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Vitamin A (VA), which is stored in several forms in most tissues, is required to maintain
metabolite homeostasis and other processes, including the visual cycle, energy balance,
epithelial cell integrity, and infection resistance. In recent years, VA molecules, also known
as retinoids, have been extensively explored and used in the treatment of skin disorders
and immune-related tumors. To date, several observational and interventional studies
have explored the relationship between VA status and the pathogenesis of diabetes. In
particular, VA micronutrients have been shown to regulate pancreatic development, b-cell
function, pancreatic innate immune responses, and pancreatic stellate cells phenotypes
through multiple mechanisms. However, there are still many problems to be proven or
resolved. In this review, we summarize and discuss recent and available evidence on VA
biological metabolism in the pancreas. Analysis of the effects of VA on metabolism in the
pancreas will contribute to our understanding of the supportive physiological roles of VA in
pancreas protection.

Keywords: vitamin A, diabetes, pancreas, development, function, immune response, pancreatic stellate cells
INTRODUCTION

The prevalence of diabetes mellitus (DM) is increasing rapidly worldwide. DM is a multifactorial
disease that is typically linked to genetic information, life style and environmental stimulus (1).
Nutrition metabolism, particularly most micronutrients in the organism, is also altered, either as
part of the cause or effect, during the development of DM.

Vitamin A (VA), an essential nutrient that is only obtained from the diet, contributes
significantly to the global health crisis affecting resource-constrained countries (2). Recent studies
on the pancreas have demonstrated that VA and its receptors are directly associated with glucose
metabolism (3–7). However, our understanding of the role of VA in the pathophysiological
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mechanisms of pre-DM and DM is still evolving. Thus, in this
review, we thoroughly reviewed and summarized data regarding
the influence and mechanisms of VA on endocrine function in
the developing pancreas and adult pancreas.
VA STORAGE IN THE PANCREAS

VA is a term including a variety of unsaturated organic compounds,
such as retinol, retinal, and retinoic acid. The predominant VA in
serum is retinol, which is derived from the carotenoid, b-carotene,
or from pro-VA. In addition to VA in the circulatory system,
hepatic stellate cells (HSCs) account for 80% of VA storage in the
body and are responsible for VA metabolic responses in target
tissues (8, 9). HSCs wrap its extended tentacles around the small
blood vessels formed by hepatic sinusoidal endothelial cells and
exhibit a remarkable capacity for regulation of cellular contraction
and blood flow (10, 11). Available evidence indicates that hepatic
endothelial cells can maintain the resting state of HSCs by
producing nitric oxide (12, 13). Vascular disorder caused by liver
injury in which nitric oxide synthase (endothelial Nitric Oxide
Synthase, eNOS) activity is weakened, can effectively promote HSC
activation with concomitant disappearance of the VA-storing lipid
droplets (14). Activated HSCs in turn exacerbate endothelial
dysfunction, the formation of this vicious circle promotes the
development of liver fibrosis (15, 16). Therefore, the interaction
between hepatic endothelial cells and HSCs may affect the storage,
transport, and usage of VA.
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Most retinoids are stored in the liver; however, this is not the
only organ involved in retinoid storage. In cells, retinol can be
bound to intracellular retinol binding proteins (CRBPs), among
which CRBP1 is the most abundant and widely distributed (17).
Several studies have shown that specific transport proteins for
retinol (RBP4) in the serum (18) and cells (19) are distributed
peripherally in a circular pattern within the pancreatic islets, and
their anatomical locations resemble those of a cells. The presence
of these retinoid-specific transport proteins in pancreatic islets
suggests that retinoids and their related proteins may be involved
in the metabolism of islets, supporting the endocrine functions of
islets through various mechanisms (20). VA metabolic and
signaling systems in cells were shown in Figure 1.

Pancreatic stellate cells (PSCs) exhibit VA-specific blue
fluorescence (22) and are the only cell type enriched in
droplets containing retinoid in human, rat, and mouse
pancreas tissues (23–25). Under physiological conditions,
quiescent PSCs are abundant in droplets of retinoids composed
of retinyl palmitate. However, the specific roles of retinoids in
quiescent PSCs have not yet been fully established. The results
from in vitro studies have shown that all-trans retinoic acid (AT-
RA) can promote the quiescent phenotype in cultured PSCs by
inhibiting the activation of a-smooth muscle actin (a-SMA) and
decreasing the expression of collagen synthesis (26–28). Zhou
et al. (29) found that prolonged VA deficiency (VAD) alters the
phenotype of resting islet stellate cells (ISCs, the subset of PSCs)
compared with that of myofibroblast-like cells with increased a-
SMA expression. Moreover, reintroduction of dietary VA to VA-
deficient mice restores endocrine hormone profiles and induced
FIGURE 1 | VA metabolic and signaling systems in cells. Retinol, retinal, and retinoic acid are three derivatives of VA. Each molecule has a cis and trans
configuration, and the most active form is retinol. Retinol has 6 biologically active isoforms: all-trans, 11-cis, 13-cis, 9,13-di-cis, 9-cis, and 11,13-di-cis, with all-trans
being the predominant form [21]. In cells, retinol can be converted to RA which regulates multiple nucleus transcription by activating the RXR-RAR, RXR-PPAR,
STAT 3/5.
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ISCs/PSCs to become “re-quiescent,” similar to the results
observed following induction of the VA-sufficient (VAS)-
controlled ISCs/PSCs phenotype. However, Trasino et al. (5)
detected a decrease in the CRBP1-positive PSC population in
VA-deficient mice, but did not observe increased expression of
a-SMA in PSCs. There is still no thorough experimental
evidence supporting for the relationship between retinoid loss
and PSC activation. Nevertheless, these seemingly contradictory
studies have suggested that intracellular retinoid storage in the
pancreas may be a key indicator for maintaining pancreatic
function by accelerating or preventing PSC activation in vivo.
VA STATUS IN PATIENTS WITH DIABETES

In the context of type 1 diabetes patients (T1D), Basu et al. and
Krempf et al. (30, 31) found that serum VA concentrations were
significantly decreased in patients with impaired glucose
tolerance (IGT) compared with those in normal individuals. In
another study, serum VA levels were also decreased in young
patients with T1D (32). Moreover, serum VA levels have been
shown to be elevated in patients with T2D or pre-T2D, such as
those with obesity and IGT (31–34). As a member of the
lipocalin family of proteins, RBP4 functions together with
transthyretin to transport retinol from the liver to peripheral
tissues by binding to specific cell receptors (35). High serum
RBP4 levels have been found to be positively associated with T2D
and obesity in many human studies (36, 37). A recent meta-
analysis also showed that increased RBP4 is a modest
independent risk factor for women with gestational diabetes
(GDM), similar to the results of case-control studies (38–41).
THE PROTECTIVE EFFECTS OF VA ON
THE PANCREAS

Effects of VA on Pancreas Development
By controlling cell specification and differentiation, VA-derived
RA signals, such as the retinoid receptors, retinoic acid receptors
(RAR) and retinoid X receptors (RXR), are essential for
pancreatic b-cell development in the underlying endoderm (7,
42–44). RA signals imitate the directional indicator signal of the
lateral mesoderm by regulating the expression of a series of
growth factors and participate in the differentiation of
uncommitted progenitor cells toward a pancreatic fate (45, 46).
More importantly, RA can promote the formation of pancreatic
duodenal homeobox-1 (Pdx1) foregut endoderm, which co-
expresses pancreas transcription factor 1a (Ptf1a), a
transcription factor indicative of pancreatic commitment (47).
At the expense of the exocrine dorsal pancreas, Notch signaling
controls early pancreatic differentiation through neurogenin 3
(Ngn3) repression, whereas RA promotes endocrine correlation
with specific inhibition of Notch signaling activities (48). In vitro,
RA also has important roles in chemical introduction protocols
for induction of embryonic stem cells to differentiate into
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insulin-producing cells (47, 49, 50). Programming of
ectodermal explants from Xenopus blastulae with a mixture
containing RA is sufficient to drive pancreatic gene expression.
The proportion of pancreatic tissue formed in such programmed
explants is related to the RA concentration (51). In addition to
the specific differentiation-promoting effects of RA on endocrine
cells induced by stem/progenitor cell, RA can also reprogram
cells to another cell type with or without reversion to pluripotent
stem cells (52–54). Centroacinar cells were transdifferentiated
into functional b-cells by regeneration after treatment with
RA (53).

The interactions of mesenchymal-epithelial cells are
necessary for proper maturation of tissues (55–57). Studies
have indicated that the pancreatic mesenchyme not only
influences the expansion of early pancreatic progenitors but
also regulates the proliferation of terminally differentiated
endocrine cells during the final phase of gestation (57).
Moreover, PSCs are important mesenchymal supporting cells
that can maintain the normal basement membrane to stabilize
the cell cytoskeleton and structure, thereby protecting the
normal function of parenchymal cells (58). Chen et al. (59)
found that human fetal PSCs lost intracellular retinoid-storing
lipid droplets and expressed specific activated stellate markers,
a-SMA, and extracellular matrix (ECM) proteins as the cultures
going on in vitro (e.g., collagen I, collagen IV, and fibronectin).
The crosstalk between multiple integrins (b1, a3 and a5) and
collagen I is essential for the cell adhesion, migration,
proliferation, and growth factor production in human fetal
PSCs, suggesting that human fetal PSCs may effectively
regulate the ECM microenvironment required for pancreatic
development. These findings initially elucidated the role of PSCs
in pancreas specification induced by RA.

Involvement of VA in Glucose
Homeostasis
In a study of insulin secretion, Chertow et al. (60) found that VA-
deficient puppies born from mothers with mild VAD exhibited
hyperglycemia and reduced glucose-stimulated insulin secretion.
Dietary VA administered in the form of RA restored euglycemia
and normalized islet insulin secretion. Both dietary VAD and
decreased endogenous production of RA by genetic intervention
blocked RA signals in mice, leading to reductions in fasting blood
glucose levels and hepatic gluconeogenesis (61, 62). Mice lacking
the RA-synthesizing enzyme aldehyde dehydrogenase-1 (ALDH-
1) showed lower expression levels of the key gluconeogenic
enzymes, glucose-6-phosphatase and phosphoenolpyruvate
carboxykinase, the latter of which is an RA-inducible target
gene containing a specific RA-receptor binding site as an RA
response element (61). Other findings indicated an additional
mechanism through which VA affects islet function by governing
islets size distribution was correlated with the a-SMA-positive
ISC pool in a mouse model of dietary VAD (29).

In studies of insulin responsiveness, RBP4 has attracted much
research interest in the last decade owing to its effects on insulin
resistance. Basic mechanistic studies have shown that elevated
serum levels of RBP4 can induce the expression of
February 2021 | Volume 12 | Article 620941
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phosphoenolpyruvate carboxykinase, the key gluconeogenesis-
related enzyme expressed in the liver, and further increase
circulating blood glucose levels via increased hepatic glucose
production (63, 64). Other studies focusing on target organs have
shown that overexpression of adipocyte-specific RBP4 increases
the levels of pro-inflammatory markers and lipases associated
with lipolysis, thereby promoting insulin resistance (65). Retinol-
RBP4 complex is recognized by stimulated by retinoic acid 6
(STRA6), which transports retinol from the binding protein into
cells (66, 67). STRA6 can effectively weaken the insulin response
because STRA6-mediated retinol transport induces receptor
phosphorylation, which in turn activates the Janus kinases 2/
signal transducer and activator of signal transducers and
activators of transcription 3/5 (STAT3/5) activation cascade,
which contributes to the expression of the STAT target gene
suppressor of cytokine signaling (66, 68). Additionally, mice
lacking ALDH-1 are protected from high-fat diet-induced
insulin resistance, potentially because retinaldehyde can
increase the expression of mitochondrial uncoupling protein 1
to drive uncoupled respiration and adaptive thermogenesis in
white adipose tissue, thereby promoting the development of the
brown fat phenotype, increasing energy expenditure, and
suppressing body weight increases. This may also be a
compensatory protection mechanism for the body. RA is the
ligand of peroxisome proliferator-activated receptor d (PPARd)
and classical RAR. RA supplementation in obese mice leads to
the upregulation of PPARd and consequent ectopic lipid
deposition. Therefore, PPARd affects lipid and glucose
homeostasis, thereby enhancing the expression of insulin
signaling-related genes and reducing insulin intolerance (69).
Furthermore, as retinoic transcription nuclear receptors, RARb2
agonists also dramatically reduce lipid peroxidation and
oxidative stress in the pancreas of both obese and diabetic
mice. This suggests that RARb2 agonists may be useful drugs
for T2D therapy and for the treatment of hepatic steatosis, which
may contribute to insulin sensitivity (70).

Effects of VA on Pancreatic Innate
Immune Responses
VA and its derivatives regulate adaptive and innate immune
responses through different mechanisms (71, 72). High VA levels
can block the Th1 response and promote the Th2 response (73).
According to studies on the effects of RA on monocytes/
macrophages (74–77), RA not only suppresses the secretion of
cytokines produced by Th1-type cells but also increases the
secretion of cytokines produced by Th2-type cells (78, 79).
Dalmas et al. (80) found that dendritic cells are endogenous
RA producers in pancreatic islets. Dendritic cells in islets showed
reduced ALDH activity in macrophages of interleukin (IL)-33–
treated VA-deficient mice compared with mice fed a chow diet,
indicating that IL-33–induced enhancement of b-cell function
required VA and its conversion to RA. A similar study showed
that VA exerted autoimmune protective effects in part by
inhibiting CD4+CD8+ interferon (IFN)-g-producing T cells,
but had no effect on the IL-17–producing T-cell population
(73, 81–83). Zunino et al. (84) demonstrated that intervention
Frontiers in Endocrinology | www.frontiersin.org 4
with VA dietary supplements protected against the development
of T1D in mice by efficiently inhibiting the infiltration of T cells
into the islets, thereby precluding the progression of insulitis and
diabetes. A study by Van et al. (85) reported that ATRA-treated
mice had fewer pancreatic islets and a reduced incidence of pre-
insulitis, even after cell transfer with CD4+CD25+ cells, whereas
mice from control group developed severe destructive insulitis.
Overall, VA may have applications in the treatment of
autoimmune inflammatory phenotypes to reduce the
formation of autoimmune diseases, such as T1D (78, 85–88).

GDM and T2D exhibit various features associated with
metabolic syndrome (89), such as obesity and low-grade
inflammation (90–92). Immunologic-metabolic crosstalk also
plays a role in the regulation of metabolic imbalances, which
affect the immune system and obesity-associated inflammation
(93). Few studies have focused on the effects of VA on the
immune system in GDM and T2D. However, these data based on
immunology-VA crosstalk provided us with insights into the
metabolic imbalances driving GDM and T2D pathogenesis.

Effects of VA on the PSC Phenotype
PSC activation is thought to be a key cellular event for pancreatic
fibrosis in the pathological processes of serious pancreatic
diseases (94). The effects of VA and its analogs on PSC
activation have been reported in several studies. A treatment
medium containing retinoids from activated PSCs causes
phenotypic reversal to the quiescent phenotype (26–28, 95, 96).
Transition of quiescent PSCs to an activated myofibroblastic
phenotype is marked by profound cytoskeletal changes and
elevated actomyosin contractility (97, 98). Chronopoulos et al.
(27) found that ATRA impairs the capacity of PSCs to remodel
the ECM to promote cancer invasion. ATRA-treated PSCs
showed a marked decrease in the overall traction force
generation during the early and late stages of the spreading
phase and had a severely reduced ability to deform the collagen
matrigel matrix, thereby confirming that ATRA treatment
inhibits force generation in PSCs. Thus, ATRA treatment
affected the ability of PSCs to sense extracellular mechanical
cues and induces cytoskeletal changes consistent with a resting-
like phenotype. Zhou et al. (29) found CRBP1 knockdown
restored the polygonal appearance of quiescent ISCs, and
reduced the expression of activation-related proteins, such as
a-SMA and collagen synthesis, thereby producing a resting-state
phenotype. Maintaining ISCs being quiescent state enhanced
glucose-induced insulin release and basal insulin secretion. Thus,
regulation of VA metabolism-related molecules is required to
maintain a quiescent ISC population and block islet fibrosis and
exocrine pancreatitis. She et al. (99) found that overexpression of
sterol regulatory element-binding protein-1c in activated HSCs,
which have many biological features in common with PSCs,
induces a drastic reversal of the cell phenotype to quiescent
HSCs. Resting HSCs contain sufficient triglycerides (100);
therefore, they can be used as a source of fatty acids for
esterification of retinol.

Interestingly, our group previously reviewed that PSCs share
similar biological phenotypes with “universal” pancreatic stem/
February 2021 | Volume 12 | Article 620941
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progenitor cells; for example, PSCs share localization, stem cell
markers, signaling pathways, and multi-potential differentiation
abilities with pancreatic stem/progenitor cells (101) and have
therefore been proposed as a new cell type of potential adult
pancreatic stem/progenitor cells. However, further studies are
still needed to determine whether and how RA signals suppress
the capacity of the molecule to mediate the differentiation of
PSCs into pancreatic endocrine cells. The effects of VA
metabolism on pancreas were shown in Figure 2.
CONCLUSION

Based on current evidence, VA status is relevant in the
pathogenesis of human DM and in the physiological processes
of pancreatic development, b-cell function, pancreatic innate
immune responses, and PSC phenotype. Further studies are
needed to elucidate all of the physiological functions of RA,
retinol, and their metabolites and to identify the mechanisms
mediating the unique effects of VA on target cells and
gene production.
Frontiers in Endocrinology | www.frontiersin.org 5
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FIGURE 2 | Effects of VA and its derivatives on pancreas. VA and its derivatives are reported to promote pancreas development, maintain glucose homestasis,
regulate pancreatic innate immunity, and transform PSCs phenotype.
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