures, consisting of methanol as the first component
and water, ethanol, acetone, methylamine, or carbon tetra-
chloride as the second component, is listed in Table 2. For each

mixture, four system sizes (250, 500, 1000, and 2000
molecules) are considered. The temperature and pressure are
specified to be 298 K and 1.0 atm. The total length of each
simulation is 200 ns with an integration time step of 1 fs.
The force fields used in this work for both LJ and molecular

systems are explained in detail in the Supporting Information.
For the LJ systems, interactions are truncated and shifted to
zero at a cutoff radius of 4σ.77 The Lorentz−Berthelot mixing
rules with an adjustment parameter (kij), controlling the
nonideality of mixtures, are applied to the LJ parameters of

dissimilar particles.77 For the molecular systems, the SPC/E
model101 and the model proposed by Tummala and Striolo102

are used for water and carbon tetrachloride molecules,
respectively. The force field parameters for methanol,103

ethanol,103 acetone,104 and methylamine105,106 are obtained
from the Transferable Potential for Phase Equilibria (TraPPE)
force field.106 The LJ interactions are truncated at 10.0 Å, and
analytic tail corrections for energy and pressure are included.77

The Lorentz−Berthelot mixing rules for dissimilar interaction
sites are applied.77 Long-range electrostatic interactions are
taken into account by means of the particle−particle particle−
mesh (PPPM) method with a relative precision of 10−6.77 It is
important to note that the aim of this study is not to compare
computed transport properties with experiments but to study
finite-size effects observed in mutual diffusion coefficients. We
adopt these well-known force fields, which have already been
used by many researchers for computing transport proper-
ties.6−8,55,69,107−109

For both data sets and each data point, at least five
independent simulations were carried out to obtain the average
properties and their 95% confidence intervals. For better
sampling of displacement and stress correlation functions, the
order-n algorithm was used.75,110 As explained in the previous
section, the thermodynamic factors were calculated from the
RDFs of the constituent species using finite-size Kirkwood−
Buff integrals.92 The RDFs were computed from MD
simulations of large systems in the canonical ensemble. These
systems contain 25 000 LJ particles (first set of simulations)
and 13 500 molecules (second set of simulations). The total
length of simulations for computing the Kirkwood−Buff
integrals is 10 million time steps for the LJ systems and 10
ns for the molecular mixtures.

4. RESULTS AND DISCUSSIONS
We performed two sets of simulations. The first set consists of
250 distinct binary LJ systems, and the second set includes 9
binary mixtures consisting of methanol, water, ethanol, acetone,
methylamine, and carbon tetrachloride. For each set, four
system sizes were considered (Tables 1 and 2). All raw data for
diffusion coefficients, shear viscosities, and thermodynamic
factors is provided in the Supporting Information.
Previous studies on the system-size dependencies of self-

diffusion coefficients are limited to pure fluids and infinitely
diluted mixtures. Figure 1 shows an example of the self-
diffusivities of the two components of a binary LJ systems as a
function of the length of the simulation box (L). Like in pure
fluids, the computed self-diffusion coefficients vary linearly with
the inverse of the simulation box length. The linear regression
at 1/L = 0 yields the self-diffusivity for an infinite system size
(Di,self

∞ ), which is shown in the same figure as a horizontal line.
The finite-size self-diffusivities corrected with DYH (Equation 2)
are plotted as red squares. As expected, the corrected self-
diffusivities collapse on the horizontal line, indicating the
validity of YH correction.
In Figure 2, the differences between the infinite and finite-

size self-diffusivities (Di,self
∞ − Di,self

MD) are plotted as a function of
the YH correction (DYH), for all entries in the data set
examined. For the majority of the cases, the YH correction term
is able to predict the finite-size discrepancies very accurately.
However, while the correction is almost perfect for molecular
mixtures, a systematic overprediction of self-diffusivities can be
observed for LJ systems. This overprediction becomes more
pronounced as the difference between the size and the

Table 1. Specifications of the Studied LJ Systemsa

specification values

total number of particles 500, 1000, 2000, 4000
independent simulations 10, 10, 5, 5
x1 0.1, 0.3, 0.5, 0.7, 0.9
ϵ2/ϵ1 1.0, 0.8, 0.6, 0.5
σ2/σ1 1.0, 1.2, 1.4, 1.6
m2/m1 (σ2/σ1)

3

kij 0.05, 0.0, −0.3, −0.6
aLJ particle type 1 has σ1 = σ = 1.0, ϵ1 = ϵ = 1.0, and mass = m1 = 1.0
in dimensionless units.77 As explained in the Supporting Information
(eq. S3), kij is an adjustable parameter to the Lorentz−Berthelot
mixing rules, controlling the nonideality in the mixtures.

Table 2. Specifications of All Studied Binary Molecular
Systemsa

specification values

total number of molecules 250, 500, 1000, 2000
independent simulations 10, 10, 10, 10
second component (mole fraction) water (0.1, 0.3, 0.5, 0.7, 0.9)

ethanol (0.5)
acetone (0.5)
methylamine (0.5)
carbon tetrachloride (0.1)

aThe first component for all mixtures is methanol. The mole fraction
of the second component is specified in parentheses. The force field
parameters are available in the Supporting Information.
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interaction energies of the species in the system increases. Out
of the 250 LJ systems considered, 13 correspond to systems
containing particles with large dissimilarities in size (σ2/σ1
equal to 1.6 and 1.4) and interaction energy (ϵ2/ϵ1 equal to 0.5
and 0.6). This finding indicates that, although the YH
correction can be safely applied to binary systems with a
wide variety of composition, nonideality, and relative size of
particles, limitations exist for mixtures with significant differ-
ences between the size of the molecules and interaction
energies.
Figure 3 illustrates the finite-size effects of the Darken

equation (ĐDarken, eq 10) and MS diffusivities (ĐMS, eq 8) for
the same binary LJ mixture of Figure 1. In the top figure, it is
shown that the application of the YH correction, DYH, to the

self-diffusivities of species 1 and 2 to the Darken equation

(Equation 10) accurately accounts for the finite-size effects of

ĐDarken. In the bottom figure, the application of the same

corrections to MS diffusion coefficients is shown. The corrected

ĐMS (red squares) are systematically lower than the

extrapolated MS diffusivity, indicating that DYH is not a valid

correction for the finite effects of ĐMS. To further investigate

this, the finite-size effect of the MS diffusivity can be obtained

from eq 6 and 9 as follows:

Figure 1. Self-diffusion coefficients of a binary LJ mixture (x1 = 0.9) as
a function of the simulation box length (L). Blue circles are the
computed self-diffusion coefficients in the finite systems, and red
squares are the corrected values using the YH correction term (eq 2).
The dashed lines indicate extrapolation to the thermodynamic limit,
and the solid lines show the extrapolated self-diffusivities. The second
component has ϵ2 = 0.5 × ϵ1 and σ2 = 1.2 × σ1, and the adjustable
parameter (kij) to the Lorentz−Berthelot mixing rules is 0. The error
bars are smaller than the symbols.

Figure 2. Finite-size corrections required for self-diffusion coefficients as a function of the YH correction (DYH, Equation 2) for (a) LJ and (b)
molecular mixtures computed with 500 LJ particles/250 molecules (blue circles), 1000 LJ particles/500 molecules (red squares), 2000 LJ particles/
1000 molecules (green diamonds), and 4000 LJ particles/2000 molecules (magenta pentagons). Closed and open symbols represent the corrections
to the self-diffusivity of species 1 and species 2, respectively. The dashed lines indicate perfect agreement. Statistical uncertainties are listed in the
Supporting Information.

Figure 3. Diffusion coefficients of a binary LJ mixture (x1 = 0.9) as a
function of the simulation box length (L). Blue circles are the
computed Darken (eq 10) and MS (eq 8) diffusivities. Red and green
squares are the corrected values according to the YH (eq 2) and the
MSYH (eq 17), respectively. The dashed lines show extrapolation to
the thermodynamic limit, and the solid lines show the extrapolated
values. The second component has ϵ2 = 0.5 × ϵ1 and σ2 = 1.2 × σ1, and
the adjustment parameter (kij) to the Lorentz−Berthelot mixing rules
is 0. The error bars are smaller than the symbols.
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where α′ is a constant, which is unknown at this point. ĐMS
∞ and

ĐMS
MD are the MS diffusivities in the thermodynamic limit and

finite-size systems, respectively. CCii
∞ and CCii

MD are the infinite
and finite-size displacement crosscorrelation functions of
species i. As shown in Figure 3, in nonideal mixtures, the
total displacement crosscorrelation function of all particles has a
considerable contribution to the finite-size effect. At this point,
we hypothesize that a modified YH correction term can be
applied directly to the MS diffusion coefficients. Thus, the
crosscorrelation terms of eq 15, CCii

∞−CCii
MD, can be a function

or simply a modification factor of the YH correction. Since the
crosscorrelation terms are directly related to the nonideality of
a mixture, it is expected that this modification factor is a
function of the thermodynamic factor (Γ):
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α α
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where α(Γ) is the modification factor to the YH correction,
accounting for the finite-size effects of the MS diffusion
coefficient. In the example shown in Figure 3, the
thermodynamic factor of the mixture, Γ, is 0.35 and the
modification factor required to scale the YH correction from
the red squares to the green squares is roughly 3, which is
approximately equal to 1/Γ. To examine if 1/Γ is a suitable
modification of the YH correction for correcting the finite-size
effect of MS diffusion coefficients, a phenomenological
approach is followed: In Figure 4, 1/Γ is compared to the
required modification factor to DYH for all LJ (blue circles) and
molecular (green diamonds) systems. The good agreement
observed suggests that 1/Γ is a suitable modification factor to
the YH correction for MS diffusion coefficients. Hence, eq 16
can be rewritten as

α− = ≈
Γ

∞ ⎜ ⎟
⎛
⎝

⎞
⎠Đ Đ D D

1
MS MS

MD YH YH

(17)

In the rest of the manuscript, the last term (DYH/Γ) will be
called the “Maxwell−Stefan Yeh−Hummer (MSYH)” correc-
tion (ĐMSYH = DYH/Γ). The results shown in Figure 4 suggest
that describing the correction for MS as a function of only Γ
seems to be sufficient; however, the possibility that other (still
unknown) factors contribute to the correction cannot be ruled
out. The applicability of ĐMSYH in multicomponent mixtures is
not examined in this work.
By combining eqs 11 and 17, the finite-size correction to the

Fick diffusion coefficient for a binary mixture can be calculated
from

− = Γ − Γ = Γ −

= Γ
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where DFick
∞ and DFick

MD are Fick diffusivities in infinite and finite-
size systems, respectively. Interestingly, the same YH correction
that is applied to self-diffusivities can mitigate the finite-size
effects of Fick diffusion coefficients, regardless of the ideality or
nonideality of the mixture.
In Figure 5, the correction for the finite-size effects of MS

diffusion coefficients (ĐMS
∞ − ĐMS

MD) are compared to the
predicted MSYH correction (ĐMSYH) for the studied LJ (Figure
5a) and molecular systems (Figure 5b). As expected from
Figure 4, a rather good agreement can be seen for both sets.
These results suggest that ĐMSYH works equally good for simple
systems such as LJ systems and for nonspherical molecular
systems with long-range electrostatic interactions. As proposed
by Moultos et al.,69 a minimum number of 250 molecules was
used for all molecular systems. For a smaller number of
particles, the shape and anisotropic structure of constituent
molecules may play a role and affect the accuracy of the YH
correction. Since no outlier is observed for the molecular
systems in Figure 5b, the same criterion for the minimum
number of molecules seems to be applicable to the MSYH
correction.
While the proposed MSYH correction (see Figure 5) seems

to perform fairly accurately, two important points should be
noted. (1) The MSYH correction overpredicts the finite-size
effects of MS diffusivities for LJ systems. This is consistent with
the earlier observations for self-diffusivities (Figure 2a). The
MSYH correction is based on the YH correction (Equation 17),
so any overprediction of DYH will affect ĐMSYH. To show the
cause of this overprediction, the same comparison as in Figure
5, between the required corrections, is considered. However,
instead of the analytic YH correction, the differences between
the computed infinite and finite-size Darken diffusivities are

Figure 4.Modification factor to the YH correction (α) as a function of
the thermodynamic factor (Γ) for nonideal mixtures according to eq
16. Blue circles and green diamonds show the modification factors for
the LJ and molecular systems, respectively. The thermodynamic factor
for ideal mixtures equals 1. The dashed line indicates perfect
agreement. Statistical uncertainties are listed in the Supporting
Information.
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used (see Figure 6). For molecular mixtures, no difference is
noticed. This is expected since the YH correction performs well
according to Figure 2b. Note that the overprediction observed
in Figures 2a and 5a is not present in Figure 6a and the data
points are symmetrically distributed on both sides of the
diagonal line. This indicates that the less accurate predictions
by the YH correction resulted in the overpredictions shown in
Figure 5 and that the proposed modification of eq 17 does not
introduce any systematic deviations. (2) The data points shown
in Figures 4−6 for MS diffusivities are more scattered
compared to those of self-diffusion coefficients illustrated in
Figure 2. The cause can be the large statistical uncertainties of
thermodynamic factors and finite-size MS diffusivities as well as
the extrapolation of MS diffusion coefficients (ĐMS) to the
thermodynamic limit (reported in the Supporting Information).
These influences are expected to contribute to the scattering of
the data in Figures 4 and 5.
As the MSYH correction is related to the YH correction via

the thermodynamic factor, three possible scenarios for studying
the significance of the MSYH correction can be conceived: (1)
In the case of Γ = 1, the behavior of the mixture is ideal. The

YH correction can directly be applied to self, MS, and Fick
diffusivities. (2) For 0 < Γ < 1, the constituent species of the
mixture tend to self-associate and the cross-interactions are less
pronounced. Since Γ is smaller than 1, the modification factor
makes the MSYH correction larger than the YH correction. (3)
For associating mixtures with thermodynamic factors larger
than 1, the correction decreases to smaller values than the YH
correction. For mixtures with very large thermodynamic factors,
the finite-size correction becomes negligible and overlaps with
the statistical uncertainty of the computed MS diffusion
coefficient.
To show the importance of the MSYH correction for systems

with 0 < Γ < 1, we consider a mixture of methanol−carbon
tetrachloride (xmethanol = 0.90). This mixture has a small
thermodynamic factor approximately equal to 0.18. Accord-
ingly, the modification factor to the YH correction for MS
diffusivities would be approximately 6 (≈1/0.18). To
investigate the magnitude of the finite-size effect, in Figure 7,
the Darken and MS diffusion coefficients of this mixture are
shown for four system sizes. As expected, both the YH and
MSYH corrections can accurately predict the finite-size

Figure 5. Correction needed for the MS diffusion coefficients versus the MSYH correction term (ĐMSYH, eq 17) for (a) LJ and (b) molecular
systems computed with 500 LJ particles/250 molecules (blue circles), 1000 LJ particles/500 molecules (red squares), 2000 LJ particles/1000
molecules (green diamonds), and 4000 LJ particles/2000 molecules (magenta pentagons). The dashed lines show perfect agreement. The statistical
uncertainties are listed in the Supporting Information.

Figure 6. Correction needed for the MS diffusion coefficients versus the extrapolated Darken equation with the modification factor included
(Γ−1(ĐDarken

∞ − ĐDarken
MD )) for (a) LJ and (b) molecular systems computed with 500 LJ particles/250 molecules (blue circles), 1000 LJ particles/500

molecules (red squares), 2000 LJ particles/1000 molecules (green diamonds), and 4000 LJ particles/2000 molecules (magenta pentagons). The
dashed lines show perfect agreement. The statistical uncertainties are listed in the Supporting Information.
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diffusivities. Whereas the finite-size effect for the self-diffusivites
is at most 20% of the uncorrected value, the finite-size effect for
MS diffusivites can be as large as 60% of the computed values in
the current MD simulations. The contribution of the finite-size
effect becomes even more pronounced for Γ → 0, i.e., close to
demixing. Therefore, considering the MSYH correction is
particularly important for such systems.

5. CONCLUSION
Molecular dynamics is a powerful tool to predict binary
diffusion coefficients of nonideal mixtures. Even with modern
computers, the number of molecules used in a typical
simulation is orders of magnitude lower than the thermody-
namic limit; therefore, it is important to take into account
finite-size effects when calculating diffusion coefficients. Yeh
and Hummer have developed a correction term (DYH) to
compensate for the finite-size effects of self-diffusion
coefficients of pure fluids. This correction is a function of
only the shear viscosity and the length of the simulation box. In
this work, we verified the applicability of this correction to a
wide range of nonideal binary mixtures. On the basis of the
work of Yeh and Hummer, we present a Maxwell−Stefan YH
correction, ĐMSYH, for finite-size effects of computed Maxwell−
Stefan diffusion coefficients, ĐMSYH = DYH/Γ, in which Γ is the
thermodynamic factor. This correction is verified for a large set
of Lennard−Jones systems as well as several molecular
mixtures, and excellent predictions are obtained. For mixtures
with a thermodynamic factor close to zero (i.e., close to
demixing), this correction may become even larger than the
computed finite-size Maxwell−Stefan diffusion coefficient. This
highlights the importance of the finite-size corrections. In future
work, a similar correction may be derived for multicomponent
mixtures, in which the formulation of Maxwell−Stefan
diffusivities is much more complex than those for binary
mixtures.42,80
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■ NOMENCLATURE
α, constant coefficient (−); rj,i, position of molecule j of species
i (m); ĐMSYH, Maxwell−Stefan Yeh−Hummer (MSYH)
correction to finite-size MS diffusivity (m2·s−1); ĐDarken,
Maxwell−Stefan (MS) diffusivity in ideal mixtures computed
from Darken equation (eq 10,) (m2·s−1); ĐMS, Maxwell−Stefan
(MS) diffusivity (m2·s−1); ĐMS

MD, Maxwell−Stefan (MS)
diffusivity computed from MD simulations (m2·s−1); ĐMS

∞ ,
Maxwell−Stefan (MS) diffusivity in the thermodynamic limit
(m2·s−1); δij, Kronecker delta (−); ϵi, Lennard−Jones (LJ)
energy parameter for species i (ϵ); η, shear viscosity (Pa· s); Γ,
thermodynamic factor (−); γi, activity coefficient of species i
(−); Λij, Onsager coefficient (m

2·s−1); σi, Lennard−Jones (LJ)
size parameter for species i (σ); ξ, Constant value for the YH
correction, 2.837297 for cubic simulation boxes (−); ct, total
number density (m−3); CCij, displacement crosscorrelation
function of species i and j (m2·s−1); CCij

MD, finite-size
displacement crosscorrelation function of species i and j
computed from MD simulations (m2·s−1); CCij

∞, displacement
crosscorrelation function of species i and j in the thermody-
namic limit (m2·s−1); DYH, Yeh−Hummer (YH) correction to
finite-size self-diffusivity (m2·s−1); DFick, Fick diffusivity (m2·
s−1); DFick

MD, Fick diffusivity resulted from MD simulations (m2·
s−1); DFick

∞ , Fick diffusivity in the thermodynamic limit (m2·s−1);
Di,self, self-diffusivity of species i (m2·s−1); Di,self

MD, self-diffusivity
of species i computed from MD simulations (m2·s−1); Di,self

∞ ,
self-diffusivity of species i in the thermodynamic limit (m2·s−1);
Gij, Kirkwood−Buff coefficient between species i and j (m3); gij,
radial distribution function (RDF) between species i and j (−);
kB, Boltzmann constant (= 1.38065 × 1023 J·K−1); kij, an
adjustable parameter for the Lorentz−Berthelot mixing rules

Figure 7. Binary Darken (Equation 10) and MS (Equation 8)
diffusivities for a mixture of methanol−carbon tetrachloride (xmethanol =
0.9) as a function of the simulation box (L). Blue circles are the
computed diffusion coefficients in MD simulations. Red and green
squares are the corrected diffusivities according to the YH (Equation
2) and MSYH (eq 17) corrections, respectively. Dashed lines show
extrapolation to the thermodynamic limit, and solid lines are the
extrapolated values.
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(−); L, side length of the cubic simulation box (m); Mi, molar
mass of species i (kg·mol−1); mi, mass of a Lennard−Jones (LJ)
particle (m); N, total number of molecules (−); Ni, number of
molecules of species i (−); p, hydrostatic pressure (Pa); Pαβ,
off-diagonal stress tensor components (Pa); T, temperature
(K); t, time (s); V, volume of the simulation box (m3); xi, mole
fraction of species i (−)
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