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Introduction

Schizophrenia is a devastating mental disorder character-
ized by positive, negative, and cognitive symptoms. Cog-
nitive deficits are a hallmark of this condition, and under-
standing the mechanisms of these symptoms is of particular 
significance as they are highly predictive of long-term dis-
ease prognosis (Green 1996). Cognitive symptoms include 
deficits in working memory and behavioral flexibility 
(Forbes et al. 2009; Leeson et al. 2009), two processes of 
executive function that are essential for normal cognition. 
Both the Measurement and Treatment Research to Improve 
Cognition in Schizophrenia initiative (MATRICS) and the 
Cognitive Neuroscience Treatment Research to Improve 
Cognition in Schizophrenia group (CNTRICS) highlight 
cognitive deficits as a core feature of this disorder (Nuech-
terlein et  al. 2008, 2009). These deficits are resistant to 
treatment and the neural mechanisms that underlie them are 
not well understood (an der Heiden and Hafner 2000; Rie-
del et al. 2006).

Dysfunction of the glutamatergic system, specifically 
N-methyl-d-aspartate (NMDA) receptor hypofunction, 
has been hypothesized to play a central role in schizo-
phrenia pathogenesis (Kantrowitz and Javitt 2010; Olney 
et al. 1999). Thus, NMDA receptor antagonists, such as 
phencyclidine (PCP), mimic deficits in executive func-
tion and working memory in humans (Cosgrove and 
Newell 1991; Krystal et al. 1994). Sub-chronic treatment 
with an NMDA antagonist in rodents similarly produces 
deficits in cognitive tasks including novel object rec-
ognition (Bado et  al. 2011; Grayson et  al. 2015). Criti-
cally, PCP-induced deficits in rodents are still present 
after prolonged drug-free periods (1 week and longer) 
and thus reflect enduring functional changes rather than 
acute drug effects. PCP-pre-treated animals exhibit 
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impaired performance on novel object recognition, spon-
taneous alternation, and pre-pulse inhibition, which are 
believed to model cognitive and negative symptoms of 
human schizophrenia (Castane et al. 2015; Grayson et al. 
2015; Jorgensen et  al. 2015). The mechanisms through 
which PCP produces behavioral impairments are largely 
unknown, but neurophysiological and immunochemi-
cal results point to the involvement of prefrontal corti-
cal circuits (Kargieman et al. 2012; Piyabhan et al. 2013; 
Young et al. 2015).

Medial prefrontal cortex (mPFC) provides a major 
input to nucleus accumbens (NAc), a structure widely 
implicated in motivational and cognitive tasks (Bold-
ing et al. 2012; Pezze et al. 2009). Specifically, prelim-
bic cortex is implicated in behaviors relevant to negative 
symptomatology, such as goal-directed behavior (Chu-
dasama et al. 2001; Killcross and Coutureau 2003). Cor-
tico-accumbal inputs play a role in cognitive function, 
such as working memory and attention, and a recent 
patient fMRI study showed synchrony deficits between 
mPFC and accumbens in schizophrenics (French and 
Totterdell 2003; Richter et  al. 2015). Limbic structures 
including NAc have been hypothesized to underlie some 
of the behavioral abnormalities in schizophrenia and 
show abnormalities in patient brain scans (Grace 2000; 
van Erp et al. 2015). Consistent with this, NAc shell but 
not core was hypothesized to mediate some of the thera-
peutic effects of antipsychotics (Shilliam and Dawson 
2005). In rats, acute NMDA receptor blockade causes 
abnormal local field potential oscillations in NAc (Goda 
et  al. 2015). These observations suggest that deficits in 
cortico-accumbal network activity may underlie some 
aspects of compromised behavioral function (Bolding 
et al. 2012).

To address this here, we recorded single-unit activ-
ity in NAc shell and mPFC in awake, behaving rats 
pre-treated with PCP. Cognitive deficits in NMDA 
antagonist-pre-treated animals are widely studied using 
the novel object recognition (NOR) task (Grayson et al. 
2015; Rajagopal et al. 2014), yet the neural dysfunction 
underlying NOR deficits is not well understood. Consist-
ent with the hypothesized role of prefrontal cortex in 
negative symptomatology, rodent mPFC is implicated 
in working memory and visual recognition memory 
(Akirav and Maroun 2006; Yoon et  al. 2008). Here we 
found that synchrony between mPFC and NAc was dis-
rupted by PCP pre-treatment and overall activity in the 
NAc shell was reduced. In addition to this global defi-
cit, we found that phasic responses in both structures 
in response to ongoing behavior were affected: PCP 
pre-treatment disrupted the increase in mPFC and NAc 
activity associated with novel object exploration in con-
trol animals.

Results

Sub‑chronic PCP treatment reduced population firing 
rates in NAc shell

To investigate cortical and NAc contributions to PCP-
induced behavioral deficits, we recorded firing rates 
in single units recorded from mPFC and NAc shell in 
awake behaving rats pre-treated with either PCP or saline 
(Fig.  1a–c). Recordings were carried out during perfor-
mance of a NOR task, and we tracked the activity of all 
units during the three 3-min trials of the task (pre-expo-
sure, acquisition, retention). The effect of trial was statis-
tically analyzed but was found to be non-significant. We 
recorded 41 mPFC single units (22 in PCP-pre-treated 
rats) and 39 NAc single units (19 in PCP-pre-treated rats). 
Medium spiny neurons (MSN) represent more than 90% 
of rat striatal and accumbal neurons, and unlike GABAe-
rgic interneurons are characterized by relatively low fir-
ing rates. We recorded units with low baseline activity 
(<6 Hz), and the firing rates we observed (see below) are 
consistent with previous studies (Barnes et  al. 2005; Sha-
rott et al. 2009). Similarly, in mPFC, firing rates were con-
sistent with the cells being regularly spiking units (Bruno 
and Simons 2002). Consistent with previous work, we 
found no significant effect of PCP pre-treatment on mPFC 
firing rates [saline: 1.08 Hz ± 0.18 vs. PCP: 1.10 Hz ± 0.18 
(mean ± SEM)] and no significant effect of trial (data not 
shown). However, sub-chronic PCP pre-treatment reduced 
putative MSN firing rates in NAc [saline: 1.89 ± 0.21  Hz 
vs. PCP: 0.93 ± 0.18 Hz] (Fig.  1d). This was supported 
by a significant effect of drug treatment [F(1, 37) = 7.28, 
p < 0.01]. To complement the unit-level analysis, we also 
calculated firing rate averages per animal and observed 
a structure (PFC vs. NAc) × drug group (PCP vs. vehi-
cle) interaction [F(1, 20) = 2.183, p = 0.003] and no main 
effects. Following this up with LSD post hoc revealed sig-
nificant reduction in firing rates in the NAc (p < 0.001) but 
not PFC (p = 0.577) of PCP-pre-treated animals confirming 
the main finding.

Additional burst and irregularity analyses showed spike 
timing characteristics consistent with previous work for 
both cortical and striatal neurons (Holt et  al. 1996; Stern 
et  al. 1997). Coefficients of variation [CV2 (Holt et  al. 
1996)] did not differ significantly between drug condi-
tions or structures [NAc, 1.16 (SD = 0.12); mPFC, 1.17 
(SD = 0.09)]. Burst detection was performed using Neu-
roexplorer based on the Poisson surprise method. The 
method which is well established for detecting burst activ-
ity in striatum (Estrada-Sanchez et  al. 2015; Stanford and 
Gerhardt 2001) relies on comparing successive interspike 
intervals (ISIs) in the recorded spike train to a theoretical 
Poisson spike train with the same firing frequency. As done 
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previously, we used a surprise threshold of 5 which esti-
mates that a burst occurs ~150 times more frequently than 
would be expected in a Poisson spike train with the same 
mean firing rate (Estrada-Sanchez et al. 2015). Consistent 
with the single-unit data, there was a significant reduc-
tion in the number of bursts by PCP in the NAc [number 
of bursts per trial (3 min) for PCP: 5.31 ± 1.99 vs. saline: 
9.11 ± 1.07; p=. 012] but not the mPFC (PCP: 5.67 ± 1.18 
vs. saline: 6.60 ± 1.21; p = 0.583). There were no signifi-
cant group effect on number of spikes per burst (mPFC: 
13.66 ± 1.49; NAc 15.46 ± 1.38) or mean burst duration 
(mPFC: 2.43 ± 0.31; NAc 1.68 ± 0.29). These bursting 
parameter values are consistent with previous work in cor-
tex and striatum (Estrada-Sanchez et al. 2015). The effect 
of trial was not significant.

PCP pre‑treatment results in abnormal 
cortico‑accumbal synchrony

To investigate spike synchrony, we calculated spike syn-
chronization between 182 cortico-accumbens neuronal 
pairs (106 pairs from sub-chronic PCP-pre-treated ani-
mals). In the population, average spike synchronization 

between mPFC and NAc shell was significantly reduced 
by PCP pre-treatment [F(1, 727) = 38.37, p < 0.001; 
Fig. 2b]. The effect of trial was not significant suggesting 
that the disruption in cortico-accumbal synchronization 
may be relatively stable and independent of behavioral 
state at least in the NOR paradigm. Because the window 
we used to quantify synchronization is adapted to the 
firing rate (see “Methods”), it is unlikely that reducing 
NAc spiking activity in PCP-pre-treated animals may 
account for the significant reduction in synchronization 
observed here. To completely rule out this possibility, 
we recalculated synchronization based on reduced NAc 
spike trains (50% of spikes randomly sampled from the 
original spike trains) in the saline treatment group. Syn-
chronization was still significantly reduced in PCP-pre-
treated animals when based on this reduced dataset. To 
confirm the observation found on spike synchrony, we 
also analyzed mPFC–NAc synchrony using an inde-
pendent spectrum-based measure: we found that average 
mPFC–NAc coherence across spike pairs was reduced 
by PCP pre-treatment (Fig.  2c; note non-overlapping 
95% bootstrapped confidence intervals for the lower fre-
quency bands).

A B

C D

Fig. 1   PCP pre-treatment reduces NAc single-unit activity. a Sche-
matic illustration of the awake recording preparation. b Tetrode 
placements in mPFC (left) and NAc shell (right) including an exam-
ple coronal section indicating vertical tract left by the recording 
electrode in NAc marked with an electrolytic lesion. c Illustration of 
tetrode-based spike sorting procedure. Four recording channels are 

shown from which two neurons were extracted. Spike shapes dif-
fered between units and across channels. d Effect of sub-chronic PCP 
pre-treatment on firing rates in single units recorded from NAc and 
mPFC. Data points represent individual units; horizontal lines repre-
sent group means. Sub-chronic PCP significantly reduced firing rates 
in NAc but not mPFC
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Sub‑chronic PCP decreases novel exploration‑related 
neural activity in mPFC and NAc shell

Because PCP-induced behavioral deficits include NOR 
and NOR performance requires intact mPFC (Barker et al. 
2007), we were interested in the extent to which PCP pre-
treatment affected neural responses on contact with the 
novel vs. familiar object. Because object exploration times 
were not normally distributed (p < 0.05, Shapiro–Wilk test, 
W = 0.862, df = 12), familiar versus novel object exploration 
times were compared with Wilcoxon signed-rank tests. As 
expected, this showed significant differences in exploration 
times in the saline (Wilcoxon Z score = 2.201; effect size: 
r = 0.64; p < 0.05), but not in the PCP-pre-treated rats (Wil-
coxon Z score = 0.105; effect size: r = −0.03; p = 0.92). 
Median exploration times for the familiar and novel object 
were 29.9 versus 36.2 s in saline-pre-treated rats and 30.1 
versus 30.8  s in PCP-pre-treated rats. Because non-par-
ametric statistics are not available for mixed designs, we 
used bootstrapping to test the group effect: we calculated 
the median difference between novel and familiar explora-
tion for both saline- and PCP-pre-treated animals. We then 
bootstrapped the difference between these two medians 
(saline minus PCP; Matlab command bootci, 2000 boot-
strap samples), which yielded a 95% confidence interval of 

[4.1; 37.5] confirming the group effect. Further, we found 
no evidence that drug treatment affected the way the ani-
mals interacted with the object: we analyzed the amount of 
time each animal spent sniffing, touching, and approach-
ing each of the two objects using the recorded video files. 
A mixed ANOVA (3 behavior types: sniffing, touching, or 
approaching × object: familiar vs. novel × drug treatment) 
produced no significant effects of either drug treatment or 
object or any interactions (ps > 0.10).

To compare ongoing exploration times to spike activ-
ity, we quantified object contact from video recordings and 
aligned those to neuronal firing rate histograms from both 
mPFC and NAc shell (Fig. 3b). We calculated cross-corre-
lations between object contacts and firing rate histograms. 
Because object contacts were coded as 1 versus 0 for no 
contact, the positive cross-correlation curves indicated 
higher exploration-related activity relative to no explora-
tion across groups, an effect which during the retention 
trial was accentuated for the novel object compared to the 
familiar object after saline pre-treatment in both structures 
(Fig.  3d, e). On the other hand, PCP pre-treatment com-
pletely suppressed the association between spike response 
and novel object exploration in both NAc and mPFC. We 
then checked if this mirrored the acquisition trial during 
which both objects presented are novel. During acquisition 
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Fig. 2   Cortico-accumbal synchrony is reduced in PCP-pre-treated 
animals. a Illustration of spike synchronization measure for two 
mPFC–NAc pairs recorded from a saline (top) and PCP-pre-treated 
(bottom) rat during the 3-min test trial of the novel object recogni-
tion task. The index is based on counts of quasi-simultaneous occur-
rences of spikes from a concurrently recorded pair, where the time lag 
used for calculating simultaneity is defined locally to allow for firing 
rate changes (see “Methods”). Spike trains are shown at the top and 

bottom of the panel and the cumulative normalized synchronization 
index is shown with a black and red curve, respectively. b Popula-
tion data show significantly lower synchronization in PCP-pre-treated 
rats. Data points represent individual pairs; horizontal lines repre-
sent group means. c Average coherence across all mPFC–NAc spike 
pairs showed reduced coherence in the lower frequency bands. (Error 
bands represent a 95% bootstrap interval.)
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exploration, cross-correlation averaged over the two novel 
objects was indeed lower for the PCP-treated animals and 
this effect attained significance in NAc (see non-overlap-
ping error bands; Fig. 3c). We conclude that chronic PCP 
pre-treatment suppressed the relative enhancement of neu-
ronal activity during exploration vs. no exploration for the 
novel object in both mPFC and NAc shell.

Finally, we calculated average firing rate (per struc-
ture) and synchrony values for each animal to investigate 
whether they correlate with object exploration times. The 
measures did not relate to either novel object or familiar 
object exploration (ps > 0.05). These null findings how-
ever are not surprising as they involve aggregation across 
time of both measures (neural and behavioral) with a 

A B

DC

E

Fig. 3   PCP pre-treatment disrupts mPFC and NAc activity associ-
ated with novel object contact in the novel object recognition task. a 
Illustration of testing procedure. The task measures interaction with 
a novel compared to a previously pre-exposed object, both placed in 
opposite corners of a testing arena. b Single-unit spike trains (top) 
were used to construct firing rate histograms (middle) which were 

aligned to ongoing exploration of the novel and familiar objects 
(bottom). c Cross-correlation between object exploration during the 
acquisition trial and spike activity in mPFC (left) or NAc (right) for 
PCP and saline-pre-treated animals. Cross-correlation between mPFC 
(d) or NAc (e) spike activity and exploration of the novel versus 
familiar object in the retention test. (Error bands represent SEM.)
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corresponding decrease in power. This is in contrast to the 
temporally resolved analysis presented in Fig.  3, which 
does show a significant behavioral correlate of the spike 
activity.

Discussion

PCP induces psychotic episodes in humans (Javitt and 
Zukin 1991), and its administration in rodents is widely 
used as an animal model of schizophrenia. Sub-chronic 
PCP treatment in rodents produces a number of behavioral 
abnormalities, which model cognitive and negative symp-
toms observed in schizophrenia. This study represents the 
first analysis of deficits in the cortico-accumbal circuit 
induced by sub-chronic NMDA antagonist administration 
in rats. As done by a number of different labs reporting on 
phencyclidine-induced deficits in rats, the current study 
used female animals (e.g., Martinez et al. 1999; Miyauchi 
et  al. 2016; Sahin et  al. 2016). This makes our results 
directly comparable to this previous work; importantly, 
however, previous studies also suggest female rats show 
higher vulnerability in the phencyclidine model (Snigdha 
et  al. 2011), suggesting they are better suited for charac-
terizing the deficits incurred by phencyclidine. Hormonal 
influences may affect sensitivity to PCP and this has been 
previously investigated in a rat model using acute PCP 
(Sutcliffe et al. 2008); however, in our study, both PCP- and 
saline-pre-treated animals were group-housed in the same 
holding room and tested in parallel. Thus, we do not sus-
pect systematic differences in oestrous cycles to be a con-
tributing factor for the differences we report here.

We found that repeated PCP treatment resulted in a tonic 
reduction in NAc shell single-unit firing rates and disrupted 
cortico-accumbal synchronization. These two regions are 
connected anatomically, and prelimbic cortex is impli-
cated in behaviors relevant to negative symptomatology, 
such as goal-directed behavior and attention (Chudasama 
et  al. 2001; Coutureau and Killcross 2003). Furthermore, 
nucleus accumbens shell but not core is hypothesized to 
mediate the therapeutic effects of antipsychotics (Shilliam 
and Dawson 2005). We also observed that phasic responses 
in both NAc shell and mPFC in response to ongoing behav-
ior were affected: PCP disrupted the increase in mPFC and 
NAc neural activity, which was observed in vehicle-treated 
animals during exploration of a novel object. Consistent 
with the role of cortico-accumbal synchrony in memory 
and motivation, these neurophysiological deficits may drive 
widely reported cognitive abnormalities after sub-chronic 
NMDA antagonist treatment.

Previous studies by us and others have found impair-
ments in visual working memory, pre-pulse inhibition, and 
NOR (Grayson et al. 2015; Mandillo et al. 2003; Sood et al. 

2011). Consistent with these studies, here we observed a 
NOR impairment in PCP-pre-treated rats. Using an admin-
istration protocol, which produces reliable behavioral 
effects, we also observed a reduction in cortico-accumbal 
synchrony in PCP-pre-treated rats. These results are con-
sistent with the role of PFC in schizophrenia and with pre-
vious work showing PCP-induced mPFC deficits. Thus, 
PFC is implicated in the neuropathology of schizophrenia 
with a notable increase in pyramidal cell density found in 
schizophrenic patients’ postmortem (Cullen et  al. 2006) 
and abnormal cortical gamma-band oscillations (McNally 
et  al. 2013; Uhlhaas and Singer 2010; Woo et  al. 2010). 
In rodents, recent research shows disruption in single-unit 
responses in mPFC and abnormal synchrony after PCP 
treatment (Kargieman et al. 2007, 2012; Young et al. 2015). 
mPFC electrophysiological and neuroanatomical deficits in 
the sub-chronic PCP model suggest that abnormalities in 
a neural network encompassing mPFC may mediate novel 
object recognition deficits in this model (Castane et  al. 
2015; Young et  al. 2015). The short retention intervals 
(1 min) tested in the NOR task in the PCP model are con-
sistent with the role of mPFC in working memory (Gray-
son et al. 2007; Rosemann et al. 2010; Snigdha et al. 2011; 
Yoon et  al. 2008). Interestingly, however, when longer 
retention delays are used (5 min or more), mPFC lesions do 
not impair object recognition (Barker and Warburton 2011; 
Sutcliffe et  al. 2007). On the other hand, mPFC manipu-
lations immediately after exposure impair long-term reten-
tion of the task (Akirav and Maroun 2006) further implicat-
ing mPFC on shorter retention timescales consistent with 
the role of the structure in working memory. Furthermore, 
lesion studies in both primates and rodents implicate mPFC 
in memory paradigms (Pezze et al. 2009; Rossi et al. 2009). 
Thus, prefrontal neurophysiological deficits observed in 
the PCP model may drive the behavioral abnormalities. 
Our results extend this by suggesting that abnormalities 
in cortico-accumbal projections may mediate some of the 
deficits. Consistent with the involvement of NAc, recent 
human imaging data suggest NAc abnormalities in schizo-
phrenic patients (van Erp et  al. 2015). In rats, one recent 
study reports altered local field oscillations in NAc in the 
methylazoxymethanol acetate (MAM) neurodevelopmen-
tal rodent model of schizophrenia (Goda et  al. 2015). In 
drug-naïve animals, NAc single-unit activity increases in 
response to novelty during entry into a novel compartment 
(Wood and Rebec 2004) which is also consistent with our 
observations in the NOR task. Previous research implicat-
ing interactions between NAc and PFC in memory con-
trol supports the role NAc–PFC synchrony implicated in 
the current study. For example, a PFC–NAc disconnection 
significantly impaired auto-shaping in a stimulus-reward 
learning task, and attentional deficits in the 5-choice serial 
reaction time task produced by a PFC lesion are rescued by 
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a dopaminergic antagonist in NAc (Parkinson et al. 2000; 
Pezze et al. 2009).

The deficits in mPFC–NAc communication observed 
here may involve more distributed circuits involving poten-
tially hippocampus. Ventral hippocampal and mPFC pro-
jections to NAc show complex interactions, which were 
compromised in the MAM model, potentially involving 
ventral subiculum hyperactivity and mPFC hypoactiv-
ity (Belujon et al. 2014). NAc is a central structure for the 
integration of mPFC and hippocampal input. Interestingly, 
ventral hippocampal hyperactivity, as found in the MAM 
rodent model of schizophrenia (Lodge and Grace 2007), 
is proposed to disrupt NAc responses, providing a poten-
tial mechanism for the reduced NAc firing in the current 
study (O’Donnell et al. 1999). Also, hippocampal electrical 
high-frequency stimulation depotentiates the mPFC–NAc 
pathway (Goto and Grace 2005), and thus similarly plas-
tic responses to hippocampal hyperactivity may underlie 
the reduced mPFC–NAc synchronization observed here. 
The precise systems interactions responsible for these 
effects must await further investigation. Interestingly, the 
MAM model results in some behavioral deficits which are 
similar to those reported in PCP-pre-treated rats, includ-
ing impairments in reversal learning, and hypersensitivity 
to acute NMDA blockade (Belujon et al. 2014; Hradetzky 
et al. 2012). The involvement of distributed circuits is also 
suggested by the morphological abnormalities in limbic 
structures including anterior cingulate cortex and striatum 
observed in sub-chronic PCP-pre-treated rats (Barnes et al. 
2014; Ingallinesi et  al. 2014). Disruption in synchrony in 
the current study was observed between putative pyrami-
dal, cortical and medium spiny neurons. Other neuromod-
ulatory systems and/or striatal interneurons may mediate 
these effects. For example, prefrontal dopamine or NMDA 
blockade modulates NAc dopamine release (Del Arco and 
Mora 2008). Furthermore, NAc infusion of a dopamine 
antagonist has been found to rescue attentional deficits pro-
duced by prefrontal lesions (Pezze et  al. 2009). Another 
potential source of modulation is NAc cholinergic interneu-
rons, which modulate glutamatergic input as well as dopa-
mine release in striatum (Gonzales and Smith 2015; Sofuo-
glu and Mooney 2009).

We also observed an increase in neuronal firing in mPFC 
and NAc shell associated specifically with novel object 
exploration in vehicle-treated animals in comparison to the 
familiar object consistent with previous studies showing 
novelty-induced activity in these structures recorded sepa-
rately (Weible et  al. 2009; Wood and Rebec 2004). Here 
this effect was abolished by PCP pre-treatment. These find-
ings further support the conclusion that aspects of mPFC 
and NAc function, specifically related to memory recogni-
tion to novel and salient stimuli, are a central component of 
PCP-induced cognitive dysfunction.

Methods

Subjects

Twelve female Lister-Hooded rats, obtained from Charles 
River (Cambridge, UK), weighing between 225 and 250 g 
on arrival were housed in pairs prior to surgery on a 12-h 
reversed light–dark cycle (lights on at 1900 h) at an aver-
age temperature of 21 °C and humidity of 40–70%. All test-
ing was carried out during the dark phase. Water and food 
(LabDiet 5LF5, PMI Nutrition Intl, Brentwood, MO) were 
freely available. The experiments were carried out under 
institutional ethics approval and appropriate project and 
personal license authority granted by the UK Home Office 
under the Animals (Scientific Procedures) Act 1986.

Phencyclidine treatment

One week after arrival, rats received pre-treatment of 
PCP (Sigma-Aldrich, Gillingham, Dorset, UK; product 
nr. P3029) (2.0  mg/kg; n = 6) or saline (n = 6), in a final 
volume of 1  ml/kg i.p. twice daily for 7 days. Following 
PCP or saline treatment, the animals were given a 1-week 
drug-free period prior to surgery. The PCP dosing regimen 
was based on previous work demonstrating robust deficits 
in exploratory and memory paradigms and neurochemical 
deficits (Grayson et al. 2015; Sood et al. 2011).

Tetrode implantation surgery

One week after PCP treatment, rats were anesthetised with 
4% v/v isoflurane (Schering-Plough) in O2, and maintained 
between 2–3%. Immediately post induction, an injection 
of glycopyrronium bromide was administered (6–8 µg/kg; 
i.m.; Anpharm, Warsaw, Poland) to reduce respiratory tract 
secretions. The animal was mounted in a stereotaxic frame 
and the head was adjusted so that lambda and bregma were 
aligned on the same horizontal plane. To prevent corneal 
desiccation, Lacri-Lube Eye Ointment (Allergan, Westport, 
Ireland) was applied to the eyes. A homoeothermic heat 
pad (Harvard Apparatus, Boston, Massachusetts, USA) was 
used to maintain body temperature between 36 and 37 °C. 
Glucose (5%, 3 ml/h, s.c.) was given via an infusion pump 
(Intec, K.D, Scientific, Holliston, Massachusetts, USA) for 
the duration of the surgery.

A scalp incision was made along the midline, the peri-
osteum was retracted, and 9–10 stainless steel anchoring 
screws (Morris Co., Southbridge, Massachusetts, USA, 
part number 0 × 1/8 flat) were affixed to the skull. A left-
side craniotomy was then performed above mPFC and NAc 
shell. Implantation co-ordinates were as follows: +3.2 mm 
AP; 0.5 mm ML; −2 mm DV for mPFC, targeting prelimbic 
cortex; and +1.2 mm AP, 1.1 mm ML; −7 mm DV for NAc 
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shell (Paxinos and Watson 1986). The medial of the two 
tetrodes per structure was targeted at these locations and 
distance between tetrode tips was minimal (~200 micron). 
The dura was incised and the tetrode array was advanced 
into the target structures using a stereotaxic holder. Two 
tetrodes were implanted in mPFC and two in NAc (Fig. 1a, 
b). Each tetrode was made of four 12  μm tungsten wires 
(H-Formvar insulation with Butyral bond coat, California 
Fine Wire Company, Brover Beach, CA) twisted together 
and heated to form a bundle. The tip of each wire was gold 
plated to reduce impedance to 150–400 kΩ. The tetrodes 
were threaded through a 0.17 mm outer diameter silica tube 
(SGE Analytical Science; Milton Keynes, UK) to increase 
stability and loaded into a microdrive (Versadrive, Neura-
lynx, Bozeman; Montana, USA) that allowed their inde-
pendent movement. A silver wire inserted into the skull 
above the cerebellum served as a ground. The tetrodes were 
sealed with paraffin wax, and the implant was built up using 
layers of light-curing dental cement (Flowable Composite, 
Henry Schein; Gillingham, UK). Antibiotic ointment (Fuci-
derm; Uldum, Denmark) was applied to the wound and the 
skin was sutured. A non-steroidal anti-inflammatory (Car-
prieve, 5  mg/kg; S.C; Norbrook Laboratories Ltd; Corby, 
UK) was administered 2–3 h before recovery and twice a 
day for 5 days post surgery. An antibiotic (Baytril, 2.5%, 
0.2  ml/kg; S.C., Bayer; Leverkusen, Germany) was given 
immediately after recovery and twice daily for 5 days after 
surgery. The animals were given a week to recover from the 
surgery before behavioral testing. Animals were handled 
daily and remained individually housed for the remainder 
of the experiment to prevent damage to the implants.

Behavioral testing

PCP-induced cognitive deficits are commonly assessed 
using the novel object recognition (NOR) paradigm (Gray-
son et al. 2015). To verify drug manipulation and explore 
neurophysiological correlates of this behavioral deficit, we 
carried out recordings during NOR testing (Fig. 3a). Seven 
days post surgery, the electrodes were slowly advanced 
approximately 50  μm into the brain on three consecutive 
days. The tetrodes were advanced a further 50 μm approxi-
mately 30 min before each recording session. Electrophysi-
ological recordings were obtained in an open-top black 
Plexiglas box (52  cm wide × 52  cm long × 40  cm high) 
placed within a sound-attenuated aluminum-plated cham-
ber. The light intensity on the apparatus floor was main-
tained at approximately 15 Lux using indirect illumination 
provided by 8 LEDs evenly spread outside the testing box. 
The NOR protocol was based on well-established param-
eters (Grayson et al. 2015) and consisted of the following: 
After extensive habituation to the test box (20 min per day 
for three consecutive days), animals first underwent a short 

pre-exposure trial (3  min). No objects were placed in the 
arena during pre-exposure. This was followed by a 3-min 
acquisition trial, and a 3-min retention trial. All trials were 
separated by a 1-min inter-trial interval during which the 
animal was placed in a familiar holding cage (20 cm wide 
× 29 cm long × 38 cm high). During the acquisition trial, 
each rat was placed in the NOR chamber and exposed to 
two identical objects: the objects used were small glass 
jars or label-stripped food cans. On the retention trial, both 
objects were removed and one was replaced with an iden-
tical familiar copy and one with a novel object. The loca-
tion of the novel object in the retention trial was randomly 
assigned for each rat. The heights of the objects were com-
parable (~10 cm) and they were heavy enough (475–500 g) 
not to be displaced by the animals. This was verified at the 
end of each session. Neurophysiological recordings were 
carried out throughout each testing trial.

All experiments were video recorded for subsequent 
behavioral analysis using a HD WebCam (1050 × 720p). 
Exploration times of each object in each trial were scored 
manually using Movie Maker (Microsoft Windows) with 
an on-screen millisecond stop watch. Video recordings 
were aligned to the neurophysiological data using a trig-
ger programmed in the software Anymaze (San Diego 
Instruments, California, USA). Animals were deemed to be 
exploring the object when the head of animal was facing it 
within 2 cm or touching it with any part of its body except 
the tail: turning around or sitting on the object was not con-
sidered exploratory behavior.

Electrophysiological recordings and data analyses

Rats were recorded during the three trials of the novel 
object recognition task (pre-exposure, acquisition, and 
retention) through a metal coil-wrapped headstage cable. 
We recorded from both PCP- and saline- pre-treated rats 
(2–4 animals/day; counterbalanced). Wideband signals 
were acquired continuously via an op-amp-based head-
stage amplifier (HST/8o50-G1-GR, 1× gain, Plexon Inc., 
Dallas, TX, USA), passed through a preamplifier (PBX2, 
1000× gain; Plexon Inc., Dallas, TX, USA) and digitized 
at 40  kHz. For spike sorting, the raw signal was band-
pass filtered, 300–3000 Hz, and spikes were sorted using 
the Matlab-based Wave_clus software to yield single-
unit spike trains (Quiroga et al. 2004). Single units were 
detected by applying a threshold of 5× signal noise. Sig-
nal noise was estimated as the median absolute deviation 
of the band-passed signal (Rey et al. 2015). Spike sorting 
was achieved with super-paramagnetic clustering using a 
single parameter (‘temperature’), where in the super-par-
amagnetic regime, clusters of a relatively large size, cor-
responding to the different single units, are captured. All 
automatic detection thresholds and sorting solutions were 
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examined individually and adjusted if needed. In addition 
to this, we inspected cross-correlograms and autocorrelo-
grams of units obtained on the same wire as well as aver-
age cluster waveforms and ISI intervals for violations of 
a refractory period. PFC–NAc population synchrony was 
calculated as the average of synchrony values obtained 
across all neuronal pairs recorded from the two struc-
tures. While cross-correlograms are one possible method 
for analyzing simultaneously recorded spike trains, their 
use as a measure of spike timing synchronization has 
been disputed by some authors (Agmon 2012; Brody 
1999). Here we applied two independent approaches to 
calculate synchrony. Firstly, we used a model-free spike 
synchronization algorithm based on counting the num-
ber of quasi-simultaneous occurrences of spikes from 
two concurrently recorded spike trains. The algorithm is 
described in detail in Quiroga et al. (2002) and the Mat-
lab code is available online at: http://www.old.fi.isc.cnr.
it/users/thomas.kreuz/Source-Code/Event-Sync.html. 
Synchronization values vary from 0 (no synchronization) 
to 1 (perfect synchronization) (Fig. 2a). The time lag used 
for detecting quasi-simultaneous occurrences is defined 
locally to allow for firing rate changes during recording 
(see Quiroga et al. 2002, Eq. 2):

The lag τij involves finding the minimum of the distances 
between a target spike ti and the following one ti+1 as well as 
the target spike ti and the preceding one ti−1 for both spike 
trains (X and Y) in a recorded pair (a total of 4 distances). 
In our sample, the median lag (across pairs and sessions) 
was equal to 25 ms. To complement this approach, we also 
calculated cross- and auto-spectrum-based spike coherence 
between PFC and NAc pairs (Halliday 2015) (Matlab code 
available online at http://www.neurospec.org). Compari-
sons between neural responses and ongoing object explo-
ration were carried out using cross-correlations between 
firing rate histograms binned over 100 ms and continu-
ous contact data scored as 0 (no contact) or 1 (for contact; 
Fig.  3b). The zero time point here refers to the center of 
the cross-correlogram between the two activity traces (i.e., 
the cross-correlation calculated at zero lag between the two 
channels). This approach essentially allowed us to measure 
the similarity between the two continuous signals (behavior 
and firing rate; compare Matlab command xcorr). A simi-
lar approach has recently been used successfully to assess 
the relationship between Purkinje cell activity and ongo-
ing licking behavior in mice (Cao et al. 2012). All analyses 
were carried out using Neuroexplorer and Matlab (Math-
Works, Natick, MA). Analyses of variance (ANOVA) and 
Wilcoxon signed-rank tests were performed using SPSS 
(IBM SPSS, Somers, NY, USA).
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