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Abstract: The coronavirus pandemic (COVID-19) is disrupting the entire world; its rapid global
spread threatens to affect millions of people. Accurate and timely diagnosis of COVID-19 is essential
to control the spread and alleviate risk. Due to the promising results achieved by integrating machine
learning (ML), particularly deep learning (DL), in automating the multiple disease diagnosis process.
In the current study, a model based on deep learning was proposed for the automated diagnosis of
COVID-19 using chest X-ray images (CXR) and clinical data of the patient. The aim of this study is
to investigate the effects of integrating clinical patient data with the CXR for automated COVID-19
diagnosis. The proposed model used data collected from King Fahad University Hospital, Dammam,
KSA, which consists of 270 patient records. The experiments were carried out first with clinical data,
second with the CXR, and finally with clinical data and CXR. The fusion technique was used to
combine the clinical features and features extracted from images. The study found that integrating
clinical data with the CXR improves diagnostic accuracy. Using the clinical data and the CXR, the
model achieved an accuracy of 0.970, a recall of 0.986, a precision of 0.978, and an F-score of 0.982.
Further validation was performed by comparing the performance of the proposed system with the
diagnosis of an expert. Additionally, the results have shown that the proposed system can be used as
a tool that can help the doctors in COVID-19 diagnosis.

Keywords: COVID-19; pneumonia; chest X-ray (CXR); deep learning (DL); clinical data

1. Introduction

The novel coronavirus (COVID-19), also known as SARS-CoV-2, is a severe acute respi-
ratory syndrome. The virus first emerged in China in December 2019. Up to 7 October 2021,
about 236,533,988 people were affected by this virus [1]. This pandemic outbreak has spread
around the world. In addition, a new strain of coronavirus was reported in the southeast
of England in September 2020. Additionally, in December 2020 it became more common.
The new trunk spreads faster and more continuously when compared to the previous
version [2]. According to the BBC, the new strain was first detected in September, and in
November around a quarter of the cases reported in London were the new variant [3]. In
addition, several cases have been reported in other countries. This outbreak is having a
devastating impact on the global economy and the lives of individuals.

The outbreak of the pandemic requires early diagnosis and treatment of the virus. The
gold standard method for diagnosing COVID-19 is the Reverse Transcriptase Polymerase
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Chain Reaction (RT-PCR) test. The test requires specialized medical equipment and a
healthcare professional. Due to the manual method of collecting the nasal or throat swab,
there is an increased risk of the infection spreading. It is also time consuming and has
low sensitivity [4,5]. Due to the unavailability of a large number of these specialized tool
kits and medical personnel, there is a need for other non-invasive automated diagnostic
methods with higher accuracy.

One of the alternative methods of diagnosing COVID-19 is to use chest X-rays (CXR)
and chest CT scans. The devices required for this imaging are widely used around the world.
The advantages of X-rays over CT scan include quick access and control of interaction
in the hospital. CXR can be used to detect early signs of viral infection, even before the
appearance of the other symptoms such as cough, fever, shortness of breath, etc.

An experienced radiologist is required for accurate interpretation and diagnosis.
However, the exponential increase in the number of cases worldwide makes an automated
detection and diagnosis method necessary. In addition, in a report dated 11 June 2020, the
WHO recommends the use of CXR if RT-PCR toolkits are not available [6]. Likewise, the
high costs associated with the toolkit motivates the use of CXR for COVID-19 diagnosis.
Several attempts have been made to combat COVID-19, including the development of
an automated and reliable diagnostic method that can support the diagnostic methods
used in the clinical setting. In addition, artificial intelligence (AI), in particular machine
learning (ML) and deep learning (DL) techniques, have proven to be an effective tool for
the automated detection and diagnosis of diseases using medical imaging [7–9]. These
automated diagnostic models will assist healthcare professional in making a diagnosis.

The proposed study is structured in such a way that Section 2 presents the relevant
studies and Section 3 deals with the material and the methods used in the study. Section 4
presents the experimental setup and the results. Section 5 contains the conclusion.

2. Related Studies

Several attempts have been made to apply ML and DL using clinical features, medical
imaging, blood tests, cough, etc. [7,10–12]. However, CXR is one of the most widely used
tools for diagnosing COVID-19.

A study [13] was conducted to examine the effects of lung segmentation prior to clas-
sifying COVID-19 using DL. They used CXR and Lungs ultrasound (LUS), and found that
combining transfer learning (TL) with segmentation improved the model’s performance.
Four TL methods such as ResNet34, ResNet50, ResNet152, and VGG16 were used. In
addition, the ensemble method was performed by combining the results of the previous
four TL methods. The study achieved an accuracy of 0.905 using an ensemble technique.

Similarly, another study [14] was carried out to find the correlation between the CXR,
LUS, and clinical data of the COVID-19 patients under treatment. They found a strong
correlation between CXR, LUS, and clinical data of hospitalized patients to predict severity.
In addition, the authors found in [15] the correlation between clinical features, CXR and the
laboratory results for the patients in the critical stage. They found the correlation between
all investigative measures for all COVID-19 confirmed patients.

Similarly, in [16] the authors compared the performance of the DL-based model using
CXR with the diagnosis of the experienced radiologist using real data from Italian hospitals
to predict the severity of the patient. The prognostic value predicted by the DL model
is comparable to the score of the Radiographic Assessment of Lung Edema (RALE). All
studies discussed above point to the importance and correlation of the CXR with the other
diagnostic procedures and motivate the use of the CXR for the diagnosis and prognosis of
COVID-19 patients [16].

Recently, the Deep COVID-XR model was proposed by [17], an ensemble of CNN,
including DenseNet-121 (17), ResNet-50 (18), InceptionV3 (19), InceptionV3-ResnetV2
(20), Xception (21), Efficient Net-B2 (22) to compare the performance of the model with the
experienced radiologist. The result of the proposed model was compared with the diagnosis
made by five chest radiologists. They achieved an accuracy of 0.83 and an AUC of 0.90.
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In addition, the authors [18] proposed a model known as DeTraC using the TL models.
The model consists of three stages, first the features were extracted from the CXR, individual
features were entered into the TL models and later this information was combined again to
make the prediction. AlexNet was used to extract the features and principal component
analysis (PCA) for feature reduction; that has successfully overcome the irregularities in
the data. VGG-19 gave the highest result with an accuracy of 0.931.

Furthermore, another study [19] compared the performance of three TL models Incep-
tion V3, XceptionNet and ResNet using Kaggle’s open source CXR. The study achieved the
highest accuracy of 0.9797 with XceptionNet. In addition, another study was done with
several open source CXRs [20] to compare the performance of a number of TL models such
as DenseNet121, ResNet50, VGG16, and VGG19 for diagnosing COVID-19. They found the
similar performance of the VGG16 and VGG 19 models. The model achieved the highest
accuracy of 0.993 with VGG 16 and 19.

The comparison was made using several conventional ML models such as Support
Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), Naive Bayes (NB),
and K Nearest Neighbor (KNN) and TL models such as VGG-16, VGG-19, InceptionV3,
MobileNet-V2, ResNet 50, and DenseNet 121 for diagnosing COVID-19 with CXR [21]. The
study achieved the highest accuracy of 0.985. They found that the initial preprocessing did
not affect diagnostic performance. The aforementioned study [13], however, found that
preprocessing technique was important for diagnostic performance.

The study [22] proposed CV19-Net as a DL based model and found that the proposed
model can improve radiological interpretation performance in COVID-19 diagnosis and
achieve an AUC of 0.92. They used an ensemble of 20 DL models. The study achieved the
significant results, but the number of models in the ensemble is huge and the proposed
model was computationally intensive.

Similarly, another author aimed to develop a predictive model using ML and DL
techniques to estimate mortality risk based on some demographic information and the
patient’s X-ray [23]. The researchers conducted two experiments. First, they used CNN
with TL techniques to predict mortality risk using CXR. This model has performed well in
mitigating the effects of the small amount of data available. While in the second experiment
the researchers worked on was to combine the CNN together with other patient demo-
graphics, including age and gender, as input to a final machine learning model that acts as
the second and final layer. This layer improved the goodness of fit and the efficiency of the
first layer’s predictive power. The researchers used two sources of data to create their data
set. The first is the COVID-chestxray-dataset, a GitHub with X-ray and basic clinical data
from 209 patients. The second source is the Spanish Society of Medical Radiology, SERAM,
COVID-19 data. The researchers manually extracted 12 segments. The combined data set
thus comprises 221 patients. Each patient has CXR, gender, age, hospital location, X-ray
view, and X-ray offset. This data set was then divided into 65% training, 17.5% validation
and 17.5% testing. They also expanded the data set to create additional data. The results of
the first experiment without data expansion are: an AUC of 0.93 for training, an AUC of
0.87 for validation, and an AUC of 0.85 for testing. With data extension, the results were
an AUC of 0.93 for training, an AUC of 0.93 for validation, and an AUC of 0.94 for testing.
When a second layer was added, the results were an AUC of 0.99 for training, an AUC of
1 for validation, and an AUC of 1 for testing.

Moreover, Minaee et al. [24] analyzed 5000 CXR images from COVID Chest X-ray and
ChexPert data sets. The pretrained DL models such as ResNet18, DenseNet121, SqueezeNet,
and ResNet50 were trained. All models were refined with 100 epochs along with 20 batches,
Adam optimizer, and a learning rate of 0.001. A down sampling technique was applied
to all images and reshaped to 224,224. Most of the models achieved a sensitivity value of
0.98 (±0.3) and a specificity value of around 0.90. These results demonstrate the tremendous
importance of X-rays in diagnosing COVID-19 patients. The researchers suggest using
larger data sets to obtain more reliable results and estimates.
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Lopez et al. [25] developed a COVID-XNet model using several CXR dataset for
COVID-19 and healthy patients. The images were collected from BIMCV-COVID-19+ [26],
Cohen et al. [27] and PadChest dataset [28]. Feature extraction and classification was
performed using CNN model. The study achieved an accuracy of 0.94. In addition another
study [29] used the pre-trained DL models to classify the CXR as COVID-19 positive or
negative using nine open source dataset. Initially some preprocessing techniques was
performed to clean the CXR by identifying the relevant area, i.e., lungs segmentation. The
study achieved an accuracy of 0.97. The current study developed a more generalized
model and achieved better performance compared to the later study. Due to the use
of the larger dataset as compared with Lopez at al. Similarly, Nikolaou et al. [30] used
EfficientNetB0 pretrained model using 15,153 CXR. The dataset suffers from class imbalance.
Data augmentation was performed to handle imbalance. The study achieved an accuracy
of 0.95. Furthermore, Baltazar et al. [31] performed a comparative analysis of several
pretrained models. The aim of the study was to analyze the hyperparameter tunning
impact on the pretrained model performance. InceptionV3 outperformed the other models
to distinguish among the normal, COVID-19 and non-COVID-19 pneumonia CXR with an
accuracy of 0.96.

Keidar et al. [32] implemented deep neural networks (DNN) aimed at classifying
COVID-19 chest X-rays, in addition to a tool that can retrieve similar CXR images according
to the provided CXR image. The study used 1384 CXRs from COVID-19 patients and
1024 CXRs from non-COVID-19 patients. The images were augmented, normalized, and
segmented before being used in the model. The classifier was an ensemble of different
deep learning networks such as ReNet50, VGG16, ReNet34, CheXpert, and ResNet152. The
model achieved an accuracy of 0.903, a sensitivity of 0.905, a specificity of 0.90 and an AUC
of 0.96. The main limitation of the study was that the model did not consider the existence
of medical illnesses and their impact on the outcome of the model.

Nishio et al. [33] investigated the impact of data augmentation technique on the
classification of CXRs as COVID-19 pneumonia, non-COVID-19 pneumonia and healthy.
They used two open-source datasets, i.e., github CXR repository and RSNA dataset. Five TL
models were used such as VGG16, ResNet50, MobileNet, DenseNet121, and EfficientNet.
Experiments were conducted with and without data augmentation. The study found that
VGG16 with the augmented data produce the highest accuracy of 0.837.

Additionally, in [26] the researchers focused on classifying the images from COVID-19
CXRs using two sets of data, COVID-X-ray-5k, and the other data set was the COVIDe-
tectioNet dataset. They suggested a methodology using two phases: First a deep CNN
network is used to extract the features from the images, then it is fed into the Extreme
Learning Machines (ELM) network to provide real-time learning, using the Chimp Op-
timization Algorithm (ChOA) with it, to ensure the reliability of the ELM model. The
proposed solution outperformed the benchmark and achieved an accuracy of 0.99 and 0.98
using the COVIDetectioNet and COVID-X-ray-5k datasets, respectively.

Nevertheless, most studies are done with CXR only and do not consider clinical
features or vital signs. To the best of our knowledge, no study is available that integrates
the clinical data and the CXR to predict COVID-19. In the proposed work, we try to fill this
gap by examining the effects of demographics, vital signs, and comorbidity in diagnosing
COVID-19 with CXR. We proposed a method to integrate the features extracted from
clinical data and CXR images with deep learning (DL). We are trying to examine the impact
of clinical data on predicting COVID-19 using CXR. In addition, the performance of the
proposed system was further validated by comparing the diagnosis of the model with the
expert (doctor) diagnosis. There are few studies in the literature that have conducted the
comparison among the doctor and the system diagnosis.

3. Materials and Methods

In this section we first describe the description of the data set used in the study. Next,
we present the methodology used and finally discuss the evaluation matrix.
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3.1. Data Acquisition and Description

The data were collected from King Fahad University Hospital, Dammam, KSA (IRB
No. 2020-09-237). The project was approved by the Deanship of Scientific Research (DSR) at
Imam Abdulrahman bin Faisal University. The data set contains 270 patients (48 healthy and
222 COVID-19 positive). The healthy category indicates the patients that have symptoms
but not pneumonia. The data set includes clinical, demographic data, and CXR images of
the patients. Table 1 contains the description of the attributes in the data record.

Table 1. Attribute description of the dataset.

Feature Type Feature Name Description Data Type

Demographic Gender Patient’s Gender Categorical
Age Patient’s age at the time of diagnosis Numerical

Symptoms

Temp Patient’s body temperature at the
time of diagnosis Numerical

Pulse Patient’s pulse rate at the time of
diagnosis Numerical

Resp Patient’s respiratory rate at the time
of diagnosis Numerical

BP_Sys Patient’s systolic blood pressure at
the time of diagnosis Numerical

BP_Dsys Patient’s diastolic blood pressure at
the time of diagnosis Numerical

SOB Does the patient have Shortness of
Breath? Categorical

Cough Does the patient have Cough? Categorical

Others Does the patient have any other
symptoms? Categorical

comorbidities

DM Does the patient have Diabetes
Mellitus? Categorical

HTN Does the patient have Hypertension? Categorical

Cardiac Does the patient have any Cardiac
problem? Categorical

DLP Does the patient have Dyslipidemia? Categorical

CKD Does the patient have chronic kidney
diseases? Categorical

Others Does the patient have any other
chronic disease? Categorical

The dataset contains 16 attributes of categorical or numerical datatype. Some of the
features were not significant and have been removed. To perform the exploratory data
analysis, mean(µ) and standard deviation(σ) were used for numeric attributes, while fre-
quency and p-value were used for categorical attributes. In addition, several visualizations
were used to determine the distribution of the data. Table 2 contains the exploratory data
analysis of the numerical attributes.

Table 2. Statistical description of the numeric attributes.

Feature Name Mean (µ) ± Standard Deviation (σ)

Age 50 ± 16
Temp 37.1 ± 4
Pulse 96.7 ± 20.99
Resp 25.13 ± 7.87

BP_Sys 129 ± 19.7
BP_Dsys 79 ± 14.11
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Figure 1 shows the distribution of the numerical attributes. The age feature shows
an almost normal distribution, most of the temperature values are in the range of 30 to
40, the pulse and the respiratory rate both showed a right-skewed distribution, and the
diastolic and systolic blood pressure both show an almost normal distribution. Figure 2
shows the correlation of numerical attributes. The heat map shows the correlation between
six numerical variables. The higher the correlation value between two features means that
the two features express the same information and one of them can be used. In Figure 2, a
correlation value of 0.66 was recorded between both systolic and diastolic blood pressure.
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Furthermore, Table 3 represents exploratory analysis of categorical attributes. The
table contains the description of the categorical features of the dataset in terms of frequency
and p-value. p-value was calculated using chi-square, with the α = 0.05. Results showed that
the gender and SOB has strong association with COVID-19 positive. Similarly, according
to the dataset, most of the COVID-19 positive patients has cough. The dataset contains
huge number of male patients when compared with the female. Furthermore, 148 patients’
samples in the dataset have a cough, and among those patients 129 patients were COVID-
19 positive. Similarly, 139 patients have SOB symptoms and 122 patients with SOB were
COVID-19 positive. However, COVID-19 positive patients’ samples in the dataset have
only 42% of the patients with Diabetes Mellitus, 37.8% patients with hypertension, 19.8%
with cardiac disease, 18.3% dyslipidemia, and 14% chronic kidney disease, respectively.

Table 3. Statistical analysis of the categorical attributes.

Feature Name Frequency p-Value

Gender Male (187) Female (83) <0.001
SOB Yes (139) No (131) 0.04

Cough Yes (148) No (122) 0.053
DM Yes (211) No (59) 0.997

HTN Yes (198) No (72) 0.408
Cardiac Yes (146) No (124) 0.077

DLP Yes (142) No (128) 0.094
CKD Yes (134) No (136) 0.071

3.2. Image Augmentation

In order to train the DL model with all aspects of the data and to have the model learn
effectively, image augmentation techniques were applied to the training set. The images
are synthetically augmented by applying various image transformation techniques such as
flipping (both horizontal and vertical), rotation with 30, shifting (width and height with
0.2), cropping with central_fraction = 0.3, blurred images with brightness_range = [0.5,1.5],
zoom range set to 0.2, rescale set 1/255, fill mode set to ‘nearest’, and shearing set to
0.2. The images were set to a shape of 300 or 224 pixels in the case 2 and case 3 models
described below.

3.3. Deep Learning Model

Deep Neural Networks (DNNs) are a form of neural networks whose basic architecture
includes an input layer, a series of hidden layers, and an output layer. DNNs are usually
feed-forward networks (FFNN) in which data is propagated from the input layer to the
output layer. The layers are described below:

Input Layer: This layer is where all input values (xn) enter the neural network. More-
over, each input has a weight (wn) applied to it. Moreover, a bias (b) is added to the entire
summation. This summation (∑n

i=1(xi × wi) + b) is then sent to the hidden layer, where an
activation function is applied.

Hidden Layer: This layer applies f, an activation function, to the summation it receives
from the input layer. The result is then sent to all nodes in the subsequent hidden layer.
A deep neural network may contain multiple hidden layers. Each hidden layer takes the
output of the previous layer as input. The output of each layer can be represented as
Equation (1):

yn = f

(
n

∑
i=1

(xi × wi) + b

)
(1)

Output Layer: In this layer, the output value is determined from the hidden layers. The
goal is to reduce the output error rate. Therefore, if an output is determined, then back
propagation is used to reduce the error rate of the output. Backpropagation is carried out
using a method known as Gradient Descent. This method attempts to adjust the weights
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that are applied to the inputs in the input and hidden layers. The new weights (Wn) are
found using Equation (2):

Wn = wn − α

(
δ error

wn

)
(2)

For the classification of CXR images, we used EfficientNetB7 transfer learning with
ImageNet weights, which is one of the renowned pre-trained CNN architectures built by
Google. As DL models requires huge amounts of data to avoid overfitting, which makes
them computationally intensive. Thus, the transfer learning is commonly technique where
we trained the model for one task and reusing it for another related task. EfficientNet-B7
model is a latest architecture and trained on the ImageNet dataset.

The aim of the study is to explore the impact of the clinical data on the prediction of
COVID-19 using CXR images, therefore, three set of experiments were performed. In the
proposed study, three DL models were developed for three different cases. In the first case,
clinical data was used for the prediction of COVID-19, while in the second case prediction
was performed using CXR images. Finally, in the third case, clinical data and CXR images
were combined to make the prediction. The details of the DL models for each case are
discussed below.

3.3.1. Case 1: Deep Learning Model for Clinical Data

The proposed DL model has thirteen fully connected dense layers that take sixteen
variables as input. The block structure is adopted, where each block contains two hidden
layers. So, in total we have six blocks, the number of neurons in each block is 1024, 512,
256, 128, 64, 32 and one neuron in the output layer as shown in Figure 3. Each block is
followed by a dropout layer with a dropout rate of 20%. This layer allows the model to
learn more robustly to avoid overfitting. Furthermore, the rectified linear unit (ReLU)
activation function was used for all dense layers except the last dense layer which uses the
sigmoid activation function. Sigmoid activation function was used because the problem we
are targeting is a binary class, whether a patient is COVID-positive or healthy. The ReLU
activation function has Equation (3):

R(x) = max(0, x) (3)
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If the input to the activation function is negative, the output is zero, and thus, the node
will not be activated. This makes the neural network sparser and more efficient. On the
other hand, the sigmoid activation function has Equation (4):

δ(x) =
1

1 + e−x (4)
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The sigmoid function provides us with a value that is between [0, 1]. This is useful
because we can use the resulting value as a probability for a particular class. If the value is
closer to one, we can classify the input instance as part of the positive class. Otherwise, we
classify the input instance as part of the negative (healthy) class. For model optimization,
we used the Adam optimization algorithm with a learning rate of 0.001. Moreover, the loss
was calculated using binary cross-entropy and the accuracy metric was used to evaluate
the model’s accuracy. In model training, we used 200 epochs with a batch size of 64.

3.3.2. Case 2: Deep Learning Model for CXR

Convolutional Neural Network (CNN) is a type of DL model designed to learn spatial
hierarchies of features from images. Since features can appear anywhere in the image,
the CNN is designed to extract local features from the images, making image processing
more efficient. CNN consists mainly three layers, (i) convolution, (ii) pooling, and (iii) fully
connected layers. The convolution layer calculates the similarity among the small patches
from the image and the kernel, while the pooling layer groups the pixel values that are
close and combines them into one pixel and the fully connected layer classifies the extracted
features. Numerous CNN architectures have been developed for image classification using
the TL techniques. DenseNet, ResNet, VGG19, and EfficientNet are a few examples of them
that are pre-trained TL models with ImageNet datasets.

For case 2 DL model, we used the pretrained EfficientNetB7 using the ImageNet’s
weights. For the fully connected classification layers, a Global Average Pooling layer is used
followed by three dense layers as shown in Figure 4. The first two dense layers includes
128 and 64 neurons and the ReLU activation function, while the output layer contain one
neuron and the sigmoid activation function. Again, for this model, we used the Adam
optimizer with a learning rate of 0.001, binary cross-entropy as a loss function, accuracy as
the evaluation metric, and epoch with thirty.
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3.3.3. Case 3: Deep Learning Model for Fusion of Clinical Data and CXR

For this model, we used a fusion technique in which multiple inputs modalities are
merged into a single feature vector before it is feed into a single FFNN. In this study we have
used join-fusion, in which the features are learned from the images via the EfficientNetB7
transfer learning model and fused with the clinical data in the fusion layer before being fed
them into an FFNN as shown in Figure 5. Simple concatenation is used to fuse the learned
imaging and clinical features. Furtherly, the FFNN has three dense layers separated by a
dropout layer with a dropout rate of 20%. The first two dense layers includes 2576 and
1288 neurons and ReLU as an activation function, while the output dense layer contain two
neurons and softmax as an activation function. The final model uses the Adamx optimizer
with a learning rate of 0.001, a beta1 of 0.9, a beta2 of 0.999, and an epsilon of 1e-07. We
also used categorical cross-entropy as a loss function and the evaluation metric of accuracy.
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3.4. Evaluation Metrics

The performance of the proposed models was assessed using several standard scoring
measures such as accuracy, precision, recall, and F-score. The study targets a binary-class
classification problem, and using 2 × 2 size for confusion matrix to output the four values:
True Positive (TP), False Positive (FP), False Positive (FP), and False Negative (FN), which
are used to calculate the following measures [34]:

Accuracy: It measures the ratio of correctly predicted patients to the total samples as
shown in Equation (5).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Recall: It measures the ratio of the correctly predicted COVID-19 positive patients over
the actual positive patients as shown in Equation (6).

Recall =
TP

TP + FN
(6)

Precision: It measures the ratio of correctly predicted COVID-19 positive patients over
the predicted positive patients as shown in Equation (7).

Precision =
TP

TP + FP
(7)

F-score: It is measured by finding the harmonic mean of both the precision and recall
values as shown in Equation (8).

F − Sccore =
2 × Prescision × Recall

Prescision + Recall
(8)

4. Experiments and Results

The models have been trained on NVIDIA GeForce RTX-2060 SUPPER with 8GB of
memory while the CPU specification is Intel i7-9700F and 16GB of RAM, which are used
for the tasks related to augmentation and classifications. The study is implemented using
the Python 3.8.5 language and the TensorFlow 2.5 library for the DL models. Moreover, we
used k-fold cross-validation with k set to 5.

In this study, we aimed to investigate the effect of clinical data on automated COVID-
19 diagnosis using CXR. As mentioned in Section 3, three DL models have been created that
aim to diagnose COVID-19 patients in three experiments. The first experiment was con-
ducted with clinical data from the patients only and the second experiment was performed
with CXR from patients, while, in the last experiment, we applied a hybrid approach and
combined both sets of data (clinical data and CXR). Table 4 summarizes the results achieved
of the proposed models based on three different cases. Similarly, Figures 6–8 represent the
confusion matrix for all the three cases.
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Table 4. Performance comparison of the proposed DL models for three different cases.

Experiment Scenario Datatype Accuracy Recall Precision F-Score

Case 1 Clinical data 0.952 0.964 0.977 0.971
Case 2 CXR 0.944 0.981 0.951 0.966
Case 3 Clinical data + CXR 0.970 0.986 0.978 0.982
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Figure 8. Confusion matrix for case 3 (clinical data and chest X-ray (CXR)).

Table 4 above shows that the hybrid approach showed significant improvements in
terms of all the performance measures, especially in terms of accuracy with a value of 0.970.
Moreover, the high values of precision and recall scores indicate good performance of the
model in terms of false positive and false negative rates. The 0.986 value of the recall shows
that the model aims to minimize the false-negative rates so that it does not show a high loss
of COVID-19 infected cases. Whereas the precision value of 0.978 shows that the model also
minimizes the false positive rates, so it does not show a high misclassification of COVID-19
infected cases. Furthermore, since DL models require an immense number of images to
achieve acceptable performance, the second case where only images were used showed the
worst results due to the shortage of COVID-19 patients’ CXR in the used dataset. Therefore,
we believe that combining CXR images with clinical data can be considered a solution for
health authorities to diagnose COVID-19 patients in an efficient and quick manner.

Furthermore, some of the examples of the COVID-19 positive and the healthy patients
from the dataset are included in Table 5. The clinical data represent the attributes sequence,
i.e., gender, age, body temperature, pulse rate, respiratory rate, blood pressure systolic,
blood pressure diastolic, shortness of breath, cough, other symptoms, diabetes mellitus,
hypertension, cardiac disease, dyslipoproteinemia, chronic kidney disease, and other
chronic diseases.
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Table 5. Sample CXR and clinical data for the COVID-19 positive and healthy cases.

Category CXR Clinical Data

COVID-19 Positive
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Female, 36, 37, 102, 20, 103, 66, Y, N,
headache, N, N, N, N, N, sickle cell

In order to further validate the performance of the proposed system, comparison was
made among the system and the doctor diagnosis for some of the patients. Figures 9–11
represents the confusion matrix. Figure 9a represent the confusion matrix for the diagnosis
conducted by the expert (doctor) and Figure 9b represents the confusion matrix for the
diagnosis conducted by the proposed system. Similarly, Table 6 contains the evaluation
measure for the diagnosis comparison. For comparison 25 new records were selected,
among them 12 were COVID-19 positive and 13 were healthy patients.
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Table 6. Diagnosis comparison among the doctor and the system for the three different cases.

Case Diagnosis Mode Accuracy Recall Precision F1

Case 1
Expert 0.920 0.917 0.917 0.917
System 0.920 0.833 1.000 0.909

Case 2
Expert 0.920 1.000 0.857 0.923
System 0.840 0.917 0.786 0.846

Case 3
Expert 0.960 1.000 0.923 0.960
System 0.960 0.917 1.000 0.957
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As seen from Table 6, integration of the clinical data with the CXR has produced better
diagnosis performance when compared with the case 1 and case 2. Furthermore, there is a
difference in the diagnosis performance in case 2, because of the limitation of shortage of
the CXR used to train the DL model. The proposed system cannot replace the doctors but
can assist them in the diagnosis of COVID-19.

Despite of the significant results achieved from the proposed model. The study also
suffers from some limitation. Due to the availability of one expert and unavailability of the
large number of patients records, the validation was performed on 25 patients’ samples.

5. Conclusions

Overall, the study proposed three main models. The first model was developed using
clinical data, the second one was developed using CXR, and the last one was developed
using both clinical data and CXR. The study used a real dataset that was obtained from
King Fahad University Hospital, KSA, that contains 270 records. The study addressed
the gap in developing a model that would enable the prediction of COVID-19 using both
clinical data and CXR images. Overall, the model achieved the highest performance on
the combination of clinical data and CXR with an accuracy of 0.970, a recall of 0.986, a
precision of 0.978, and an F-score of 0.982. The results of the proposed model were further
validated by comparing the performance of the system with the expert diagnosis. The
system has shown similar performance except for case 2 due to the shortage of the CXR
used to train the DL models. However, the results have proved the significance of the
clinical data with the CXR in the diagnosis of COVID-19. Nevertheless, the study suffers
from the data imbalance. The imbalance is due to the fact that there were very few patients
in the hospital that were suspected as COVID-19 with the CXR. However, those patients
were later diagnosed as COVID-19 negative. For the future recommendation, the proposed
models need to be further investigated using multi-center data and validated on large
number of records. Similarly, the study needs to be further extended by including lungs
ultrasound (LUS).
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