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Total parenteral nutrition (TPN) is associated with metabolic complications including 
metabolic acidosis (MA), one of the main disorders of acid‑base balance. The main causes 
involved in the appearance of MA during TPN administration are the metabolism of cationic 
amino acids and amino acids containing sulfuric acid (exogenous addition), the titratable 
acidity of the infused parenteral solution, the addition of acidificant agents (hydrochloric 
acid, acetic acid), thiamine deficiency, disruption of carbohydrate and lipid metabolic 
pathways and D‑fructose administration. Moreover, hypophosphatemia that appears during 
TPN therapy contributes significantly to the maintenance of MA. This review describes 
in a comprehensive way the pathophysiological mechanisms involved in the appearance 
of MA induced by intravenous administration of TPN products most commonly used in 
critically ill‑patients.
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Introduction
Metabolic acidosis (MA) is a disorder of acid‑base 

balance, which is characterized by reduction of arterial 
blood pH (increase of hydrogen ions [H+] concentration) 
with simultaneous reduction of serum bicarbonate 
concentration (HCO3

−) and of carbon dioxide partial 
arterial pressure. The main causes of this disorder are, the 
exogenous acid administration or increased endogenous 
acid production (i.e., lactic acid in cases of tissue 
hypoxemia, β‑hydroxybutyrate in diabetic ketoacidosis), 
the decreased acid excretion, normally produced on daily 
basis (i.e., phosphoric and sulfuric acid in chronic kidney 
disease) and the increased HCO3

− loss (i.e., diarrhea, 
renal tubular acidosis). MA could also be observed in 
cases of acid or acid precursors administration such as 
sodium chloride (NaCl), ammonium chloride, bromine, 
valproic acid, acetic anions (through dialysis solution), 
sulfur and during administration of total parenteral 
nutrition (TPN).

In this review, we attempt to present in a comprehensive 
way the pathophysiological mechanisms involved in 
the appearance of MA‑induced by intravenous (i.v.) 
administration of TPN products. In‑depth knowledge 
of these mechanisms forms a necessity considering the 
frequency of TPN administration in everyday clinical 
practice, especially in critically ill‑patients.

Metabolic Acidosis During Total Parenteral 
Nutrition

During 70’s, Dudrick et al. first introduced TPN, for the 
patients who were unable to obtain adequate nutrients 
by oral route, especially for critically ill‑patients, having 
as a primary goal to supply the substrate necessary to 
meet their metabolic needs.[1] Another goal of nutritional 
support is to alter the course and outcome of critical 
illness, as it is known that malnutrition causes significant 
postoperative complications, increases the frequency 
of infections and prolongs patients’ hospitalization.[2] 
However, the early initiation of TPN administration 
(up to 48 h) does not seem to alter mortality and there is 
no consistent evidence of improvement in the number of 
ventilator‑free days or length of stay in the Intensive Care 
Unit (ICU) in critically ill‑patients.[3] In addition, metabolic 
complications presented in malnourished patients after 
major surgery are partially due to TPN administration 
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for a long period of time.[4] These complications include 
hyperglycemia, macro‑or micro‑nutrient excess or 
deficiency, refeeding syndrome, serum electrolytes 
alterations and acid‑base disturbances, such as MA the 
incidence of which has been previously reported fairly 
high among critically ill patients treated with TPN.[5]

The main causes involved in the occurrence of MA 
during TPN administration are the metabolism of 
cationic amino acids and sulfur‑containing amino 
acids (exogenous addition), the titratable acidity (TTA) 
of the infused parenetral solution, the addition of 
acidificant agents (hydrochloric acid, acetic acid), thiamine 
deficiency, disruption of carbohydrate and lipid metabolic 
pathways and D‑fructose administration. Moreover, 
hypophosphatemia that appears during TPN therapy 
contributes significally to the maintenance of MA.

Metabolism of cationic amino acids and of 
sulfur‑containing amino acids (exogenous addition)

In the early era of TPN, MA was rarely observed because 
used solutions were enriched with proteins (protein 
hydrosylates) and did not cause significant nitrogen 
retention.[6] The newer TPN solutions contain 
synthetically produced amino acids (L‑amino acids), 
instead of albumin, in concentrations ranging from 5.5% 
to 15%. The wide variation in the content of amino acids, 
provide the opportunity of treatment individualization 
according to the needs of each clinical case.[7]

L‑amino acids according to their charge are subdivided 
in cationic and anionic amino acids. Cationic amino 
acids are arginine, lysine and histidine (positive charge), 
and sulfur‑containing amino acids like methionine, 
cysteine and cystine, while anionic amino acids are 
lactic, acetic, aspartatic and glutaminic acids (negative 
charge).[8,9] Solutions containing L‑amino acids come 
in three different types, those containing only cationic 
amino acids, those with only anionic amino acids and 
mixed solutions. Metabolism of cationic amino acids of 
TPN results in production of H+ according to equation:

R‑NH3 + O2 ↔ Urea + CO2 + H2O + H+

The H+ ions produced through metabolism of amino 
acids remain in extracellular space and are added to 
those produced from catabolism. Human body is unable 
to neutralize this excess of acids with the available bases 
reserves (HCO3

‑), resulting in MA.[9] On the contrary, 
metabolism of anionic amino acids is characterized by 
the consumption of H+. Thus, in mixed TPN solutions, if 
the content of cationic amino acids is higher than anionic, 
this results in a greater quantity of produced H+ than the 

one which could be consumed during their metabolism, 
with final consequence the appearance of MA. This 
difference (excess of H+) between metabolized cationic 
and anionic amino acids is characterized as cation gap.[9]

Oxidation of sulfur‑containing amino acids leads 
to the production of sulfate, the addition of which in 
extracellular space leads to the appearance of MA.[10,11] 
As sulfate is a not a measured anion, MA arising is 
characterized by increased anion gap. Moreover, sulfate 
is not reabsorbed from renal tubules and is excreted by 
the kidneys as sodium sulfate, leading to extracellular 
volume contraction and increased reabsorption of (NaCl) 
with final result the appearance of hyperchloremic MA.[12]

Titratable acidity of parenteral solution administrated
Titratable acidity is defined as the quantity of the base, 

which should be added to an acid solution in order that 
solution’s pH returns to be 7.40. In human body H+ must 
be excreted in a form other than the dissociated acid to 
maintain a homeostatic pH and this is accomplished by 
the formation of TTA (H+ bound to buffers in the urine 
such as HPO4

2− and SO4
2−).[13] TTA is not considered 

important for the appearance of MA during TPN, since 
in the mixed acid solutions is much smaller comparing 
with the older solutions containing protein.[9] Thus, the 
quantity of H+ administrated is not sufficient enough 
to cause MA. The TTA of parenteral solutions consists 
of hydrochloric acid and organic acids, such as acetic 
acid. Terashima et al. showed that MA is caused by the 
high TTA induced not only by the nonmetabolizable 
acids (hydrochloride acids), but also metabolizable 
acids (organic acids) in TPN solutions.[14] However, a 
recent study suggested that the amount of TTA is not 
related to the incidence of the acid load.[15]

Addition of hydrochloride acid and acetic acid
Preparation of TPN solutions requires pH solution to be 

maintained in low levels (ideal range 5.0–5.4) aiming to 
suspend the initiation of chemical interactions between 
carbohydrates and amino acids (Caramel and Maillard 
reactions).[16] It is well known that these reactions are 
promoted by the high amino acids concentrations and 
the solution alkaline pH leading to the production of 
advance glycosylation end products and advance lipid 
end products. However, during production, a number 
of solutions present higher pH after their thermal 
sterilization. Thus, for the maintenance of predesigned 
formula’s quality, the addition of acidifying factors 
becomes necessary. Hydrochloric acid (not metabolized) 
and acetic acid (metabolized) are the most widely used 
acidifying mean for the maintenance of desired pH in 
the commercially available TPN solutions.[8]
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Addition of hydrochloric acid in solutions leads to 
increased chloride plasma concentration with a parallel 
reduction of HCO3

− plasma concentration (first line of 
defense for H+ neutralization derived from hydrochloric 
acid). This in turn causes a reduction of HCO3

− content 
filtrated by the glomerulus and a competitive increase 
of Cl− and Na+ reabsorption, which are normally equally 
reabsorbed at the proximal convoluted tubule. The final 
result is the installation of hyperchloremic MA.

On the contrary, acetic acid is a metabolized anion. 
During its oxidation consumes H+ ions, which are 
produced by metabolized cations.[5] In a recent study 
Tsai et al. showed that TPN solutions containing 
acetic acid caused MA to a lesser degree compared 
with solutions containing hydrochloric acid.[8] In a 
solution containing both hydrochloric and acetic acid 
the proportion of acetic/hydrochloric determines 
the degree of MA. A recent research showed that 
only nonmetabolizable acid might be a risk factor 
for MA.[16]

Thiamine deficiency (Vitamin B1)
The main sources of thiamine intake for human body are 

dietary intake and the produced thiamine by the normal 
flora of intestinal tract. Free thiamine (after hydrolysis of its 
phosphorylated forms), is absorbed actively through specific 
receptors, which are independent from sodium, but are 
dependent from pH and amiloride (amiloride‑sensitive).[17] 
After its absorption, thiamine is phosphorylated in thiamine 
pyrophosphate (TTP). TTP is involved in a series of enzymatic 
reactions, which are correlated with the metabolism of 
carbohydrates, lipids, and amino acids. Normally, thiamine 
is necessary for the transmutation of pyruvic acid in 
a‑ketoglutaric acid, which then entry Krebs cycle.[18]

However, thiamine is also necessary for the conversion 
of lactic acid in pyruvic acid, which is then metabolized 
as mentioned before.[18] Therefore, in situations with 
thiamine deficiency such as inadequate dietary 
intake (especially in patients during TPN therapy), 
reduced enteric absorption, increased peptic or renal 
loss, in alcoholic patients, in patients with AIDS or 
malignancies, in pregnancy and breastfeeding, in 
hyperthyroidism, in chronic kidney disease (especially 
in hemodialysis patients), in systemic infections and in 
diabetic mellitus, the inadequate metabolism of lactic acid 
leads to its tissue accumulation, increased concentration 
and finally to the appearance of MA.[5,19] MA caused by 
lack of thiamine is both local and systematic.[17] Recently, 
it was showed that lack of thiamine in ICU patients is 
combined with high concentration of lactic acid even in 
the absence of hepatic dysfunction.[20]

Recent guidelines recommend administration of 
thiamine in a dose of 100–300 mg/day during the first 
3 days of hospitalization for ICU patients who are 
potentially suspected for thiamine deficiency.[21]

Disruption of metabolic pathways of carbohydrates 
and lipids

Critically ill‑patients have increased caloric 
requirements for the metabolism of diseased 
tissue/organ.[22] The endogenous produced quantity 
of glucose through glucogenolysis is limited and 
consequently insufficient to cover the increased energy 
requirements. Under these conditions, glucose is released 
mainly from endogenous proteins and secondly from 
lipids (lipolysis), through gluconeogenesis.[23] Therefore, 
administration of carbohydrates through TPN solutions 
is the preferred energy source during critical illness 
because fat mobilization is impaired and exogenous 
administration of dextrose, plays an important role in 
inhibition of gluconeogenesis. It is worth noting that 
the maximum glucose infusion rate in order to maintain 
normoglycemia both in healthy population and severely 
ill patients is 4 mg/kg/min.[24,25]

Parenteral nutrition is a mixture of solutions that 
contains dextrose in a variety of concentration, 
most commonly 40, 50 and 70%, whereas lipid 
emulsion may be infused separately or added to the 
mixture. Dextrose and lipids (commonly long‑chain 
omega‑6 triglycerides) are the main sources of daily 
caloric requirements, which are not derived from 
proteins (nonprotein calories). However, previous 
studies refer that the administration of carbohydrates 
has a special effect on protein metabolism, which causes 
retention and consequently reduction in renal excretion 
of nitrogen metabolism products,[26] whereas this effect 
is not observed with diet based on lipid intake.[27] Recent 
experimental studies did not confirm these findings.[28]

Another side‑effect of dextrose‑containing stock solutions 
is the transient hepatic dysfunction,[29] causing a transient 
disturbance of lactic acid hepatic metabolism (lactic 
acidosis type B).[30] Finally, administration of large volume 
of dextrose‑containing stock solutions, fails to suppress 
completely endogenous lipolysis, increases oxygen 
consumption with a parallel increase of carbon dioxide 
production (glucose oxidation), leading to an additional 
acid‑base disturbance, namely respiratory acidosis.[31]

D‑fructose administration
D‑fructose, regardless the route of administration (orally 

or i.v.), is converted into lactic acid, causing the appearance 
of lactic acidosis.[32] In addition, D‑fructose causes an 
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increment of nucleotide catabolism (endogenous acid 
production depends on the dose and the infusion rate), 
contributing to the appearance of MA.[33] It is worth 
noting that large doses of D‑fructose are considered toxic.

Hypophosphatemia
Hypophosphatemia, observed during TPN support 

therapy, is partially responsible for the occurrence and 
maintenance of MA. Hypophosphatemia observed 
in critically ill patients, is one of the main electrolyte 
disorders of the refeeding syndrome. Refeeding 
syndrome describes a constellation of metabolic 
disturbances that occur as a result of reinstitution 
of nutrition to patients who are starved or severely 
malnourished. In particular, hypophosphatemia occurs 
due to the utilization of phosphorus for the development 
of new cells and tissue regeneration.

Hypophosphatemia results in the reduction of serum 
phosphate levels and a reduction of the phosphate 
amount filtered through the glomerulus and which 
participates, together with bicarbonate and ammonium 
buffer system, in the renal removal of nonvolatile 
H+. Reduction of phosphate leads to a reduction of 
H+ elimination from renal tubules through the phosphate 
buffer system (reduction of urinary TTA).[33]

Previous studies have described a syndrome observed 
during TPN, which was due to hypophosphatemia.[34,35] 
The syndrome was characterized by paraesthesia, 
dysarthria, confusion, hyperventilation and lethargy. 
At cellular level, deficiency of 2, 3 diphosphoglycerate 
and adenosine triphosphate in red blood cells was the 
main finding, leading to increased risk for hemolysis 
and increased O2 affinity (impaired tissue release, tissue 
hypoxemia‑lactic acidosis).

Conclusions
Apart from the common causes, as diabetic ketoacidosis 

and kidney dysfunction, MA can be observed during 
TPN administration, commonly applied in every day 
therapeutic practice. However, when there is a strong 
indication for TPN administration, the use of newer 
solutions could reduce the incidence of MA because 
they contain a higher concentration of organic acid 
anions (potential base).[36] Nonetheless, MA represents 
a potentially dangerous problem in those patients 
receiving TPN and presenting with conditions as 
diarrhea or proximal renal tubular acidosis due to 
increased bicarbonate loss, acute or chronic renal failure 
due to decrease acid excretion and various forms of shock 
due to lactic accumulation. Therefore, close monitoring 

of parameters that are evolved in the assessment of 
acid‑base balance disturbance is necessary in order to 
achieve the early correction of MA.

Infusion of parenteral nutrition may cause MA of 
multifunctional reasoning, which should be early 
recognized and treated, trying to prevent further 
complications. As a result, in‑depth knowledge of 
pathophysiological mechanisms underlying metabolic 
disorders of TPN constitutes a very useful tool, especially 
in the hands of health practitioners responsible for TPN 
prescription and of clinicians treating critically ill patients.
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