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Detecting environmental change is fundamental for adaptive behavior in an uncertain world. Previous work in-
dicates the hippocampus supports the generation of novelty signals via implementation of a match–mismatch
detector that signals when an incoming sensory input violates expectations based on past experience. While
existing work has emphasized the particular contribution of the hippocampus, here we ask which other brain
structures also contribute to match–mismatch detection. Furthermore, we leverage the fine-grained temporal
resolution of magnetoencephalography (MEG) to investigate whether mismatch computations are spectrally
confined to the theta range, based on the prominence of this range of oscillations inmodels of hippocampal func-
tion. By recordingMEG activity while human subjects perform a task that incorporates conditions of match–mis-
match novelty we show that mismatch signals are confined to the theta band and are expressed in both the
hippocampus and ventromedial prefrontal cortex (vmPFC). Effective connectivity analyses (dynamic causal
modeling) show that the hippocampus and vmPFC work as a functional circuit during mismatch detection. Sur-
prisingly, our results suggest that the vmPFC drives the hippocampus during the generation and processing of
mismatch signals. Our findings provide new evidence that the hippocampal–vmPFC circuit is engaged during
novelty processing, which has implications for emerging theories regarding the role of vmPFC in memory.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Dealing effectively with environmental change is fundamental to
adaptive behavior in an uncertain world. Failure to tolerate uncertainty
has been associated with anxiety and schizophrenia (Boelen and
Reijntjes, 2009; Broomeet al., 2007). Onemechanism for efficiently pro-
cessing information is through change detection. It would be computa-
tionally inefficient to process every aspect of incoming stimuli anew.
Instead, evidence suggests we learn patterns in our environment
(Garrido et al., 2013) enabling us to make accurate predictions about
what will happen next. We then compare these predictions with actual
information and devote resources to processing mismatches. These
mechanisms are often framed within predictive coding (Friston, 2005;
Garrido et al., 2009; Kersten et al., 2004; Rao and Ballard, 1999; Yuille
and Kersten, 2006).

Previous work has emphasized the role of the hippocampus in nov-
elty processing (Axmacher et al., 2010; Kohler et al., 2005; Kumaran and
g, The University of Queensland
alia.

. This is an open access article under
Maguire, 2006; Ranganath and Rainer, 2003; Strange et al., 1999). A
study by Kumaran and Maguire (2006) (see also Kumaran and
Maguire (2009) and Strange andDolan (2001)), showed that the hippo-
campus signals mismatch computations. In that paradigm, which we
also employed here, each trial started with a unique sequence of four
objects presented in the order ABCD. This sequence was then followed
by one of three possible orders: predictable – ABCD, mismatch –
ABDC, or unpredictable CADB. In that study, hippocampal activity was
greatest in the mismatch condition, compared to both the predictable
and unpredictable conditions – supporting the operation ofmatch–mis-
match (or comparator) computations ((Kumaran and Maguire, 2007;
Lisman and Grace, 2005; Vinogradova, 2001) – as opposed to rising
monotonically with the level of absolute associative novelty (greatest
in the unpredictable condition), as would be predicted by the operation
of a scalar familiarity-based mechanism (Brown and Aggleton, 2001;
Kumaran and Maguire, 2007).

Related research has explored modulation of hippocampal theta os-
cillations in response to environmental novelty (Chen et al., 2013;
Hasselmo and Stern, 2014; Hsieh and Ranganath, 2014). Complementa-
ry evidence in rats (Jeewajee et al., 2008) suggests theta powermodula-
tions may be more tightly linked to mismatches, rather than change
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2015.07.016&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.neuroimage.2015.07.016
mailto:m.garrido@uq.edu.au
http://dx.doi.org/10.1016/j.neuroimage.2015.07.016
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/10538119


363M.I. Garrido et al. / NeuroImage 120 (2015) 362–370
per se. Direct evidence comes from an intracranial electroencephalogra-
phy (iEEG) patient study showing enhanced hippocampal theta power
in mismatch compared to predictable trials (Chen et al., 2013).

Two key questions remain unresolved: does the hippocampus inter-
act with other brain structures duringmismatch detection?What is the
nature of these putative interactions; do hippocampal theta modula-
tions drive other brain regions, or vice versa?One key area is the ventro-
medial prefrontal cortex (vmPFC) previously suggested to play an
important role in making online predictions (van Kesteren et al.,
2012) based on pre-existing knowledge. Moreover, theta communica-
tion in fronto-hippocampal networks is critical for information flow
and memory function (Brockmann et al., 2011; Siapas et al., 2005).
Work in rats suggests that theta entrainment is driven by hippocampus
to prefrontal cortex (Siapas et al., 2005) but entrainment in the opposite
direction has also been reported (Lesting et al., 2013). To address these
questions, we used theKumaran andMaguire (2006) paradigmand lev-
eraged the wide spatial coverage and fine temporal resolution of MEG,
in combination with dynamic causal modeling (DCM) analyses of effec-
tive connectivity between brain regions.

Methods

Experimental design

Participants
Seventeen adults with normal or corrected-to-normal vision partic-

ipated in this experiment (10 female; age range: 19–48, M = 28.12,
SD = 7.22 years). Each participant gave written informed consent,
after full explanation of the experiment, according to procedures ap-
proved by the University College London Research Ethics Committee.
Participants were monetarily compensated for their time. Data from
one participant were excluded from the analysis due to excessive head
Fig. 1. Experimental design and stimuli. The stimuli was composed of quartets of objects that a
quence of four objects (ABCD) and the second presented the same four objects in one of three
objects presented in reversed order – mismatch trials (ABDC), or (3) in a reshuffled order – un
movement (more than 20 mm within an experimental block). Data
from two further participants were excluded from the DCM analysis
due to a failure of model convergence.

Stimuli
The stimuli was composed of quartets of color photos of objects that

appeared one at a time on the center of the screen for a duration of 1 s
for each picture and separated by a 200 ms centered fixation cross.
There was a 2 s centered fixation cross between each quartet. Each
trial was composed of two consecutive quartets of trial-unique objects.
The first quartet consisted of a sequence of four objects (ABCD) and the
second quartet presented the same four objects in one of three possible
orders: (1) in the same order – predictable trials (ABCD) (2) with the
last two objects presented in reversed order – mismatch trials (ABDC)
or (3) completely reshuffled – unpredictable trials (CADB or BDAC –
see Fig. 1). The stimuli and task parameters are described in further
detail elsewhere (Kumaran and Maguire, 2006). The experiment
encompassed 3 blocks each lasting 15 min with 2 short breaks in be-
tween, which yielded a total of 300 trials per participant, 100 trials per
condition. In five out of seventeen participants we could only retain
for analysis 2 out of 3 blocks due to excessive head movement (more
than 20 mm) in one of the blocks.

Task
Participants were told to look at the sequences of pictures and press

a button, as fast as possible, if the same object appeared twice in a row
(1-back task) within (and not between) trials. Participants were told
that trials were composed by quartets of objects. Target trials – where
objects appeared twice in a row – were excluded from the analysis.

Stimuli delivery and task protocol were programmed in MATLAB,
using the Cogent 2000 toolbox (http://www.vislab.ucl.ac.uk/cogent.
php).
ppeared one at a time on the center of the screen. The first presentation consisted of a se-
possible orders: (1) in the same order – predictable trials (ABCD), (2) with the last two
predictable trials (CADB or BDAC).

http://www.vislab.ucl.ac.uk/cogent.php
http://www.vislab.ucl.ac.uk/cogent.php
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MEG data acquisition and pre-processing

MEG recordings were performed with a CTF 275-channel whole-
head system, with 274 functioning second-order axial gradiometers ar-
ranged in a helmet shaped array. We attached three coils to the fiducial
points (nasion, and left and right preauricular), so that we could contin-
uously monitor the head’s position of each participant with respect to
the MEG sensors. Data were collected at a sampling rate of 600 Hz,
were filtered with a bandpass between 0.2 and 20 Hz, and down-
sampled to 200 Hz. Epochs encompassed data recorded from 400 ms
before to 4600 ms after trial onset. Co-registration and the forward
model were computed for each experimental block using a single-
shell headmodel (Nolte, 2003) and data were then concatenated across
blocks for each participant. All pre-processing and subsequent analysis
were carried out using the SPM8 package (Litvak et al., 2011) available
at http://www.fil.ion.ucl.ac.uk/spm/.

Source space estimates

The linearly constrained minimum variance (LCMV) beamformer
spatialfiltering (VanVeen et al., 1997)was used tomake volumetric im-
ages of power change between conditions. We used the spatial filtering
algorithm described in (Sekihara et al., 2004) as implemented in SPM.
This was done by building a single covariance matrix for each of the
bands of interest (4–8, 9–12 and 13–20 Hz) based on the data from all
three conditions (predictable, mismatch, and unpredictable). The time
window used for this computation was either whole temporal window
in a trial [0–4.6 s] or the time window after the mismatch [2.2–4.6 s],
i.e., the post-violation period. In our post-violation analysis we included
both the third and fourth objects in order to provide a larger number of
B

A

Fig. 2. Theta activity reconstruction in the whole-time window. Hippocampal theta is induced
trial length [0–4.6 s] (i.e., objects A, B, C, and D) displayed at p b 0.001 uncorrected, and overlaid
by taking into account anatomical masks for the hippocampus according to prior work (Kumara
icant effect in the left hippocampus. B. Contrast betweenmismatch and unpredictable condition
pocampus is consistentwith the expecteddecrease inMEG spatial resolution due to low sensitiv
of around ±5 mm (Singh et al., 1997).
data points and hence increase the reliability of the beamformer esti-
mates. For each of three bands and time windows this gave a set of
beamformer weights mapping theMEG channels to a 5 mm volumetric
grid. These weights were then used to produce first level contrast im-
ages of the (weight normalized) power differences between conditions.
The contrasts taken to the second level consisted of the effect of
(1) change detection, i.e., mismatch versus predictable (2) mismatch
computations, i.e., mismatch versus unpredictable conditions.

Second-level statistical analysis

At the second level we performed F-contrasts on the single subject
contrast images for those volumes constructed based on data from the
whole temporalwindow in a trial [0–4.6 s] (Fig. 2) and then considering
the data in the time window after the mismatch [2.2–4.6 s] (Fig. 3).
Statistical maps are displayed at p b 0.001 uncorrected, with spatial ex-
tent threshold of zero (Figs. 2–4). Given that this exact paradigm has
been employed on a previous fMRI study that yields activity in the left
hippocampus and left vmPFC for mismatch computations (Kumaran
and Maguire, 2006), we had good reasons to assume, a priori, that
these areas would also be active here. Hence, we performed small vol-
ume corrections (SVC) for both left hippocampus and left vmPFC
(Brodmann area 11, BA11) using anatomical masks defined within
the SPM Anatomy toolbox v1.8 (Eickhoff et al., 2005), and report
peak-level FWE-corrected statistics at p b 0.05. When using a mask
including both left hippocampus and left vmPFC we use set level statis-
tics p b 0.01.

Previous fMRI work shows that mismatch computations are associ-
ated with increased activity in the hippocampus (Kumaran and
Maguire, 2006). However, the picture is less clear with induced theta
by mismatch sequences. F-contrasts for reconstructed theta brain activity over the whole
on a canonical T1-weightedMR image. Correction for multiple comparisonswas achieved
n andMaguire, 2006). A. Mismatch versus predictable contrast shows a marginally signif-
s revealed left anterior hippocampus. Note that the localization of these effects to the hip-
ity to deep sources (Hillebrand and Barnes, 2002) and typical levels of co-registration error

http://www.fil.ion.ucl.ac.uk/spm/


Fig. 3. Theta activity reconstruction in the post-violation period. Hippocampal theta induced in the post-violation period. F-contrasts for reconstructed theta brain activity over the post-
violation period [2.2–4.6 s] (after the third event in a trial, objects D and C) displayed at p b 0.001 uncorrected, overlaid on a canonical T1-weighted MR image. A. Mismatch versus pre-
dictable contrast revealed left anterior hippocampus B. Mismatch versus unpredictable contrast revealed left posterior hippocampus (see text for details). C. In addition to the hippocam-
pus, mismatch versus predictable contrast revealed ventromedial prefrontal cortex (vmPFC).
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oscillations, which may increase (Axmacher et al., 2010) or decrease
(Duzel et al., 2010) with novelty. For this reason we adopted a more
conservative analysis strategy using F-contrasts, instead of the more
Fig. 4. Sequence novelty and prediction violation. Anterior hippocampal theta induced in the po
for the mismatch vs. unpredictable contrast (right).
widely used T-contrasts. Nevertheless, having computed the T-maps,
it is clear that these theta changes do actually correspond to increases
(and not decreases) for the mismatch condition.
st-violation period formismatch versus predictable (left), and posterior hippocampal theta
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Bayesian model selection
The four estimated DCMs were compared statistically across partic-

ipants using a random-effects Bayesian model selection (BMS) ap-
proach (Stephan et al., 2009).

DCM for phase coupling

To study the nature of hippocampal–prefrontal interactions in the
theta regimewe used DCM for phase-coupled data. DCM for phase cou-
pling (Penny et al., 2009) is an extension of the DCM framework (Chen
et al., 2008; David et al., 2006; Friston et al., 2003; Moran et al., 2009) to
accommodate the analysis of data coupled in phase and uses a weakly
coupled oscillator model to describe the dynamics of phase changes in
a network. With this model-based connectivity approach it is possible
to test hypotheses of master–slave relationships or mutual entrainment
between regions in a given frequency regime. Here we investigated the
entrainment of hippocampus and the vmPFC in the theta band (4–8Hz).
We tested four different hypotheses with four corresponding 2-region
network models: (1) hippocampus drives prefrontal cortex (Hipp →
vmPFC), (2) prefrontal cortex drives hippocampus (vmPFC → Hipp),
(3) hippocampus and prefrontal cortex are mutually entrained
Fig. 5. Dynamic causal modeling. Dynamic causal modeling for phase coupling suggests that vm
drives vmPFC, (2) vmPFC drives Hipp, (3) vmPFC and Hipp drive each other, and (4) vmPFC an
cillations for mismatch vs. unpredictable are caused by vmPFC driving hippocampus.
(Hipp↔ vmPFC), and (4) hippocampus and prefrontal cortex do not in-
teract (Fig. 5). Left hippocampus (x, y, z=−34,−18,−12) and vmPFC
(x, y, z = −10, 24, −30) nodes were defined on the basis of the SPM
peaks resulting from the contrast between mismatch and predictable
conditions in the post-violation period as shown in Fig. 3. We modeled
data in the period of−50 to 4600ms andused an equivalent current di-
pole forward spatial model.
Results

In this paper we used MEG to investigate oscillatory activity in the
hippocampus while participants incidentally viewed sequences of ob-
jects that were either presented in exactly the same temporal order as
previously (ABCD – predictable condition), an entirely different tempo-
ral order (e.g. CADB – unpredictable condition) or, a mismatch condi-
tion (ABDC). We used LCMV beamformer to reconstruct images of
theta (4–8 Hz), alpha (9–12 Hz), and beta (13–20 Hz) oscillatory source
activity for each of the three conditions and then performed planned
contrasts betweenmismatch andpredictable, andmismatch and unpre-
dictable conditions.
PFC drives hippocampal theta activity. Models considered that: (1) hippocampus (Hipp)
d Hipp are disconnected. Bayesianmodel selection (RFX) revealed that enhanced theta os-
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Source analysis—whole time window

First, we examined whether our results replicated the fMRI results
reported by Kumaran and Maguire (2006). We did this by analyzing
the entire trial, that is, the time periodwhen the object quartet was pre-
sented. Notably, whereas the original fMRI study investigated the pro-
file of hippocampal BOLD signals across the three experimental
conditions, here we contrasted beamformed images of source recon-
structed theta oscillatory activity between conditions. We found mar-
ginally significant differences in the anterior hippocampal theta
(peaking at x, y, z = −18, −10, −12, p b 0.055 FWE-corrected) for
the mismatch versus predictable (Fig. 2A) and for the mismatch versus
unpredictable (Fig. 2B, peaking at x, y, z = −30, −22, −24, p b 0.029
FWE-corrected) conditions.We confirmed the localization of these clus-
ters with the Anatomy toolbox v1.8 (Eickhoff et al., 2005). The latter
cluster was assigned to the left hippocampal formation (with probabil-
ity of 40% to CA and 10% to subiculum).We note however that given the
smoothness of the MEG images at this depth (Barnes et al., 2004; Gross
et al., 2003) and other factors such as co-registration error and indeed
different atlas labeling scheme (such as AAL) we cannot rule out
that the source derives from an adjacent structure such as the
parahippocampus. Note that by contrasting mismatch with unpredict-
able trials we show that the hippocampus is sensitive specifically to pre-
diction violations, and not to sequence novelty per se, a factor present in
both of these conditions (see also Fig. 4). Further, these results are con-
sistentwith the fMRI results for this task (Kumaran andMaguire, 2006),
despite the expected decrease in MEG spatial resolution at this depth
(Hillebrand and Barnes, 2002) and typical levels of co-registration
error of around ±5 mm (Singh et al., 1997).

Crucially, effects in the hippocampuswere spectrally confined to the
theta band with no significant effects identified in other frequency
bands. Analysis in the remaining frequency bands revealed only an iso-
lated cluster in the left cerebellum, relating to power in the alpha fre-
quency range, for the mismatch versus unpredictable contrast (p b

0.001, uncorrected). Given that this effect does not survive our criteria
for statistical significance (seeMethods) and in the absence of an a priori
hypothesis about alpha activity in the cerebellum, we do not consider
this further. Likewise it is hard to infer on potential cerebellum and tha-
lamic sources encompassed by the larger clusters shown in Fig. 2A. This
contrasts with the principled use of a priorimasks for the hippocampus
given the prior evidence drawn from independent data reported in
Kumaran and Maguire (2006).
Source analysis—post-violation period

The fine temporal resolution afforded by MEG (compared to fMRI)
permitted an analysis that isolated effects of interest to the time win-
dow following the criticalmismatch event: i.e. at the 3rd object. Accord-
ingly, we performed the same contrasts considering a smaller time
window that encompassed the activity elicited by the third and fourth
stimuli in each trial (i.e. “post-violation” period). As in the previous
analysis, we found significantly greater theta power in the mismatch
condition as compared to the predictable condition in the anterior hip-
pocampus (x, y, z = −34, −18, −12, p b 0.028 FWE-corrected, see
Fig. 3A). When we contrasted the mismatch and unpredictable condi-
tion in this post-violation analysis, we identified increased theta
power in a region consistent with localization in the posterior hippo-
campus (x, y, z = −24, −40, −6, p b 0.022 FWE-corrected, see
Figs. 3B and 4). Again, by contrasting mismatch with unpredictable tri-
als we were able to demonstrate that the hippocampus is sensitive spe-
cifically to prediction violations, and not to sequence novelty per se. In
addition to the significant hippocampal effects, we found significant
theta changes in the vmPFCwhen comparing themismatch and thepre-
dictable condition (x, y, z=−10, 24,−30, p b 0.042 FWE-corrected, see
Fig. 3C, cf. Kumaran and Maguire (2006)).
Connectivity analysis—DCM for phase coupling

Motivated by the increases in theta power in the hippocampus and
vmPFC in the mismatch, as compared to predictable conditions, we
next probed the existence and nature of dynamic interactions between
these two brain regions. To do this, we directly compared four different
connectivity models (see Fig. 5). The two-areamodels were built on the
basis of two equivalent current dipoles placed at the peak locations of
the hippocampus (Hipp, x, y, z = −34,−18, −12) and the ventrome-
dial prefrontal cortex (vmPFC, x, y, z=−10, 24,−30), as determined in
the mismatch versus predictable contrast that resulted from source re-
construction images in the post-violation period. The first model tested
the hypothesis that Hipp drives theta oscillations in vmPFC. The second
model tested the opposite, that vmPFC drives Hipp. The third model
tests the hypothesis that vmPFC and Hipp are mutual entrained,
i.e., they drive each other through reciprocal connections. The fourth,
or null, model assumed no dynamic interactions through theta oscilla-
tions between vmPFC and Hipp. We tested these models using DCM
for phase coupling (see Methods) and used RFX Bayesian Model Selec-
tion to determinewhich of thesemodels best explained the data. In con-
trast to what we had predicted – based on computational models that
propose that the hippocampus performs the initial match–mismatch
computations (for reviews see Kumaran and Maguire (2007); (Lisman
and Grace, 2005)) – we found that the vmPFC drove hippocampal
expression of theta (vmPFC → Hipp) when comparing both mismatch
versus predictable conditions (expected probability = 0.5; exceedance
probability = 0.81) and mismatch versus unpredictable conditions
(expected probability = 0.54; exceedance probability = 0.91).We per-
formed a further statistical analysis using a binomial test to determine
the likelihood of obtaining the winning model at the group level,
under the null hypothesis that each of the 4 models was equally likely.
This test computes the binomial probability density function for a
given number of successes, s, in a given number of independent trials,
N, where the probability of success in any given trial is P. Here,
s successes correspond to the number of participants for whom
vmPFC → Hipp is the best model, N is the total number of participants,
and P is the probability of each model, m, under the null hypothesis,
i.e., P = 1/mN. We found that vmPFC drove Hipp with p-value =
0.0018 and p-value=0.0007 for the contrastsmismatch versus predict-
able and mismatch versus unpredictable, respectively.

Discussion

In this paperwe leveraged awide spatial coverage and fine temporal
resolution of MEG to investigate the role of hippocampal oscillations in
detection of prediction violations or mismatch computations. Our data
reveal that mismatch computations are spectrally confined to the
theta band and spatially restricted to the hippocampus and the
vmPFC, a region to which the hippocampus has direct anatomical con-
nections (Cavada et al., 2000; Mackey and Petrides, 2010). Further, we
show that sequence novelty evokes theta entrainment driven by influ-
ences from ventromedial prefrontal cortex to the hippocampus. Our
findings highlight the dynamics of a neural circuit that operates during
the automatic (i.e., task irrelevant) detection of mismatches in the envi-
ronment, thereby providing evidence of a new function for the hippo-
campal–vmPFC circuit in cognition. Moreover, these findings help to
constrain evolving theories concerning the complementary roles of
the vmPFC and hippocampus in memory.

It may seem surprising that we useMEG tomake claims about a sub-
cortical source, such as the hippocampus. However, a growing number
of empirical papers highlight source activity detected usingMEG as orig-
inating fromdeep structures such as the hippocampus (Attal et al., 2007;
Cornwell et al., 2012; Cornwell et al., 2008; Guitart-Masip et al., 2013;
Poch et al., 2011; Quraan et al., 2011; Tesche and Karhu, 2000). These
empirical findings are corroborated by theoretical work demonstrating,
in anatomically realistic simulations, that activity in deep brain regions



368 M.I. Garrido et al. / NeuroImage 120 (2015) 362–370
such as hippocampus and amygdala can be captured using MEG (Attal
and Schwartz, 2013). This is rendered feasible by higher current densi-
ties generatedwithin these deep areas compared to theneocortex, a fea-
ture that helps compensate for a greater distance to the sensors.

Previous neuroimaging data demonstrate the human hippocampus
acts as an associative mismatch detector during the processing of
novel arrangements of sequences of events (Kumaran and Maguire,
2006). The present demonstration that theta power in the hippocampus
is significantly greater in the mismatch condition, as compared to the
unpredictable and predictable conditions is consistentwith these previ-
ous results. Interestingly, a recent study showed that hippocampal
theta, measured by iEEG, is enhanced in amismatch compared to a pre-
dictable condition (Chen et al., 2013). While this result complements
the findings we nevertheless draw attention to two potential caveats
in relation to Chen et al. (2013). First, the iEEG recordingswere conduct-
ed in patients with epilepsy whichmakes it difficult to exclude the pos-
sibility that pathological changes in the hippocampus or medication-
related effects could have contributed to the results (though see
Quiroga (2012). Second, in the iEEG study, while the amplitude of hip-
pocampal theta on unpredictable trials fell between that observed for
predictable and mismatch trials, this effect did not reach statistical sig-
nificance. Our results, therefore, represent the first demonstration that
hippocampal novelty signals in response tomismatches are linked to in-
creases in hippocampal theta power in healthy humans.

It is interesting to note one point of discrepancy between the current
results and the previous fMRI study (Kumaran andMaguire, 2006). Here
we demonstrate that a posterior region of the hippocampus exhibited a
robust increase in theta power in themismatch condition, as compared
to the unpredictable condition. Interestingly, this posterior hippocam-
pal finding was only identified in the post-violation (and not whole)
time window analysis, a type of analysis for which MEG is particularly
suited, given its finer temporal resolution (in contrast to fMRI). It is
worth noting that no significant increase in posterior hippocampal
theta power was observed when the mismatch condition was
contrasted with the predictable condition in the Kumaran and
Maguire (2006), or in the iEEG study using the same paradigm (Chen
et al., 2013) where increases in theta power in the mismatch condition
were confined to the anterior hippocampus. We suggest one possible
explanation for an isolated increase in theta power in themismatch ver-
sus unpredictable contrast and not in the mismatch versus predictable
contrast that draws on ideas related to functional segregation of novel-
ty/familiarity detection along the anterior–posterior axis of the hippo-
campus (e.g. (Poppenk et al., 2013; Strange et al., 2014). We think it is
conceivable that posterior hippocampus might be engaged by predic-
tion violations evoked by the mismatch condition (and not the unpre-
dictable), but also by sequence familiarity in the predictable condition
(i.e. hence accounting for the absence of a significant difference be-
tween mismatch and predictable conditions).

A key aspect of our findings is evidence that vmPFC also signals
mismatches through increases in theta power, indicating that the
hippocampus and vmPFC function as a circuit. This result is highly con-
sistent with the likely existence of monosynaptic connections between
the hippocampus and orbitofrontal cortex/neighboring vmPFC (Mackey
and Petrides, 2010). Over recent years, multiple lines of evidence have
highlighted the importance of this circuit in supporting a wide range
of cognitive processes – including autobiographical memory (e.g.
(Bonnici et al., 2012); Maguire (2014); (Nieuwenhuis and Takashima,
2011)), imagination (Hassabis et al., 2007), spatial navigation (Doeller
et al., 2008)), goal-directed decision making (Roy et al., 2012),
schema-based memory formation (van Kesteren et al., 2012) as well
as constituting part of the “so-called” default network active during
resting states (Fox et al., 2005). Further, in rodents phase locking – or
entrainment - of hippocampal and medial PFC neurons has been
shown to be an important predictor of behavioral success on a given
trial, highlighting the importance of tightly coupled neural activity be-
tween these two brain structures (Hyman et al., 2011; Lesting et al.,
2013; Siapas et al., 2005) (Lesting et al., 2013). It has been difficult to
achieve a unifying hypothesis that can accommodate such a diverse
array of functions for this hippocampal–vmPFC circuit. While amajority
of previous human studies demonstrate engagement of a hippocampal–
vmPFC circuit during goal-directed cognitive tasks (autobiographical
memory recall, decision making), our data demonstrate that this circuit
is automatically recruited during mismatch detection thereby suggest-
ing that interactionswith the vmPFC are a fundamental aspect of hippo-
campal processing, regardless of task/goal relevance.

A surprising aspect of our effective connectivity results is that the
best fitting model involved a circuit in which signals in vmPFC drove
those in the hippocampus in the theta regime. Theta entrainment of
hippocampus and prefrontal cortex is thought to play an important
role in memory formation and error detection (Hyman et al., 2011;
Lisman and Grace, 2005). However, its mechanisms at the network
level have received much less attention. Here, we used a model-based
connectivity approach (DCM for phase coupling) to investigate the
mechanisms and directionality of such entrainment. To our surprise
we found that the vmPFC drove hippocampal theta during a mismatch.
This finding is opposite to that of Siapas et al. (2005) and Brockmann
et al. (2011) who found that theta oscillations in the hippocampus pre-
ceded medial prefrontal cortex in the rat. In humans, it has been sug-
gested that mutual theta entrainment occurs, although stronger in the
HIPP → PFC than in the PFC → HIPP direction (Anderson et al., 2010).
However, the latter study afforded only a small sample of 3 patients
with epilepsy. On the other hand, several studies have found evidence
that prefrontal signals may precede hippocampal activity: Lesting
et al. (2013) in the context of fear extinction, Murty and Adcock
(2013) under conditions when a motivating cue precedes expectancy
violations, and Brincat and Miller (2015) in a paradigm where non-
human primates learnt non-spatial associations in a relatively gradual
fashion (e.g. over ~50 trials) during simultaneous lateral PFC and hippo-
campus recording. In the latter study, errors induced increased theta os-
cillations that were driven by PFC to the hippocampus. Further, and as
noted in the Introduction, the ventromedial prefrontal cortex has been
previously suggested to play a role in the formation of online predic-
tions (van Kesteren et al., 2012). Based on this hypothesis and the
data cited above (e.g. Brincat and Miller (2015)), it is possible that our
findings reflect the formation of online predictions by the ventromedial
prefrontal cortex that are compared to incoming stimuli through mis-
match computations, or detection of prediction violations, in the hippo-
campus. It is worth noting, however, that such has a function for the PFC
has typically been proposed in the context of existing knowledge (i.e.
“schema”; van Kesteren et al. (2012) or when associative learning oc-
curs overmultiple trials (Brincat andMiller, 2015) –whereas the object
sequences in this study were trial-unique and therefore arbitrary (i.e.
unrelated to pre-existing knowledge). While our data provide evidence
for the prefrontal cortex driving hippocampus in the theta regime, we
believe further work is needed to clarify this surprising observation as
well as conflicting findings pertaining to the wider literature.

In conclusion, we show that mismatch signals are expressed in hip-
pocampus and vmPFC, and that these signals are spectrally confined to
the theta frequency band. Using effective connectivity analyses (DCM)
we provide evidence that the hippocampus and vmPFC operate as a
functional circuit during mismatch detection. Surprisingly, our data in-
dicate that the vmPFC exerts a dominant directional influence on the
hippocampus during mismatch detection. Our findings draw attention
to a need to broaden current theories that focus on the contribution of
the vmPFC to schema-guided memory formation, so as to inform a
more unifying account of the function of the hippocampal–vmPFC
circuit.
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