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Abstract: The importance of extracellular vesicles (EVs) as signaling mediators has been emphasized
for several pathways with only limited data regarding their role as protective messages during
oxidative stress (OS). The ocular drainage system is unique by being continuously exposed to OS
and having a one-way flow of the aqueous humor carrying EVs taking role in glaucoma disease.
Here, we aimed to examine the ability of EVs derived from the non-pigmented ciliary epithelium
(NPCE)—the aqueous humor producing cells exposed to OS—to deliver protecting messages to the
trabecular meshwork (TM)—the aqueous humor draining cells—a process with significance to the
pathophysiology of glaucoma disease. EVs extracted from media of NPCE cells exposed to non-lethal
OS and their unstressed control were incubated with TM cells. The effects of EVs derived from
oxidative stressed cells on the activation of the nuclear factor erythroid 2-related factor 2-Kelch-like
ECH-associated protein 1 (Nrf2-Keap1), a major OS pathway, and of the Wnt pathway, known for
its role in primary open-angle glaucoma, were evaluated. EVs derived from oxidized NPCE cells
significantly protected TM cells from direct OS. The TM cells uptake of EVs from oxidized NPCE
and their cytosolic Nrf2 levels were significantly higher at 8 h post-exposure. EVs derived from
oxidized NPCE cells significantly attenuated Wnt protein expression in TM cells and activated major
antioxidant genes as measured by qRT-PCR. TM cells exposed to EVs derived from oxidized NPCE
cells exhibited significantly lower OS and higher super oxide dismutase and catalase activity. Finally,
we were able to show that carbonylated proteins and products of oxidized protein are presented
in significantly higher levels in EVs derived from oxidized NPCE cells, supporting their suggested
role in the signaling process. We hypothesize that these findings may have implications beyond
understanding the pathophysiology of glaucoma disease and that transmitting signals that activate the
antioxidant system in target cells represent a broad response common to many tissues communication.

Keywords: extracellular vesicles; exosomes; primary open-angle glaucoma; trabecular meshwork;
non-pigmented ciliary epithelium; OS; Nrf2-Keap1

1. Introduction

Communication mediated by extracellular vesicles (EVs) has been shown to be part of tissue
and organ general homeostasis and plays a significant role during pathologies. Oxidative stress
(OS) due to imbalance between cell oxidant exposure and cell antioxidant capacity plays a pivotal
role in determining cell fate. It is accepted among the scientific community that redox balance is
one of the tightly controlled homeostasis parameters resembling physiological pH levels control.
Local changes in OS are responded by corresponding changes in antioxidant capacity of the cells
and tissues. The cellular defense mechanisms against OS include low molecular weight antioxidants
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and antioxidant enzymes. Cells are continuously exposed to OS by reactive oxygen species (ROS)
leakage from the mitochondrial cellular respiration. Some degree of pro-OS is required to maintain
physiological homeostasis, but uncontrolled elevated oxidative conditions might be cell harmful.
One of the key redox regulating systems allowing cells to respond to OS is the Nrf2-Keap1 pathway.
Nrf2 is an intracellular transcription factor that regulates the expression of genes encoding antioxidant
enzymes, low molecular weight antioxidants, anti-apoptotic proteins, and drug transporters. Under
normal condition, Nrf2 is usually degraded in the cytoplasm by interaction with Keap1 inhibitor as
an adaptor for ubiquitination factors. However, high amount of ROS activates tyrosine kinases to
dissociate Nrf2-Keap1 complex, Nrf2 translocate to the nucleus where a coordinated activation of
cytoprotective gene expression takes place [1].

OS has been implicated in the major sight deteriorating diseases namely: aged macular
degeneration, glaucoma, and cataracts. Glaucoma and cataracts are directly linked to OS morphologic
and to physiologic alterations in the Aqueous humor (AqH) pathway in aging and glaucoma [2].
Continuous exposure to UV light leads to excessive production of ROS that was attributed to cataracts [3]
and primary open-angle glaucoma (POAG) [4]. The outer segment is partially protected by antioxidant
enzymes and low molecular weight antioxidant presented in the AqH and in the ocular drainage
tissues [5–7]. Changes in the AqH reducing capacity were reported in a rabbit model of POAG [8,9].

Glaucoma is a heterogeneous group of diseases, characterized by retinal and optic nerve
degeneration, resulting in progressive loss of visual field and irreversible blindness if left untreated [10].
POAG is a leading cause of blindness with no known cure [11]. AqH is the optically clear fluid
supplying the avascular tissues with oxygen, nutrients, antioxidants as well as carrying out waist
products. AqH was reported to mediate mitogen-activated protein kinase signals, phosphatase and
matrix metalloproteinases activation in TM cells [12,13]. AqH is produced by the non-pigmented
ciliary epithelium (NPCE) of the ciliary processes and it has been hypothesized to convey signaling
message between the ciliary epithelium tissue and the TM [14]. The cellular mechanism responsible
for cell-cell communication has remained an enigma.

Recently, we were able to show that EVs released by the NPCE can modulate the Wnt/β-catenin
signaling pathway in the TM cells in vitro [15]. EVs known as exosomes are nano-sized lipid
bilayer vesicles that are released from cells upon fusion of an intermediate endocytic compartment,
the multivesicular body (MVB), with the plasma membrane. This liberates intraluminal vesicles
into the extracellular milieu. EV cargo includes nucleic acid content such as small RNAs (mRNA,
miRNA, tRNA, rRNA and other) and ssDNA [16]. In addition, many proteins and lipids [17] were
found in EVs, some of them common to many EVs and other unique or related to physiological
conditions. Extensive research during recent years revealed that EVs participate in many biological
processes, for example: tissue signaling [18], metastasis spreading [19], immune response [20] and
wound healing [21]. Recently, Klingeborn et al. published a comprehensive review of EV roles in
normal and diseased eye [22].

The ability of EVs to carry protective signals following OS has been described [23–25]. Recently,
R.M. Ramirez et al. summarized the role of microvesicles in ROS scavengers and producers [24].
In the ocular system, a couple of papers described the consequence of retinal pigment epithelium
cells exposure to OS by EV-mediated signals [26,27]. Combining the present knowledge about the
ocular outer segment exposure to OS in POAG and the role of EVs in signaling communication,
we hypothesized that EVs derived from oxidative stressed ocular tissues might have a role in the ocular
drainage system by delivering stress signals. Therefore, we investigated whether exposure of TM
cells to EVs produced by NPCE cells under OS conditions can result in TM biology changes inducing
cell-protective mechanisms.
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2. Results

2.1. Cell Viability of AAPH-Treated NPCE Cells

NPCE cells were exposed to OS in order to find the conditions for significantly reduced NPCE
cells viability to such a degree that still enables processes related to the production and release of EVs
to remain significantly unaffected. AAPH (2,2′-Azobis(2-methylpropionamidine) dihydrochloride)
a super oxide generator was used to induce OS in NPCE cells. These cells were treated with two
concentrations (10 mM and 15 mM) of AAPH at different incubation times and the medium was
replaced 24 h thereafter. Cytotoxicity was measured by MTT assay. The results depicted in Figure 1
demonstrate a time-dependent reduction in cell survival. 15 mM AAPH for 90 min, which resulted in
a significant 20% viability reduction (p < 0.001), was chosen for the next experiments (Figure 1).
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Figure 1. Cell viability of AAPH-treated NPCE cells. Cell viability was measured by MTT assay in 
NPCE cells at 30, 60, 90 min after 15 mM AAPH treatment. Data are expressed as percent viability 
and represented by mean ± SEM. Multiple group comparisons were performed using one-way 
analysis of variance (ANOVA) followed by the post hoc Tukey’s test, and any difference in 
comparison with untreated NPCE cells was considered significant when * p < 0.05 or *** p < 0.001. 

2.2. EV Size from OS Exposed NPCE Cell  

Literature data suggested that oxidative stressed cell responded by changes in the amount of 
secreted EVs without changes in EV sizes [27]. In our research we found that the EVs from AAPH 
exposed NPCE cells have the same size as naïve NPCE cells derived EVs [105 nm and 104 nm 
respectively]. The in vitro conditions in which the cells were grown and the EVs extracted do not 
allow accurate determination of the secreted EVs concentrations and whether there is a change in 
their secretion rate following exposure to AAPH. 

2.3. Carbonylated Protein Presence in Oxidized NPCE-Derived EVs 

EVs extracted from the condition media of oxidative exposed AAPH as described in the method 
paragraph, were analyzed by spectrophotometer at 366 nm using the DNPHDNPH (2,4-
dinitrophenylhydrazine) method for carbonylated protein detection. A preliminary study in our lab 
on AAPH oxidized TM cells suggested the minimal exosome protein concentration needed for 
reliable results by this method are 0.1–0.5 mg protein (Appendix A). NPCE EVs 1.28 × 1011 particle/mL 
= 0.30 mg proteins/mL were compared to control NPCE EVs for carbonylated protein content. A 
significant increase in carbonyl content was found in oxidized NPCE EVs (Figure 2). 

Figure 1. Cell viability of AAPH-treated NPCE cells. Cell viability was measured by MTT assay in
NPCE cells at 30, 60, 90 min after 15 mM AAPH treatment. Data are expressed as percent viability and
represented by mean ± SEM. Multiple group comparisons were performed using one-way analysis
of variance (ANOVA) followed by the post hoc Tukey’s test, and any difference in comparison with
untreated NPCE cells was considered significant when * p < 0.05 or *** p < 0.001.

2.2. EV Size from OS Exposed NPCE Cell

Literature data suggested that oxidative stressed cell responded by changes in the amount of
secreted EVs without changes in EV sizes [27]. In our research we found that the EVs from AAPH
exposed NPCE cells have the same size as naïve NPCE cells derived EVs [105 nm and 104 nm
respectively]. The in vitro conditions in which the cells were grown and the EVs extracted do not
allow accurate determination of the secreted EVs concentrations and whether there is a change in their
secretion rate following exposure to AAPH.

2.3. Carbonylated Protein Presence in Oxidized NPCE-Derived EVs

EVs extracted from the condition media of oxidative exposed AAPH as described in the
method paragraph, were analyzed by spectrophotometer at 366 nm using the DNPHDNPH
(2,4-dinitrophenylhydrazine) method for carbonylated protein detection. A preliminary study in our lab on
AAPH oxidized TM cells suggested the minimal exosome protein concentration needed for reliable results by
this method are 0.1–0.5 mg protein (Appendix A). NPCE EVs 1.28 × 1011 particle/mL = 0.30 mg proteins/mL
were compared to control NPCE EVs for carbonylated protein content. A significant increase in carbonyl
content was found in oxidized NPCE EVs (Figure 2).
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Figure 2. Carbonylated protein presence in oxidized NPCE-derived EVs. Carbonylated proteins in 
control and oxidized NPCE cells (15 mM AAPH, 90 min) derived EVs were measured at 366 nm using 
the DNPH method. 1.28 × 1011 particle/mL equal to 0.30 mg proteins/mL were used. Data are 
represented by mean ± SD. Comparisons were performed by two tails t-test, and any difference in 
comparison were significant with ** p < 0.01. 
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It was previously demonstrated that human cells exposed to OS conditions react to stress by 
activating antioxidant molecules, which can be released through EVs that provide recipient cells with 
a resistance against OS [28]. Based on these findings, we determined whether treatment of TM cells 
with NPCE EVs provide protection from apoptosis induced by OS. TM cells were directly exposed 
to oxidative stress by 15 mM AAPH for 90 min and afterwards TM cells were co-cultured with EVs 
derived from oxidative stressed NPCE cells (EVs-OS) or from NPCE cells without stress (EVs-N). 
Untreated TM cells or TM cells treated with 15 mM AAPH only without EV exposure (NT TM) served 
as controls. TM cell viability following EVs treatment was determined by MTT assay. As can be seen 
in Figure 3 in TM challenged by oxidative stress (OS TM) a significant reduction in the cell viability 
was observed (p < 0.001) relative to untreated control cells. EVs-N could not avoid TM cell viability 
reduction induced by AAPH treatment. When EVs-OS were added to OS TM, the TM cell viability 
remained similar to that of untreated TM cells. These results indicate that EVs-OS protect TM cells 
from OS-induced death. 
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Figure 3. AAPH-treated TM cell viability after co-culture with NPCE EVs. TM cells were pretreated 
with AAPH (15 mM) for 1.5 h at 37 °C. Afterwards, the medium was removed and either unstressed 
NPCE EVs or stressed NPCE EVs were added to the TM culture, and the cells were cultured for 
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control and oxidized NPCE cells (15 mM AAPH, 90 min) derived EVs were measured at 366 nm
using the DNPH method. 1.28 × 1011 particle/mL equal to 0.30 mg proteins/mL were used. Data are
represented by mean ± SD. Comparisons were performed by two tails t-test, and any difference in
comparison were significant with ** p < 0.01.
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It was previously demonstrated that human cells exposed to OS conditions react to stress by
activating antioxidant molecules, which can be released through EVs that provide recipient cells with
a resistance against OS [28]. Based on these findings, we determined whether treatment of TM cells
with NPCE EVs provide protection from apoptosis induced by OS. TM cells were directly exposed
to oxidative stress by 15 mM AAPH for 90 min and afterwards TM cells were co-cultured with EVs
derived from oxidative stressed NPCE cells (EVs-OS) or from NPCE cells without stress (EVs-N).
Untreated TM cells or TM cells treated with 15 mM AAPH only without EV exposure (NT TM) served
as controls. TM cell viability following EVs treatment was determined by MTT assay. As can be seen
in Figure 3 in TM challenged by oxidative stress (OS TM) a significant reduction in the cell viability
was observed (p < 0.001) relative to untreated control cells. EVs-N could not avoid TM cell viability
reduction induced by AAPH treatment. When EVs-OS were added to OS TM, the TM cell viability
remained similar to that of untreated TM cells. These results indicate that EVs-OS protect TM cells
from OS-induced death.
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Figure 2. Carbonylated protein presence in oxidized NPCE-derived EVs. Carbonylated proteins in 
control and oxidized NPCE cells (15 mM AAPH, 90 min) derived EVs were measured at 366 nm using 
the DNPH method. 1.28 × 1011 particle/mL equal to 0.30 mg proteins/mL were used. Data are 
represented by mean ± SD. Comparisons were performed by two tails t-test, and any difference in 
comparison were significant with ** p < 0.01. 
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Figure 3. AAPH-treated TM cell viability after co-culture with NPCE EVs. TM cells were pretreated 
with AAPH (15 mM) for 1.5 h at 37 °C. Afterwards, the medium was removed and either unstressed 
NPCE EVs or stressed NPCE EVs were added to the TM culture, and the cells were cultured for 

Figure 3. AAPH-treated TM cell viability after co-culture with NPCE EVs. TM cells were pretreated
with AAPH (15 mM) for 1.5 h at 37 ◦C. Afterwards, the medium was removed and either unstressed
NPCE EVs or stressed NPCE EVs were added to the TM culture, and the cells were cultured for another
24 h. Effect of NPCE EVs on the TM cell damage induced by AAPH was determined by MTT assay and
compared to the TM cells under normal or OS conditions. Data from three independent experiments
are represented by means ± SEM. Multiple group comparisons were performed using one-way ANOVA
followed by the post hoc Tukey’s test, where ** p < 0.01, *** p < 0.001.
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2.5. The Effect of NPCE-Derived EVs on Nrf2 Levels in TM Cells

Nrf2-Keap1-ARM signaling plays a significant role in cell protection from exogenous and
endogenous stresses. In general, the transcription factor Nrf2 is bound to Keap1 in the cytoplasm
allowing basal expression of Nrf2 regulated gene. Upon cell exposure to different stressors producing
OS, Nrf2 Keap1 bond is broken allowing Nrf2 to translocate to the nucleus and activate the expression
of cyto-protective genes [29]. We tested the ability of NPCE EVs to modulate Nrf2 expression in TM
cells using immunohistochemistry and western blot analysis. Results showed that treatment with
EVs-OS clearly increased the Nrf2 staining in the TM cytoplasm and nucleus. A trend of increase
in Nrf2 expression was detected when TM cells were directly exposed to AAPH and when control
NPCE EVs were added (Figure 4A,B). Western blot results showed significant increase in the levels of
cytoplasmic Nrf2 for TM cells co-cultured with EVs-OS and cells treated with 15 mM AAPH, compared
to untreated control cells or OS TM cells exposed to EVs-N (Figure 5B,C). Although in nuclear fraction
we observed higher expression of Nrf2 protein, in TM cells co-culture with either EVs-OS or EVs-N
under oxidative stress conditions (Figure 5B,C).
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Figure 4. Immunocytochemical detection of Nrf2 in TM cells under normal or stress conditions
following exposure to NPCE-derived EVs. (A) Representative confocal images of Nrf2 staining in
untreated TM cells or TM cells co-incubated with NPCE EVs released under normal or OS conditions,
or TM subjected to OS with 15 mM AAPH for 1.5 h. TM cells were co-stained with antibody against the
cytoskeleton marker α-tubulin (green) and nuclei were stained with DAPI (blue) (B). Quantification of
Nrf2 expression level. Results are displayed as mean ± SEM of fluorescent intensity/number of cells,
where * p < 0.05, ** p < 0.01 in one-way ANOVA with post hoc Tukey’s test.
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Figure 5. Western blot analysis of Nrf2 expression in TM cells in response to NPCE EVs under basal or
OS conditions. (A) Representative Immunoblots of Nrf2 in nucleus and cytosol of either untreated TM
cells or TM cells treated with 15 mM AAPH for 1.5 h or TM cells co-incubated for 8 or 24 h with NPCE
EVs released under normal or stressed conditions. Cytosolic and nuclear proteins were separated
by centrifugation procedure, resolved by SDS-PAGE and blotted onto PVDF membrane. Nrf2 was
visualized with polyclonal antibody. Lamin and β-actin were used as loading controls (B) Densitometry
analyses of cytosolic Nrf2 and (C) Nuclear Nrf2. Data are presented as the mean ± SEM, where * p < 0.05,
** p < 0.01, *** p < 0.001 in two-way ANOVA with post hoc Tukey’s test.
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2.6. The Effect of NPCE-Derived EVs on Wnt Proteins Levels Under Stress Conditions

Oxidative stress was shown to antagonize Wnt signaling [30] and a previous study in our lab
demonstrated the ability of NPCE derived EVs to attenuate Wnt signaling pathway in TM cells [31].
Two key proteins affected were p-GSK3β and β-catenin. Here we examined these protein expressions
in TM cell under direct OS and following exposure to EVs derived from NPCE cells exposed to OS.
The results show that expression levels of p-GSK3β and β-catenin were reduced in the TM cells
co-cultured either with EVs-OS or EVs-N than untreated TM and OS TM at 8 h. However, pretreatment
with the EVs-OS more effectively attenuated the expression of Wnt proteins compared to untreated
NPCE derived EVs (Figure 6B,C).

 

 

 

 

 
Figure 6. Wnt protein expression under normal or stress conditions following exposure to NPCE-
derived EVs. Protein expression levels of β-catenin and p-GSK3β in TM cells under the treatment of 
NPCE exosomes. (A) Representative Western blots showing protein expression of β-catenin and p-
GSK3β in cell lysates from TM cells treated with NPCE stressed or normal exosomes for 8, 24 h, or 15 
mM AAPH for 1.5 h. Quantification of (B) β-catenin and (C) p-GSK3β protein levels from three 
independent experiments (n = 3). β-actin was used as internal loading control.  Data are presented as 
the mean ± SEM, where * p < 0.05, ** p < 0.01 in two-way ANOVA with post hoc Bonferroni test. 

2.7. Effect of the NPCE EVs Released Under Normal or Oxidative Stress Conditions on the Expression of 
Anti-Oxidative Genes in TM Cells 

 

8h 24h
0.0

0.5

1.0

1.5

TM + EVs-OS
TM + EVs-N

NT TM

OS TM

*
*

B

Time (hours)

Ar
bi

tr
ar

y 
un

its

8h 24h
0.0

0.5

1.0

1.5

TM + EVs-OS
TM + EVs-N

NT TM

OS TM

**
**

C

Time (hours)

Ar
bi

tr
ar

y 
un

its

Figure 6. Wnt protein expression under normal or stress conditions following exposure to NPCE-derived
EVs. Protein expression levels of β-catenin and p-GSK3β in TM cells under the treatment of NPCE
exosomes. (A) Representative Western blots showing protein expression of β-catenin and p-GSK3β in
cell lysates from TM cells treated with NPCE stressed or normal exosomes for 8, 24 h, or 15 mM AAPH
for 1.5 h. Quantification of (B) β-catenin and (C) p-GSK3β protein levels from three independent
experiments (n = 3). β-actin was used as internal loading control. Data are presented as the mean ± SEM,
where * p < 0.05, ** p < 0.01 in two-way ANOVA with post hoc Bonferroni test.
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2.7. Effect of the NPCE EVs Released Under Normal or Oxidative Stress Conditions on the Expression of
Anti-Oxidative Genes in TM Cells

Changes in Nrf2 expression and increased Nrf2 levels are expected to increase cell survival
response partially through anti-oxidative genes expression. Following TM OS and TM incubation with
NPCE EVs and oxidative stressed NPCE derived EVs major TM Nrf2 and its downstream antioxidant
genes expressions were analyzed by qRT-PCR. As shown in Figure 7, the expression levels of all five
examined anti-oxidative genes (Sod1, Sod2, Gpx1, Hmox1, and Nrf2) were significantly up-regulated
in the TM cells co-cultured with EVs-OS compared to untreated TM or TM exposed either to EVs-N or
to direct oxidative stress with 15 mM AAPH.  

 

 
Figure 7. Assessment of oxidative stress-related genes in TM cells. Total RNA was isolated from 
untreated TM cells or TM cells treated for 1.5 h with 15 mM AAPH, or TM co-incubated with either 
stressed or normal NPCE EVs, and quantitative real-time PCR was performed to measure the level of 
Sod1, Sod2, Gpx1, Hmox1, and Nrf2. The results were normalized to 18sRNA. Bars represent mean ± 
SEM of three independent experiments, where * p < 0.05, ** p < 0.01, *** p < 0.001 in one-way ANOVA 
with post hoc Tukey’s test. 

2.8. NPCE Exosomal Protective Effect from the AAPH-Induced OS 

We next examined the effects of NPCE EVs on ROS formation using DCF-DA reagent. Our 
findings revealed that both EVs-N and EVs-OS reduced the accumulation of 15 mM AAPH-triggered 
ROS in TM cells. However, TM incubated with EVs-OS showed a more marked effect on ROS 
reduction compared to EVs-N treatment (Figure 8). These results suggest that EVs-OS have protective 
effect against AAPH-induced oxidative damage. 

Figure 7. Assessment of oxidative stress-related genes in TM cells. Total RNA was isolated from
untreated TM cells or TM cells treated for 1.5 h with 15 mM AAPH, or TM co-incubated with either
stressed or normal NPCE EVs, and quantitative real-time PCR was performed to measure the level of
Sod1, Sod2, Gpx1, Hmox1, and Nrf2. The results were normalized to 18sRNA. Bars represent mean ±
SEM of three independent experiments, where * p < 0.05, ** p < 0.01, *** p < 0.001 in one-way ANOVA
with post hoc Tukey’s test.

2.8. NPCE Exosomal Protective Effect from the AAPH-Induced OS

We next examined the effects of NPCE EVs on ROS formation using DCF-DA reagent. Our findings
revealed that both EVs-N and EVs-OS reduced the accumulation of 15 mM AAPH-triggered ROS
in TM cells. However, TM incubated with EVs-OS showed a more marked effect on ROS reduction
compared to EVs-N treatment (Figure 8). These results suggest that EVs-OS have protective effect
against AAPH-induced oxidative damage.
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Figure 8. Kinetic estimation of AAPH-induced ROS generation in TM cells following incubation with
normal or stressed NPCE EVs. TM cells were pretreated with normal or stressed NPCE exosomes for
24 h, and then rinsed with Phosphate buffer saline. Subsequently, the pretreated cells were incubated
with DCFDA (2′,7′-dichlorofluorescin diacetate) for another 1 h at 37 ◦C. This was followed by the
washing step and addition of either PBS or AAPH (150 µM). ROS amounts in TM cells were quantified
with or without NPCE exosomes pretreatments and results are presented as mean fluorescence intensity
± SEM from three independent experiments. Fluorescence was determined at 15 min intervals over a
period of 3 h. The asterisks indicate significant differences between the untreated TM cells and TM
treated with NPCE stressed EVs. * p < 0.05, ** p < 0.01, in one-way ANOVA with post hoc Tukey’s test.

2.9. NPCE Effect on the Activity of Catalase (CAT) and Super Oxide Dismutase (SOD) Under Normal or
OS Conditions

CAT is one of the most important antioxidant enzymes, present in almost all aerobically respiring
organisms. The main function of CAT is decomposition of hydrogen peroxide into water and molecular
oxygen. The TM is a metabolically active tissue that has been found to contain key enzymes involved
in protecting against OS [32]. Increased CAT activity following Nrf2-Keap1 induction was reported
in many papers/reports. In our model, NPCE cell exposed to OS released EVs with the ability to
significantly induce CAT activity in TM cells. From the results shown in Figure 9A it was clear
that CAT activity was higher by 50% in TM cells co-cultured with EVs-OS relative to CAT activity
measured following exposure of TM cells to direct oxidative stress (p < 0.001) or exposure of TM cells to
EVs-N (p < 0.01) or untreated TM cells (p < 0.01). SOD is one of the most important defense enzymes,
present in the TM and has been shown to decline in an age-dependent way in normal human TM [33].
As clearly shown in Figure 9B, treatment of TM cells with NPCE EVs produced a significant increase of
20% in SOD activity compared to untreated TM (p < 0.01), oxidative stressed TM (p < 0.01) and TM
exposed to normal NPCE EVs (p < 0.01). These results demonstrate the ability of NPCE EVs-OS to
regulate the activity of CAT and SOD in TM cells.
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3. Discussion

The understanding of pathological processes in POAG has deepened in recent years so that the
involvement of OS in these processes is now well known. The ocular drainage system is exposed to
OS [34] and the AqH and TM were found to have an antioxidant defense system composed of low
molecular weight antioxidants and enzymes [33,34].

Limited publications have addressed the role of EVs as OS signal mediators. Eldh, and colleagues
showed that EVs released from mast cells exposed to OS have the capacity to communicate a protective
signal to recipient cells exposed to OS, and observed an attenuated loss of cell viability and changes in
RNA content of EVs derived from oxidative stressed cells [35]. EV cargo variation was reported under
different stresses and included miRNA, mRNA and protein modification [36]. Recently, horizontal
transfer of defense molecules from EVs to granulosa cells was demonstrated in vitro using bovine
granulosa cells. The cells exposed to OS released EVs enriched with Nrf2 mRNA and candidate
antioxidants. Subsequent co-incubation of these EVs with cultured cells could alter the cellular OS
response [28]. In addition, damage to RNA from ultraviolet light, oxidation, can result in chemical
modifications to nucleotide as well as RNA-RNA and RNA-protein crosslinking. In our hands, EVs as
a communication mediator between cells in vitro suggest a protected way for either nucleotide-based
message or proteins-based message to be transferred. The changes in EV cargo under changing
physiological condition allow dynamic response upon the circumstances.

In the present study, oxidative stressed NPCE-derived EV incubation with their target, the TM
cells, resulted in significant Nrf2 induction and downstream response, which is expressed by increased
antioxidant genes and altered protein expression, increased CAT and SOD activity. When TM cells were
treated with normal NPCE-derived EVs, none of these changes was found. Specifically, Nrf2 expression
did not change, no nucleic translocation of Nrf2 was found. Oxidative gene expression was not affected
as CAT and SOD activity did not change vs. control TM. All these together suggest that the exposure
of the NPCE cells to OS turned on the machinery in the NPCE MVB that resulted in modified NPCE
EVs carrying protective message to the TM cells.

Possible candidates for protective messages transferred by EVs might be any cargo component
including specific miRNA and siRNA, proteins, and lipids. EV mRNA content differs between EVs
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derived from cells grown under different conditions: OS or UV light and normal conditions [34].
Eldh, et al. used a commercial kit to immunoblot-oxidized protein from their experiment and presented
data that no change in carbonylated protein in EVs derived from MC/9 cells exposed to H2O2. In the
present research, we employed the DNPH method using a commonly used spectral analysis of
carbonylated protein. A preliminary experiment examining the lower threshold for the detection of
oxidized proteins by this spectral method required relatively large amounts of vesicles. Nevertheless,
it allowed us to state with certainty that these oxidized proteins are present on the membrane of the
EVs derived from oxidative exposed cells and may participate in EV communicating protective signals.
We hypothesized that oxidized lipid and nucleotide end products can also be found in these EVs.

Previous study in our lab shows some specificity of the NPCE-derived EVs toward the TM
cells. The specificity was manifested by higher NPCE-derived EV uptake by TM cells [15]. It will be
interesting to repeat this specificity assay using EVs derived from oxidative NPCE and look for OS
signals effects have some specificity or can transfer these signals to other ocular tissues and cells, in a
nonspecific manner.

The Nrf2-Keap1 pathway activation by oxidative stressed NPCE-derived EVs suggests a new
way by which intra ocular pressure might be regulated. Previously, we reported that the canonical
Wnt pathway in TM cells can be modulated by NPCE-derived EVs [15,31]. This was replicated in the
present study as shown in Figure 5. When NPCE EVs were extracted from NPCE cells exposed to
OS this Wnt signaling effect was partially diminished. We propose that under OS, similar to what
happens in POAG patients, the general homeostasis regulation of the TM resistance to AqH drainage
by NPCE EVs is altered. Changes occurring in the NPCE cells exposed to OS are translated to their EV
cargo and even to surface protein expression. As a result, modified NPCE EVs carrying stress convey
alert signals to TM cells. We can speculate that as happens in inflammation processes while acute
inflammatory response has beneficial effect, the development of a chronic situation can eventually
cause a physiological problem. Analogically, the modifications in EV cargo of oxidative exposed NPCE
cells aim to deliver a protective message to TM cells. However, continuous exposure to OS might result
in EV-mediated messages that are either not inducing enough protection or even turning to harmful
messages. Volarevic et al. suggested that mesenchymal stem cells derived EVs have the therapeutic
capacity for the treatment of eye diseases [37]. Other researchers presented different approaches,
such as engineering EVs to deliver specific miRNAs to target cells [38] or modifying parent cell EV
content by transfection [39]. The potential use of EVs or modified EVs for therapeutics and diagnosis
is being uncovered during the last year. Understanding the role of EVs in OS mediated protection will
allow interfering with the beneficial and harmful consequences of EVs transferred signals.

4. Materials and Methods

4.1. Cell Lines

TM cell line was generously donated by Alcon Research, Ltd. (Fort Worth, TX, USA) and cultured in
Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal calf serum (FBS), 2 mM l-glutamine,
100 IU/mL penicillin, and 100 µg/mL of streptomycin (all from Biological Industries, Kibbutz Beit
Ha-Emek, Israel). A human NPCE cell line was kindly provided by Dr. M. Coca-Prados (Yale University,
New Haven, CT, USA). NPCE cells were routinely maintained with the same supplements in DMEM
medium supplemented with FBS pre-depleted of EVs by overnight ultracentrifugation at 100,000× g. All
cell lines were grown in controlled environment of 5% CO2 and 95% relative humidity at 37 ◦C.

4.2. EV Extraction by Polyethylene Glycol (PEG) Precipitation

EV samples were purified from NPCE cells under both normal (EVs-N) and oxidative stress
conditions (EVS-OS) according to a PEG (Cat# 89510, Sigma, St. Louis, MO, USA)-based isolation
method [40,41] as previously described, with minor modifications. NPCE cells were plated at
5 million cells per 75 cm2 and after reaching 90% confluence, the cells were exposed for 1.5
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h 2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH)compound (Cat# 440914, Sigma,
St. Louis, MO, USA). NPCE cell-conditioned medium was aspirated and centrifuged at 1500× g for
10 min to remove cells, followed by filtration through PVDF filter (0.22 µm, Millipore, Billerica, MA,
USA) to remove large cellular debris. Precipitation solution (50% PEG8000, 0.5 M NaCl in PBS) was
added to the cleared conditioned medium (1:5 v/v, respectively), mixed by flicking the tube and
incubated overnight at 4 ◦C. After incubation, the tubes were centrifuged at 1500× g for 30 min at 4 ◦C
to acquire the pellet of EVs. The supernatant was discarded and pelleted EVs were dissolved in 500 µL
PBS for further analysis. The EVs-N were isolated from non-treated (NT) NPCE cells following the
same procedure as described above.

4.3. Tunable Resistive Pulse Sensing (TRPS)

The concentration of isolated EVs was determined by TRPS technique using qNano gold instrument
(Izon Science, UK). EVs samples were diluted in PBS buffer containing 0.05% Tween-20 (Cat#P1379,
Sigma, St. Louis, MO, USA) and passed through 0.22 µm filters to get rid of contaminating debris.
80 µL of electrolyte solution was added to bottom fluid cell and 40 µL of diluted EV suspension was
dispensed into the top fluid cell. The voltage of 0.65 V was applied, and the pressure was set at 7 mbar.
Measurements were performed with NP-150 nanopore membrane stretched to 47 mm. The system
was calibrated by polystyrene beads at a concentration of 1 × 1013 beads/mL (114 nm; Izon Science)
supplied by the qNano manufacture. A minimum of 500 translocation events for each sample were
recorded and the data analysis was performed with qNano-IZON software. The characteristics of
NPCE-derived EVs were found to be identical to those previously reported in detail [15].

4.4. Carbonyl Assay

Oxidative protein damage was quantified using the carbonyl. Briefly, 200 µL of extracted EVs at a
concentration of 1.28 × 1011 particle/mL (=0.30 mg proteins/mL) was combined with 40 µL of 10 mM
2,4-dinitrophenylhydrazine (DNPH) and 2N HCl. Samples were incubated at room temperature under
dark conditions and agitated every 15 min during a period of 60 min before being precipitated with
20% v/v trichloroacetic acid (TCA). Samples were then centrifuged for 5 min at 10,000× g to collect the
precipitated protein. The pellet was washed with 200 L of 20% TCA. Subsequently, the precipitate
was washed with 200 µL of a mixture of ethyl acetate and ethanol (1:1 v/v) to eliminate remaining
DNPH. The sample was centrifuged, and the final precipitate was dissolved in 200 µL of 6 M guanidine
hydrochloride and 50 mM phosphate buffer, and was then incubated for 25 minut at 37 ◦C. Lastly, the
products were analyzed with a spectrophotometer at a wavelength of 366 nm [30].

4.5. MTT Assay

The MTT assay, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)
reagent (Cat# M2128, Sigma, St. Louis, MO, USA) was chosen to determine the appropriate
concentration of AAPH required to induce moderate OS in NPCE cells. The cells were seeded
in 96-well plates at a density of 5 × 103 cells/well at 37 ◦C in a humidified atmosphere with 5% CO2.
Next day, the medium was removed and AAPH at different concentrations was added (10 and 15 mM)
for various periods of time (30, 60, and 90 min). After incubation, cell survival was assayed by
discarding the medium and adding 100 µL of medium containing 0.5 mg/mL MTT solution to each
well to allow the MTT to be metabolized. After 4 h, 200 µL DMSO was added to dissolve formazan
crystals. The absorbance of each sample was measured at 570 nm by a microplate reader (Model 680,
Bio-Rad, Hercules, CA, USA). The effect of oxidative stressed EV released under normal conditions on
TM cells viability following exposure to AAPH compound was further studied. TM cells (5 × 104) were
seeded in 96-well plates and grown for 24 h. The medium was removed, and the cells were incubated
with DMEM medium in the presence or absence of 15 mM AAPH. One and half-hours later, the cells
were washed with PBS and co-cultured with either EVS-N or EVS-OS for 24 h at a ratio of 1:100 (TM
cells: EVs). Thereafter, MTT assay was performed to evaluate viability of TM cells.
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4.6. Immunofluorescent Analysis of Nrf2 Expression

For visualization of Nrf2, TM cells were seeded at a density of 3 × 104 cells/well in 24-well
plates containing coverslips. Twenty-four hours later, cell medium was aspirated, and the cells were
challenged for 1.5 h with 15 mM AAPH followed by incubation with EVS-N or EVS-OS for 24 h in
DMEM medium supplemented with 10% EV-free fetal calf serum. Control cells were either treated
with 15 mM AAPH (OS TM) or left untreated. The cells were then rinsed using 0.05% PBS/Tween 20,
permeabilized using 0.5% PBS/Triton X-100 (Cat # X100, Sigma, St. Louis, MO, USA), fixed for 20 min
with 4% paraformaldehyde at room temperature and blocked with 3% bovine serum albumin (BSA) for
30 min. Immunocytochemical staining was performed for Nrf2 and α-tubulin proteins by anti-human
Nrf2 rabbit monoclonal antibody (1:200, ab62352, Abcam) and mouse anti-α-tubulin antibody (1:200,
625901, BioLegend). After overnight incubation at 4 ◦C with primary antibodies, the cells were washed
and incubated for 1 h at room temperature with appropriate secondary antibodies i.e., Alexa Fluor
488-conjugated anti-mouse IgG (1:100) or Cy3-conjugated donkey anti-rabbit IgG (1:500), both from
Jackson Immuno-Research Laboratories. Nuclear staining was achieved using mounting medium
containing DAPI (Cat #0100-20, DAPI Fluoromount-G, Southern Biotech). Images were acquired using
an Olympus FluoView confocal laser-scanning microscope.

4.7. Subcellular Fractionation and Immunoblotting

TM cells were grown in 100-mm tissue culture plates. Twenty-four hours after seeding, growth
medium was replaced with fresh DMEM medium supplemented with 10% EV-free fetal calf serum,
containing either EVS-N or EVS-OS at the suitable concentration (100-fold higher than TM cells amount).
After 8 and 24 h incubation, cell nucleus and cytoplasmic fractions were separated as previously
described (doi:10.12659/MSM.894467). TM cells were washed with PBS buffer on ice, scraped into lysis
buffer [20 mM HEPES (pH 7.4), 1 mM EGTA, 1 mM EDTA, 10% glycerol, 1 mM Na3VO4, 1 mM MgCl2,
25 mM NaF, 150 mM NaCl] supplemented with complete protease inhibitor mixture, homogenized at
25,000 rpm on a Polytron (PT 1200, Kinematica AG, Switzerland) for 1 min and centrifuged at 600× g,
15 min, 4 ◦C. The nuclear-free supernatant was further centrifuged at 20,000× g for 30 min, 4 ◦C to
collect the cytosolic fraction. The nuclear pellet was re-suspended in 0.25 M sucrose containing 10 mM
MgCl2 and protease inhibitor mixture and was laid on 0.88 M sucrose containing 0.5 mM MgCl2
and protease inhibitor mixture. The sucrose gradient was centrifuged at 2800× g for 10 min, 4 ◦C.
The nuclear pellet was re-suspended in RIPA buffer [50 mM Tris (pH 7.5), 150 mM NaCl, 1% NP-40,
0.5% deoxycholate, protease inhibitors], sonicated for 50 s (Sonicator ultrasonic processor, Misonix Inc.,
Farmingdale, NY, USA) and centrifuged again at 2800× g for 10 min, 4 ◦C. Protein concentrations were
measured using the Bradford assay (Bio-Rad Laboratories, Hercules, CA, USA). Equal amount of cell
fractions were resolved on a 10% SDS-PAGE, Western blotted and probed with Nrf2 (1:200, ab62352,
Abcam), β-catenin (1:1000, D10A8, Cell Signaling), phospho-GSK3β (1:1000, 5B3, Cell Signaling),
β-actin (1:4000, A2228, Sigma-Aldrich) and lamin B antibodies (1:1000, sc-6216, Santa Cruz).

4.8. Protein Concentration of TM Lysates

The total protein concentrations were determined according to the Bradford method, with BSA as
a standard [42]. Briefly, standard solutions were diluted with Bradford regent (Bio-Rad Laboratories,
Hercules, CA, USA), and the mixture of the two was incubated at room temperature for 5 min.
The absorbance was read at 595 nm on a spectrophotometer (Microplate reader model 680, Bio-Rad)
and then a standard curve was obtained. The samples protein level was assessed according to this curve.

4.9. Real-Time Quantitative Polymerase Chain Reaction (qRT-PCR)

Total RNA was isolated from TM cells 8 h after incubation with EVS-N or EVS-OS by using EZ-RNA
Kit (Cat# 20-400-100, Biological Industries Ltd., Beit Haemek, Israel) according to the manufacturer’s
instructions. RNA quantitation was performed by measuring the absorbance of the RNA sample
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solutions at 260 nm using a BioDrop Spectrophotometer (BioDrop, Cambridge, UK). Total RNA (1 µg)
was used for generation of cDNA with a qScript commercial kit (Quanta Biosciences, Gaithersburg,
MD, USA) in a 20-µL reaction according to the manufacturer’s protocol. Real-time PCR reactions
were conducted using Power SYBR Green Master Mix (Life Technologies) on an Applied Biosystems
Real-Time PCR 7500 system (Applied Biosystems). Thermal cycling conditions used in this study were
as follows: 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 15 s, and 60 ◦C for 1 min. The related
mRNA levels were normalized to the 18S mRNA level. Results were analyzed using 7500 Software v
2.0.4 (Applied Biosystems). The primers used in this study are listed in Appendix B.

4.10. ROS Measurements

The TM cells were plated in black 96-well plates at a density of 5 × 103 cells/well. After overnight
incubation, cells were washed with cold PBS buffer and incubated with EVS-N or EVS-OS or remained
untreated (control) at 37 ◦C in 5% CO2 incubator. Twenty-four hours after treatment, cells were further
incubated with 20 µM ROS measurements probe 2′,7′-dichlorofluorescin diacetate (DCFDA) (Cat#
D6883, Sigma, St. Louis, MO, USA) for 1 h. The solution was aspirated, and the cells washed with PBS.
This was followed by the addition of 50 µL PBS and an additional 50 µL of PBS containing 300 µM
AAPH. The fluorescence intensity of DCFDA was determined immediately at 15 min intervals over a
period of 3 h at 37 ◦C. Fluorescence were read by a microplate reader (Infinite M200, Tecan, Switzerland)
at an excitation wavelength of 492 nm and emission wavelength of 525 nm.

4.11. TM Antioxidant Enzyme Activities

For the determination of SOD and catalase (CAT), the TM cells were seeded in 6 mm sterile culture
dishes (1 × 106) for 24 h. Thereafter, the cells were co-incubated with EVs released by NPCE cells
treated with or without 15 mM AAPH. Twenty-four hours post-treatment cells were washed ×3 with
PBS buffer, scraped with rubber policeman, and pelleted by centrifugation for 5 min at 200× g, 4 ◦C.
The pellet containing TM cells was re-suspended in 50 Mm phosphate buffer, pH 7.8 and sonicated on
ice at 40% amplitude for 60 s. The SOD activity of the TM cells was measured spectrophotometrically
by using nitroblue tetrazolium (NBT) method as described by Beyer and Fridovich [43]. The reaction
mixture contained 50 mM phosphate buffer (pH 7.8), 14 mM methionine, 75 µM NBT, 4 µM riboflavin,
0.1 mM EDTA, and 10 µL extracted TM proteins. The reaction mixtures were illuminated for 10 min
and the photo-reduction of NBT (formation of purple formazan) was measured at 560 nm using
microplate reader (model 680; Bio-Rad). SOD activity was determined using a calibration curve from
1.2 to 10 SOD units/mL.

The CAT activity was measured by the modified method of Cohen et al. Fifty microliters of
extracted proteins and 800 µL of phosphate buffer (pH 7.0) were combined. The reaction was initiated
by the addition of 100 µL of the stock 60 mM H2O2, followed by gentle mixing. At 10 min, 100 µL
aliquots were withdrawn and quenched in solution containing 4.0 mL of 0.6 N H2SO4 and 1 mL of
10 mM FeSO4. The color of the products formed was developed by the addition 400 µL of 2.5 M KSCN,
and the absorbance values of the red color of ferrithiocyanate product were calorimetrically recorded at
460 nm. The standard curve of known concentrations of pure CAT was used to calculate the absolute
values of test samples.

4.12. Statistical Analysis

Experimental data are presented as the mean ± SEM. The statistical analyses were performed using
the GraphPad Prism version 5 software (GraphPad Software, Inc., La Jolla, CA, USA). Tests of significance
were conducted by one-way analysis of variance (ANOVA), followed by post hoc multiple comparison
test (Tukey—Kramer Multiple Comparison Test) and analysis of Western Blot experiments was carried
out using a two-way ANOVA followed by Bonferroni post-test. Statistical significance was considered
at p < 0.05. Carbonyl assay results were analyzed using two tails t-test, significance was considered at
p < 0.05.
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measured at 366 nm using the DNPH method. Data are represented by mean ± SD.

Appendix B

Table A1. The sequence of primers used in qRT-PCR.

Gene Forward Primer Reverse Primer

Sod1 5′-GGTGGGCCAAAGGATGAAGAG-3′ 5′-CCACAAGCCAAACGACTTCC-3′

Sod2 5′-GCTCCGGTTTTGGGGTATCTG-3′ 5′-GCGTTGATGTGAGGTTCCAG-3′

Gpx1 5′-CAGTCGGTGTATGCCTTCTCG-3′ 5′-GAGGGACGCCACATTCTCG-3′

Hmox1 5′-AAGACTGCGTTCCTGCTCAAC-3′ 5′-AAAGCCCTACAGCAACTGTCG-3′

Nrf2 5′-TCAGCGACGGAAAGAGTATGA-3′ 5′-CCACTGGTTTCTGACTGGATGT-3′

18S 5′-ATCCCTGAAAAGTTCCAGCA-3′ 5′-CCCTCTTGGTGAGGTCAATG-3′

References

1. Kobayashi, M.; Yamamoto, M. Molecular Mechanisms Activating the Nrf2-Keap1 Pathway of Antioxidant
Gene Regulation. Antioxid. Redox Signal. 2005, 7, 385–394. [CrossRef] [PubMed]

http://dx.doi.org/10.1089/ars.2005.7.385
http://www.ncbi.nlm.nih.gov/pubmed/15706085


Int. J. Mol. Sci. 2020, 21, 6105 16 of 17

2. Green, K. Free Radicals and Aging of Anterior Segment Tissues of the Eye: A Hypothesis. Ophthalmic Res.
1995, 27 (Suppl. 1), 143–149. [CrossRef] [PubMed]

3. Taylor, H.R.; West, S.K.; Rosenthal, F.S.; Munoz, B.; Newland, H.S.; Abbey, H.; Emmett, E.A. Effect of
Ultraviolet Radiation on Cataract Formation. N. Engl. J. Med. 1988, 319, 1429–1433. [CrossRef]

4. Aslan, M.; Cort, A.; Yucel, I. Oxidative and nitrative stress markers in glaucoma. Free. Radic. Biol. Med. 2008,
45, 367–376. [CrossRef]

5. Richer, S.P.; Rose, R.C. Water soluble antioxidants in mammalian aqueous humor: Interaction with UV B and
hydrogen peroxide. Vis. Res. 1998, 38, 2881–2888. [CrossRef]

6. Ferreira, S.M.; Lerner, S.F.; Brunzini, R.; Evelson, P.A.; Llesuy, S. Oxidative stress markers in aqueous humor
of glaucoma patients. Am. J. Ophthalmol. 2004, 137, 62–69. [CrossRef]

7. Saccà, S.C.; Cutolo, C.A.; Ferrari, D.; Corazza, P.; Traverso, C.E. The Eye, Oxidative Damage and
Polyunsaturated Fatty Acids. Nutrients 2018, 10, 668. [CrossRef]

8. Beit-Yannai, E.; Trembovler, V.; Solomon, A.S. Decrease in reducing power of aqueous humor originating
from glaucomatous rabbits. Eye 2007, 21, 658–664. [CrossRef] [PubMed]

9. Beit-Yannai, E.; Shmulevich, A. Does the aqueous humor have a role in mitogen-activated protein kinase
(MAPK) intracellular signaling in Glaucoma? Med. Hypotheses 2007, 68, 299–302. [CrossRef]

10. Weinreb, R.N.; Khaw, P.T. Primary open-angle glaucoma. Lancet 2004, 363, 1711–1720. [CrossRef]
11. Mousa, S.; Beidoe, G. Current primary open-angle glaucoma treatments and future directions. Clin. Ophthalmol.

2012, 6, 1699–1707. [CrossRef] [PubMed]
12. Lerner, N.; Beit-Yannai, E. Cross-Talk between Ciliary Epithelium and Trabecular Meshwork Cells In-Vitro:

A New Insight into Glaucoma. PLoS ONE 2014, 9, e112259. [CrossRef] [PubMed]
13. Shmulevich, A.; Beit-Yannai, E. Differential modulation of MAPKs in relation to increased intraocular

pressure in the aqueous humor of rat eye injected with hyaluronic acid. Curr. Eye Res. 2009, 34, 466–475.
[CrossRef]

14. Cocaprados, M.; Escribano, J. New perspectives in aqueous humor secretion and in glaucoma: The ciliary
body as a multifunctional neuroendocrine gland. Prog. Retin. Eye Res. 2007, 26, 239–262. [CrossRef]

15. Lerner, N.; Avissar, S.; Beit-Yannai, E. Extracellular vesicles mediate signaling between the aqueous humor
producing and draining cells in the ocular system. PLoS ONE 2017, 12, e0171153. [CrossRef]

16. Abels, E.R.; Breakefield, X.O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content,
Release, and Uptake; Springer: New York, NY, USA, 2016.

17. Mathivanan, S.; Simpson, R.J. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics 2009, 9,
4997–5000. [CrossRef]

18. Corrado, C.; Raimondo, S.; Chiesi, A.; Ciccia, F.; De Leo, G.; Alessandro, R. Exosomes as Intercellular
Signaling Organelles Involved in Health and Disease: Basic Science and Clinical Applications. Int. J. Mol. Sci.
2013, 14, 5338–5366. [CrossRef]

19. Azmi, A.S.; Bao, B.; Sarkar, F.H. Exosomes in cancer development, metastasis, and drug resistance: A
comprehensive review. Cancer Metastasis Rev. 2013, 32, 623–642. [CrossRef]

20. Théry, C.; Ostrowski, M.; Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol.
2009, 9, 581–593. [CrossRef]

21. Than, U.T.T.; Guanzon, D.; Leavesley, D.; Parker, T. Association of extracellular membrane vesicles with
cutaneous wound healing. Int. J. Mol. Sci. 2017, 18, 956. [CrossRef]

22. Klingeborn, M.; Dismuke, W.M.; Rickman, C.B.; Stamer, W.D. Roles of exosomes in the normal and diseased
eye. Prog. Retin. Eye Res. 2017, 59, 158–177. [CrossRef] [PubMed]

23. Arslan, F.; Lai, R.C.; Smeets, M.B.; Akeroyd, L.; Choo, A.; Aguor, E.N.E.; Timmers, L.; Van Rijen, H.V.;
Doevendans, P.A.; Pasterkamp, G.; et al. Mesenchymal stem cell-derived exosomes increase ATP levels,
decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse
remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013, 10, 301–312. [CrossRef]
[PubMed]

24. Bodega, G.; Alique, M.; Puebla, L.; Carracedo, J.; Ramírez, R. Microvesicles: ROS scavengers and ROS
producers. J. Extracell. Ves. 2019, 8, 1626654. [CrossRef]

25. Zhou, Y.; Xu, H.; Xu, W.; Wang, B.; Wu, H.; Tao, Y.; Zhang, B.; Wang, M.; Mao, F.; Yan, Y.; et al. Exosomes
released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative
stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 2013, 4, 34. [CrossRef] [PubMed]

http://dx.doi.org/10.1159/000267860
http://www.ncbi.nlm.nih.gov/pubmed/8577453
http://dx.doi.org/10.1056/NEJM198812013192201
http://dx.doi.org/10.1016/j.freeradbiomed.2008.04.026
http://dx.doi.org/10.1016/S0042-6989(98)00069-8
http://dx.doi.org/10.1016/S0002-9394(03)00788-8
http://dx.doi.org/10.3390/nu10060668
http://dx.doi.org/10.1038/sj.eye.6702353
http://www.ncbi.nlm.nih.gov/pubmed/16628237
http://dx.doi.org/10.1016/j.mehy.2006.05.067
http://dx.doi.org/10.1016/S0140-6736(04)16257-0
http://dx.doi.org/10.2147/OPTH.S32933
http://www.ncbi.nlm.nih.gov/pubmed/23118520
http://dx.doi.org/10.1371/journal.pone.0112259
http://www.ncbi.nlm.nih.gov/pubmed/25389776
http://dx.doi.org/10.1080/02713680902916090
http://dx.doi.org/10.1016/j.preteyeres.2007.01.002
http://dx.doi.org/10.1371/journal.pone.0171153
http://dx.doi.org/10.1002/pmic.200900351
http://dx.doi.org/10.3390/ijms14035338
http://dx.doi.org/10.1007/s10555-013-9441-9
http://dx.doi.org/10.1038/nri2567
http://dx.doi.org/10.3390/ijms18050956
http://dx.doi.org/10.1016/j.preteyeres.2017.04.004
http://www.ncbi.nlm.nih.gov/pubmed/28465248
http://dx.doi.org/10.1016/j.scr.2013.01.002
http://www.ncbi.nlm.nih.gov/pubmed/23399448
http://dx.doi.org/10.1080/20013078.2019.1626654
http://dx.doi.org/10.1186/scrt194
http://www.ncbi.nlm.nih.gov/pubmed/23618405


Int. J. Mol. Sci. 2020, 21, 6105 17 of 17

26. Biasutto, L.; Chiechi, A.; Couch, R.; Liotta, L.A.; Espina, V. Retinal pigment epithelium (RPE) exosomes
contain signaling phosphoproteins affected by oxidative stress. Exp. Cell Res. 2013, 319, 2113–2123. [CrossRef]
[PubMed]

27. Atienzar-Aroca, S.; Flores-Bellver, M.; Serrano-Heras, G.; Martínez-Gil, N.; Barcia, J.M.; Aparicio, S.;
Perez-Cremades, D.; Garcia-Verdugo, J.M.; Diaz-Llopis, M.; Romero, F.J.; et al. Oxidative stress in retinal
pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells. J. Cell.
Mol. Med. 2016, 20, 1457–1466. [CrossRef]

28. Saeed-Zidane, M.; Linden, L.; Salilew-Wondim, D.; Held, E.; Neuhoff, C.; Tholen, E.; Hoelker, M.;
Schellander, K.; Tesfaye, D. Cellular and exosome mediated molecular defense mechanism in bovine
granulosa cells exposed to oxidative stress. PLoS ONE 2017, 12, e0187569. [CrossRef]

29. Kaspar, J.W.; Niture, S.K.; Jaiswal, A.K. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med.
2009, 47, 1304–1309. [CrossRef]

30. Almeida, M. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting β-catenin from
T cell factor-to forkhead box O-mediated transcription. J. Biol. Chem. 2007, 282, 27298–27305. [CrossRef]

31. Lerner, N.; Schreiber-Avissar, S.; Beit-Yannai, E. Extracellular vesicle-mediated crosstalk between NPCE cells
and TM cells result in modulation of Wnt signalling pathway and ECM remodelling. J. Cell. Mol. Med. 2020,
24, 4646–4658. [CrossRef]

32. Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism
of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in
Adults. Oxidative Med. Cell. Longev. 2016, 2016, 1–23. [CrossRef] [PubMed]

33. De La Paz, M.; Epstein, D.L. Effect of age on superoxide dismutase activity of human trabecular meshwork.
Investig. Ophthalmol. Vis. Sci. 1996, 37, 1849–1853.

34. Saccà, S.C.; Izzotti, A.; Rossi, P.; Traverso, C. Glaucomatous outflow pathway and oxidative stress.
Exp. Eye Res. 2007, 84, 389–399. [CrossRef]

35. Eldh, M.; Ekström, K.; Valadi, H.; Sjöstrand, M.; Olsson, B.; Jernås, M.; Lötvall, J. Exosomes Communicate
Protective Messages during Oxidative Stress; Possible Role of Exosomal Shuttle RNA. PLoS ONE 2010, 5,
e15353. [CrossRef]

36. De Jong, O.G.; Verhaar, M.C.; Chen, Y.; Vader, P.; Gremmels, H.; Posthuma, G.; Schiffelers, R.; Gucek, M.;
Van Balkom, B.W.M. Cellular stress conditions are reflected in the protein and RNA content of endothelial
cell-derived exosomes. J. Extracell. Vesicles 2012, 1, 18396. [CrossRef]

37. Harrell, C.R.; Markovic, B.S.; Fellabaum, C.; Arsenijevic, A.; Djonov, V.; Arsenijevic, N.; Volarevic, V.
Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes in the Treatment of Eye Diseases.
Adv. Exp. Med. Biol. 2018, 1089, 47–57.

38. Hood, J.L. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine 2016, 11,
1745–1756. [CrossRef]

39. Trivedi, M.; Talekar, M.; Shah, P.; Ouyang, Q.; Amiji, M.M. Modification of tumor cell exosome content
by transfection with wt-p53 and microRNA-125b expressing plasmid DNA and its effect on macrophage
polarization. Oncogenesis 2016, 5, e250. [CrossRef]

40. Rider, M.A.; Hurwitz, S.N.; Meckes, D. ExtraPEG: A Polyethylene Glycol-Based Method for Enrichment of
Extracellular Vesicles. Sci. Rep. 2016, 6, 23978. [CrossRef]

41. Ludwig, A.-K.; De Miroschedji, K.; Doeppner, T.R.; Börger, V.; Ruesing, J.; Rebmann, V.; Durst, S.; Jansen, S.;
Bremer, M.; Behrmann, E.; et al. Precipitation with polyethylene glycol followed by washing and pelleting
by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large
scales. J. Extracell. Vesicles 2018, 7, 1528109. [CrossRef]

42. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]

43. Beyer, W.F.; Fridovich, I. Assaying for superoxide dismutase activity: Some large consequences of minor
changes in conditions. Anal. Biochem. 1987, 161, 559–566. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.yexcr.2013.05.005
http://www.ncbi.nlm.nih.gov/pubmed/23669273
http://dx.doi.org/10.1111/jcmm.12834
http://dx.doi.org/10.1371/journal.pone.0187569
http://dx.doi.org/10.1016/j.freeradbiomed.2009.07.035
http://dx.doi.org/10.1074/jbc.M702811200
http://dx.doi.org/10.1111/jcmm.15129
http://dx.doi.org/10.1155/2016/3164734
http://www.ncbi.nlm.nih.gov/pubmed/26881021
http://dx.doi.org/10.1016/j.exer.2006.10.008
http://dx.doi.org/10.1371/journal.pone.0015353
http://dx.doi.org/10.3402/jev.v1i0.18396
http://dx.doi.org/10.2217/nnm-2016-0102
http://dx.doi.org/10.1038/oncsis.2016.52
http://dx.doi.org/10.1038/srep23978
http://dx.doi.org/10.1080/20013078.2018.1528109
http://dx.doi.org/10.1016/0003-2697(76)90527-3
http://dx.doi.org/10.1016/0003-2697(87)90489-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Cell Viability of AAPH-Treated NPCE Cells 
	EV Size from OS Exposed NPCE Cell 
	Carbonylated Protein Presence in Oxidized NPCE-Derived EVs 
	TM Cells Viability After Co-Culture with NPCE EVs 
	The Effect of NPCE-Derived EVs on Nrf2 Levels in TM Cells 
	The Effect of NPCE-Derived EVs on Wnt Proteins Levels Under Stress Conditions 
	Effect of the NPCE EVs Released Under Normal or Oxidative Stress Conditions on the Expression of Anti-Oxidative Genes in TM Cells 
	NPCE Exosomal Protective Effect from the AAPH-Induced OS 
	NPCE Effect on the Activity of Catalase (CAT) and Super Oxide Dismutase (SOD) Under Normal or OS Conditions 

	Discussion 
	Materials and Methods 
	Cell Lines 
	EV Extraction by Polyethylene Glycol (PEG) Precipitation 
	Tunable Resistive Pulse Sensing (TRPS) 
	Carbonyl Assay 
	MTT Assay 
	Immunofluorescent Analysis of Nrf2 Expression 
	Subcellular Fractionation and Immunoblotting 
	Protein Concentration of TM Lysates 
	Real-Time Quantitative Polymerase Chain Reaction (qRT-PCR) 
	ROS Measurements 
	TM Antioxidant Enzyme Activities 
	Statistical Analysis 

	
	
	References

