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Does entry to center-based 
childcare affect gut microbial 
colonization in young infants?
Gerben D. A. Hermes2,4, Henrik A. Eckermann1,4, Willem M. de Vos2,3 & Carolina de Weerth1 ✉

Entry to center-based childcare (CC) at three months of life can be an important challenge for infants 
as it includes major stressors such as long maternal separations and frequently changing caregivers. 
Stress and the new environment may in turn alter the composition of the gut microbiota with possible 
implications for future health outcomes. As part of an ongoing longitudinal study, we investigated 
whether CC, as compared to being cared for by the parents at home, alters the composition of the 
gut microbiota, while accounting for known covariates of the infant gut microbiota. Stool samples 
of infants who entered CC (n = 49) and control infants (n = 49) were obtained before and four weeks 
after CC entrance. Using Redundancy analysis, Random Forests and Bayesian linear models we found 
that infant gut microbiota was not affected in a uniform way by entry to CC. In line with the literature, 
breastfeeding, birth mode, age, and the presence of siblings were shown to significantly impact the 
microbial composition.

The human gut microbiota refers to a complex and dynamic population of microorganisms that resides in the 
human gastrointestinal tract and has recently become object of much scientific endeavors. Intestinal bacteria as 
part of this ecosystem play central roles in human health and disease1,2. They are essential for nutrition, intestinal 
function, the education of the developing immune system and the protection of the host from invading microbial 
pathogens3–5. Via a bi-directional communication system, intestinal bacteria may even influence brain develop-
ment and behavior2,6–8.

Multiple factors contribute to the development of the human gut microbiota in infancy and the microbial 
composition becomes relatively stable within the first 3–5 years of life, although some reports describe a longer 
development phase9,10. Because intestinal bacteria influence the development of important host physiological 
systems within this early and critical developmental time period11 it is crucial to understand the factors that influ-
ence the establishment of the early gut microbiota. In the present study we will concentrate on an early life factor 
that can potentially disrupt healthy gut microbial colonization and negatively affect microbial composition: entry 
into childcare at the age of 3 months. In the following paragraphs, we will outline how gut microbial colonization 
occurs and why entering childcare at that young age may disrupt this process.

Gut microbiota development is a highly dynamic and individual process. The current consensus is that the 
first major exposure to microbes happens during the birthing process and is highly dependent on mode of deliv-
ery12–14. The first inoculation during natural childbirth clearly resembles the maternal fecal microbiota, with 
potential input from the vagina and other parts of the urogenital tract14. In contrast, infants delivered through 
a Caesarean section (C-section) are colonized with common skin and environmental microbes12. Nevertheless, 
this difference in microbiota composition between children born vaginally or by C-section seems to gradually 
decrease, although some later life impact has been reported15,16.

The initial inoculum initiates a succession of events leading to the development of a child’s own microbiome. 
In this dynamic process the microbial abundance increases over time, with large fluctuations in the microorgan-
isms present and their relative abundance17. Diversity generally increases, aerobes are succeeded by facultative 
and then strict anaerobes and, roughly up until the introduction of the first solid foods, a well-constrained range 
of stereotypical bacteria emerge in the faeces. Exclusive breast-feeding generally selects for genera specialized 
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in the utilization of complex human milk oligosaccharides, such as Bifidobacterium18 and to a lesser extent 
Bacteroides spp, as they can compete for the same ecological niche19. By studying both Western and non-Western 
populations it has been shown that differences exist with regards to community membership, but that the overall 
temporal dynamics are similar over populations, with aberrant development after C-section delivery, use of anti-
biotics or early termination of breast-feeding14,20–23.

Microbial colonization is characterized by large inter- and intra-individual variability, with large, abrupt, com-
munity shifts with interludes of relative stability of varying lengths of time17,24–26. Sometimes these shifts occur 
together with life events that likely instigate considerable environmental pressure, such as antibiotics use, fever, 
and introduction of formula feeding26. Animal models that use maternal separation (MS) to induce early life 
stress, suggest that early life stress is another such environmental pressure that can induce shifts in the microbiota. 
MS provokes an adult depressive and anxiety-like phenotype, along with altered immune function, activation 
of the hypothalamic-pituitary-adrenal (HPA) axis and disruption of the offspring’s microbiota27–31. De Palma et 
al. demonstrated the importance of the microbiota to induce these behavioral changes in animals. In germ free 
mice HPA axis regulation was altered by early life stress, but for the actual induction of the behavioral changes the 
microbiota was required. This indicated that MS-induced changes in host physiology led to intestinal dysbiosis, 
which in turn was needed for behavioral changes to occur32.

The entrance into center-based childcare (CC) typically starts at three months of life in the Netherlands and 
includes early life stressors such as long maternal separations, new and frequently changing caregivers and peers, 
and exposure as well as adaption to a new physical environment. Entering CC produces significant increases in 
cortisol levels as compared to being cared for in the home environment. Cortisol levels continue to increase until 
at least a month after entering33–36. CC has also been related to other symptoms and illnesses including diarrhea, 
respiratory illnesses, otitis media, and skin complaints37. These findings indicate that entering CC at this young 
age can be an early life stressor for infants.

This study explores the effects of the entrance to CC on the developing microbiota of 3-month-old infants 
by comparing infants attending CC to infants being cared for at home. In line with the above-mentioned animal 
studies, we expected CC to be associated with changes in microbial composition. Specifically, we tested for dif-
ferences in the relative abundances at a genus-like level (see Methods) as well as differences in alpha diversity by 
combining univariate Bayesian approaches with multivariate methods including the Random Forests machine 
learning algorithm that has previously been shown to be useful in microbiome data analyses21. We included 
breastfeeding as a potential protective factor for microbial development, and accounted for known confounders, 
namely birth mode, antibiotics, age, and the presence of siblings38.

Methods
Participants.  As part of a larger and ongoing longitudinal study (BIBO), 220 mothers were followed since 
the third trimester of pregnancy, to investigate the influences of early environmental and caregiving factors on 
child development. Uncomplicated singleton pregnancy, proficiency in the Dutch language, no drug use, and the 
absence of physical and mental health problems were criteria for initial inclusion. Eight of the 220 women were 
excluded due to preterm birth or for other medical reasons. In addition, 19 mothers discontinued participation 
in the study during the first three postpartum months because of personal circumstances. All remaining infants 
(N = 193) were healthy and born at full term (37 weeks). Infants who had used antibiotics (n = 4) were excluded 
from the current study. In the first four months of life, mothers collected 9 fecal samples from their infants. Two 
samples were available for use in this study: Ten weeks post-partum, before entrance to CC (PRE), and 4 weeks 
after the PRE sample (POST). After eliminating infants who did not provide stool samples for both time points, 
the final sample size consisted of 49 infants who entered CC (group CC) and 49 infants who were cared for at 
home (group HOME). Table 1 shows demographic variables for both groups. The age of the HOME group infants 
was slightly lower than that of the CC group, both for sample PRE (p < 0.001) as for sample POST (p < 0.001), 
using Welch’s t-test. There were no significant differences between groups for any other of the shown variables. 
Within the CC group, infants varied in the number of half-days of childcare per week (Mdn = 4, IQR = 3–4). 
We tested in a separate analysis whether the number of half-days was associated with gut microbiota composi-
tion beyond just the grouping variable, but this effect did not modify the conclusions (Supplementary Table 1). 
This study and all its experimental protocols were approved by and carried out in accordance with the Ethical 
Committee of the Faculty of Social Sciences, Radboud University Nijmegen (ECG/AvdK/07.563). Informed con-
sent was obtained from each mother.

Microbiota covariates.  The mothers received diaries towards the end of their pregnancy with instructions 
to take weekly notes about breastfeeding and formula-feeding from week 1 until week 27 after birth. For each 
week, the average number of breast- and/or formula-feedings per day were noted. To determine the effect of 
breastfeeding we defined two breastfeeding variables: the average number of feedings per day before and during 
the investigative period (i.e. birth to when the PRE-sample was obtained and PRE to when the POST-sample 
was obtained). The average number of breastfeedings included the feeding of expressed breastmilk through a 
bottle. We included the breastfeeding variables, age, siblings and C-section as covariates in all linear models. For 
5 infants (4 in CC (8%), 1 in HOME (2%)) breastfeeding data was missing completely. For the univariate analyses 
the missing values were imputed using multiple imputation (see methods). For the multivariate analysis and 
visualization the original data was used.

Feces collection, DNA isolation and microbiota profiling.  The parents were instructed to collect the 
fecal samples at home and to store them at −20 °C. For transportation, samples were kept in coolers and then 
stored at −20 °C and later at −80 °C before being processed at the Laboratory of Microbiology at Wageningen 
University. DNA isolation from fecal samples has been described elsewhere in detail39. In brief, DNA was isolated 
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CC (n = 49) HOME (n = 49) p-value

Gender

Male 29 25 0.417

Female 20 24

Age (days) PRE

mean (sd) 87.8 ± 16.0 76.7 ± 6.3 <0.001

Min 58 68

Max 123 90

Age (days) POST

mean (sd) 118.4 ± 16.1 106.5 ± 5.9 <0.001

Min 90 97

Max 154 116

Maternal Age (years)

mean (sd) 32.9 ± 3.0 32.2 ± 3.6 0.306

Min 25.1 24.9

Max 42.0 40.1

Birthweight (grams)

mean (sd) 3630.4 ± 508.9 3636.0 ± 438.4 0.955

Min 2708 2810

Max 4600 4700

Breastfeeding (Birth - PRE)

mean (sd) 5.4 ± 2.9 5.7 ± 2.3 0.558

Min 0 0

Max 11.4 8.9

Breastfeeding (PRE - POST)

mean (sd) 4.0 ± 2.9 3.8 ± 2.8 0.832

Min 0 0

Max 8.5 8.2

Formula-feeding (Birth - PRE)

mean (sd) 1.5 ± 2.4 1.4 ± 2.1 0.558

Min 0 0

Max 7.7 7.0

Formula-feeding (PRE - POST)

mean (sd) 1.8 ± 2.4 2.0 ± 2.3 0.832

Min 0 0

Max 5.9 6.0

Proportion breastfeeding (Birth - PRE)

mean (sd) 0.8 ± 0.4 0.8 ± 0.3 0.558

Min 0 0

Max 1 1

Proportion breastfeeding (PRE - POST)

mean (sd) 0.7 ± 0.5 0.6 ± 0.5 0.832

Min 0 0

Max 1 1

Siblings

Yes 25 32 0.186

No 23 17

C-section

Yes 6 3 0.294

No 42 45

Table 1.  Descriptive statistics for demographic variables of infants and mothers included in the present 
study. Notes. CC = center-based childcare. Breastfeeding (Birth - PRE) = average number of breastfeedings 
per day for the time period between birth and when the first stool sample was obtained. Breastfeeding (PRE - 
POST) = average number of breastfeedings per day for the time period between the collection of the first and the 
seconds stool sample. Proportion breastfeeding (Birth - PRE) = proportion of total feedings per day that were 
breastfeeding for the time period between birth and when the first stool sample was obtained. Breastfeeding 
(PRE - POST) = proportion of total feedings per day that were breastfeeding for the time period between the 
collection of the first and the seconds stool sample was obtained. Siblings = presence of siblings at time of birth.
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using a combination of column purification and Repeated-Bead-Beating. Purity and concentration of DNA were 
assessed with a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, USA). The analysis 
was then performed utilizing a previously benchmarked custom made, phylogenetic microarray, the Human 
Intestinal Tract Chip (HITChip)40,41. The HITChip contains a duplicated set of 3,631 probes, which target the 
V1 and V6 hypervariable regions of the 16 S rRNA gene of 1140 intestinal bacterial phylotypes. After extraction 
of DNA, the full-length 16S rRNA gene was amplified by PCR using primers T7prom-Bact-27-for and Uni-
1492-rev41. This was followed by in vitro transcription and labelling of the resulting RNA with Cy3/Cy5 before 
hybridization to the array. The signal intensity data from the microarray hybridizations were collected from the 
Agilent G2505C scanner (Agilent Technologies) using the Agilent Feature Extraction software, version 10.7.3.1 
and pre-processed using an in-house MySQL database and custom R scripts. Each scanner channel from the array 
was spatially normalized separately using polynomial regression, followed by outlier detection and filtering in 
each set of probes with a χ2 test. Each sample was hybridized at least twice to ensure reproducibility. Duplicate 
hybridizations with a Pearson correlation <0.95 were not considered for further analysis. Microbiota profiles 
were summarized to genus-like 16S rRNA gene sequence groups with a sequence similarity >90% referred to as 
species and relatives (‘et rel.’). Measurements of probes that belong to the same phylotype were normalized with 
Robust Probabilistic Averaging42,43. Log10-transformed hybridization signals were used as a proxy for bacterial 
abundance.

Statistical analyses.  Microbiota analysis.  All analyses were performed in R version 3.544. Bacterial rich-
ness was calculated at the probe level by using an 80% quantile threshold for detection of each individual probe. 
Diversity within a sample is termed alpha diversity and was calculated using the Shannon metric. HITChip sig-
nals were transformed to relative abundance. To determine the dynamics of microbial groups we calculated their 
coefficient of variation (CoV). CoV is a standardized measure of dispersion defined as the ratio of the standard 
deviation (σ) to the mean (µ). For the redundancy analysis (RDA) and the Bayesian robust linear models we 
applied centered-log-ratio (clr) transformation45. The clr-transformation of relative abundances allows for the 
application of statistical methods that have been developed for real random variables, such as RDA and the 
Bayesian models46. To determine the multivariate effects of CC and the number of half-days in CC on overall 
microbiota composition, we performed redundancy analysis (RDA) while accounting for the following variables 
that are known to influence microbiota composition: breastfeeding (average number of feedings during and 
before the investigative period), birth mode (C-section vs natural birth), age in days, and the presence of siblings 
using the function rda from the vegan package47.

To determine the univariate effects of CC entry on alpha diversity and each bacterial group individually, we 
performed Bayesian hierarchical robust linear models as described by Krushke et al.48. Bayesian data analysis 
provides several advantages over classical null hypothesis group comparison methods. These include richer infor-
mation about parameter estimates, as the method provides complete distributional information about model 
parameters such as means and standard deviations, including credibility intervals of all possible combinations of 
these parameters. Furthermore, Bayesian data analysis delivers more precise information about the uncertainty 
when estimating group differences. The robust linear model presented by Krushke et al. in particular has advan-
tages over standard linear models: The model is able to accurately estimate the mean (µ) and standard deviation 
(σ) when outliers are present as it utilizes the student t-distribution instead of the gaussian distribution. 
Furthermore, standard linear models assume homogeneity of variance between groups while this assumption is 
often violated in the context of differential abundance testing48. In addition, an environmental factor could lead 
to a change in the variance of a distribution rather than (only) a change in the mean. This possibility is not con-
sidered in standard models. Our model allows the standard deviation σ to vary between the groups by modeling 
it as a linear function of the grouping variables CC, time, siblings and birth mode. The model can be written as:

ν µ σ∼y T( , , )i

where

µ β β β β β β β

β β σ β β β
β β β β

= + × + × + × × + × + × +

× + × + × × = + × + ×
+ × × + × + × + + × ×

σ σ σ

σ σ σ σ

CC time CC time age bf
sib csec sib csec CC time

CC time sib csec sib csec
and

i i j

i

0 [ ] 1 2 3 4 5 6

7 8 0 1 2

3 4 5 6

Besides µ (mean) and σ (standard deviation (SD)), the model consists of the parameter ν , which represents 
the normality parameter (low values lead to long and heavy tails, whereas as ν  increases, the distribution 
approaches the gaussian distribution). The j in β i j0 [ ] indicates that each subject can deviate from the overall mean 
(often referred to as partial pooling or mixed effects modeling).

The goal is to infer differences in µ and σ of the assumed distribution of relative bacterial abundances between 
the subgroups (CC PRE, CC POST, HOME PRE and HOME POST), while accounting for the effects of the other 
environmental variables. This implies multiple comparisons of model parameters. In the Bayesian framework we 
can use a normal prior centered at 0 with a standard deviation of 1 for each comparison of interest across all the 
models so that the Bayesian 95% credible interval (CI) of the effect size is always more likely to include zero com-
pared to the classical confidence interval, which makes Bayesian inference a more conservative approach49. The 
robust linear models were fitted using the package brms, which uses the probabilistic programming language 
Stan50,51. Stan utilizes Hamilton Monte Carlo (HMC), a Markov chain Monte Carlo (MCMC) method, to estimate 
parameters. To ensure proper convergence of the chains, we investigated individual chains using Shinystan and 
screened diagnostic parameters (divergent transitions and rhat values)52. To visualize the posterior predictive 

https://doi.org/10.1038/s41598-020-66404-z


5Scientific Reports |        (2020) 10:10235  | https://doi.org/10.1038/s41598-020-66404-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

intervals we utilized the tidybayes package53. Brms allows multiple data sets as input, which enables the use of 
multiple imputation. We used predictive mean matching (PMM) as implemented in the mice package54 to impute 
the missing data points within the breastfeeding variable. PMM is robust against misspecification of the imputa-
tion model while performing as well or better than common parametric imputation models under various miss-
ingness conditions with up to 20–30% missing values55,56. In contrast, the variable breastfeeding had 10% missing. 
The multiple imputation resulted in 10 new datasets that were used to fit the Bayesian models. We also explored 
the same models using listwise deletion.

Finally, to evaluate whether we could predict childcare entrance based on microbiota composition after one 
month, we used the Random Forests machine learning algorithm (RF) with relative abundance data. RF is a 
tree-based ensemble learning method that is well suited for classification based on microbial abundances57. We 
performed repeated 10-fold cross-validation (10 × 10) to estimate the classification accuracy using the caret 
package58.

Results
Infant microbiota composition and dynamics.  Overall, the infant microbiota was dominated by 
only a few genera from four Phyla; Actinobacteria, Firmicutes (specifically members from the Class Bacilli), 
Bacteroidetes and Proteobacteria. At the genus level, these were Bifidobacterium spp. with a mean relative abun-
dance of 51%, followed by facultative anaerobes from the Bacilli (bacteria related to Streptococcus (16.8%), 
Enterococcus (3.4%), Lactobacillus plantarum et rel (2.9%) and Granulicatella (1.0%)). The cumulative mean rel-
ative abundance of these groups was more than 75%. Additionally, the variation in relative abundance of these 
taxa at the population level was very high. For instance, the relative abundance of Bifidobacterium spp. ranged 
from completely dominating (89%) to almost absent (0.2%) (Fig. 1A,B). Apart from being the most dominant 
taxa at the population level these were also among the most variable within subjects as determined by their CoV 
(Fig. 1C). The fact that the most abundant taxa display the highest variability implies a highly variable microbiota.

Effects of childcare entry on infant microbiota.  Redundancy analysis of the effects of childcare entry on 
infant gut microbiota composition.  We determined whether childcare (CC) entry affected overall microbiota 
community composition using Redundancy Analysis (RDA). RDA is a direct gradient analysis technique which 
summarizes linear relationships between components of response variables (microbiota) explained by a set of 
explanatory variables (CC and covariates) by multiple linear regression of the multiple response variables on the 
multiple explanatory variables. To determine how the different environmental variables interact with and impact 
the microbiota, we calculated their simple effects (i.e. the effect of the environmental variable on the microbiota 
without any other covariates) as well as the conditional effects (the impact on the microbiota when the effect of 
the other variables are partialled out). This allowed us to determine the effect of each variable on its own, but also 
their combined effects.

We did not find a significant effect of CC entry or the number of half-days in CC (Supplementary Table 1), 
compared to staying at home, on the microbiota. Neither in separation nor combined with other environmental 
variables. Nevertheless, birth mode, feeding mode, age, and siblings, were significantly correlated to the microbi-
ota in concordance with literature38. The strongest effect was from breastfeeding, with decreasing effect sizes for 
birth mode, siblings and age. All simple and conditional effects and corresponding p-values and their respective 
effect sizes (R2) are shown in Table 2. R2 reflects the percentage of variation explained out of the total microbiota 
variation; i.e. a higher R2 implies a stronger effect. All these findings are combined in a tri-plot visualizing the 
relation of the environmental variables with each other and their resulting effect on the microbiota (Fig. 2A). The 
relation between the variation explained by the environmental variables and their overlapping conditional effects 
is visualized in a Venn diagram (Fig. 2B).

Bayesian group comparisons of effects of entry on individual microbial groups and microbiota diversity.  To gain 
more insight on the association of CC entry and other environmental variables with individual bacterial groups and 
microbiota diversity, we performed Bayesian hierarchical robust linear models. Bayesian approaches provide more 
detailed information about the uncertainty when estimating parameters such as group differences or slope param-
eters in linear models. The robust linear model as described by Kruschke et al. is particularly well suited to model 
distributions when outliers are present and to address common model violations in standard linear models such as 
heterogeneity of variance48. In the following, for covariates, effect refers to the magnitude of the slopes whereas for 
the group comparisons effect refers to the difference in the means. To compute the difference in means between two 
groups (e.g. CC-PRE – CC-POST) the calculated posterior distributions of their means are subtracted. We make 
a statement with confidence about the effect size being larger than zero when 95% of the posterior distribution 
excludes zero. The use of listwise deletion instead of multiple imputation led to similar results.

Figure 3 shows the posterior distributions of interest whereby red coloring indicates that we can make a 
claim with confidence. Within the CC or HOME group (Fig. 3A), temporal effects were as follows. Within CC, 
bacteria related to Streptococcus bovis and Staphylococcus were lower after one month, whereas within HOME 
bacteria related to Granulicatella and Aerococcus were higher, while those related to Enterobacter aerogenes and 
Oxalobacter formigenes were lower. We did not detect differences in relative bacterial abundances between the two 
groups (Fig. 3B, right graph) before CC entry, while after one month the relative abundance of the Proteobacteria 
related to Enterobacter aerogenes and Klebsiella pneumoniae was lower in the HOME group, while that of 
Streptococcus intermedius was higher (Fig. 3B, left graph).

Figure 3C shows that infants born via C-section showed higher relative abundances of bacteria related to 
Granulicatella, Aerococcus and Micrococcaceae, but lower relative abundances of Bifidobacterium. Infants with 
siblings were found to have lower levels of Staphylococcus and also a lower SD of this taxon. A lower SD was also 
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Df Variance F Pr (>F) R2

Simple effects

Time 1 0.317 1.4265 0.129 0.008

CC 1 0.274 1.2314 0.256 0.007

Age 1 0.436 1.9677 0.028* 0.011

Sibling 1 0.456 2.0602 0.019* 0.011

Birth-mode 1 0.559 2.5288 0.015** 0.014

Breastfeeding 2 1.605 3.7085 0.001*** 0.032

CC × Time 3 0.781 1.172 0.226 0.019

Conditional effects

Age 1 0.436 2.0652 0.018* 0.004

Sibling 1 0.598 2.8338 0.003** 0.010

Birth-mode 1 0.609 2.8843 0.002** 0.010

Breastfeeding 2 1.663 3.9364 0.001*** 0.027

Table 2.  RDA models output.

Figure 2.  The impact of birth mode, breastfeeding, siblings and age on the infant gut microbiota. (A) 
Redundancy analysis (RDA) visualizing microbiota composition of all fecal samples (n = 196) colored by the 
number of breast-feedings and the size of the points scaled by age in days. Individuals born by C-section are 
represented as triangles. RDA displays and explains the variation explained in the microbiota, constrained 
by the predictor variables. Blue arrows depict the significant environmental variables and grey arrows the 
abundance of bacterial groups. Length of the arrows is a measure of fit. The longer the arrow the higher 
the association. (B) Venn diagram visualizing the partitioning of the variation explained by the significant 
predictors. ***P < 0.001, **P < 0.01, *P < 0.05.
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confirmed for Enterococcus, without differences in the mean. Finally, as can be seen in Fig. 3D, a higher number 
of daily breast-feedings was associated with more bacteria related to Staphylococcus and less to Enterococcus, 
Collinsella, Eggerthella lenta and Oxalobacter formigenes. A higher age was positively associated with bacteria 
related to Streptococcus mitis, Streptococcus intermedius and Gemella.

We used the same approach to compare microbiota diversity between groups. Table 3 shows the estimated 
difference in the means and standard deviations between the groups as well as the magnitude of the slopes for 
the covariates. Within the CC or HOME groups our model estimates that there is no temporal effect on diversity 
as well as between the two groups before CC entrance. However, when comparing HOME and CC one month 
after entrance, the average diversity was estimated to be lower in the CC group. Figure 4 shows the means of the 
Shannon diversity index per group with 95% CI (black point range) as well as the observed values (black points) 
and the posterior predictive interval (blue bar). To calculate the predictive interval, we used the median for the 
average number of breast-feedings and the median age at PRE and POST, respectively. The Bayesian predictive 
intervals illustrate the uncertainty of the predictions: the estimated distributions for the CC/HOME groups are 
very much overlapping despite the mean difference, whereas C-Section seems to have a stronger impact on diver-
sity. Age and breastfeeding did not reach our predefined threshold to make a statement with confidence about the 
effect being >0 and there was no difference in the estimated standard deviations between groups.
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Micrococcaceae
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Figure 3.  Bayesian hierarchical robust linear model posterior distributions for individual bacterial group 
differences. (A) within group effects, (B) between group effects and (C) C-section and siblings (D) age and 
breastfeeding. For the covariates (D) the x-axis refers to the magnitude of the slopes whereas for the group 
comparisons (A–C) it refers to the difference in the means. Taxa are shown in red when the probability that the 
absolute effect size is >0 exceeds 0.95, given our model and the data.
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Random Forest analysis of non-linear relationships between childcare entry and microbiota composition.  Finally, 
we used the random forests (RF) algorithm to determine if we could accurately classify whether an infant 
belonged to the HOME or CC group after one month. The latter would indicate a characteristic effect of CC on 
the infant gut microbiota. The benefit RF has over the linear models is its ability to detect non-linear associations. 
The prediction accuracy using repeated cross validation was close to random classification with 53.5%, suggesting 
that CC did not produce a strong uniform shift in microbiota composition.

Comparison Median 95% CI

Difference in means

CC PRE - HOME PRE 0.01 [−0.18, 0.19]

HOME POST – HOME PRE 0.11 [−0.01, 0.23]

CC POST – CC PRE −0.12 [−0.26, 0.03]

CC POST – HOME POST −0.22 [−0.41, −0.03]

Covariates

C-section:yes – C-section:no 0.43 [0.15, 0.7]

Sibling:yes – Sibling:no −0.11 [−0.27, 0.06]

Age 0.06 [−0.07, 0.2]

Breastfeeding −0.06 [−0.13, 0.01]

Difference in SD

CC PRE – HOME PRE 0.07 [−0.02, 0.17]

HOME POST – HOME PRE 0.01 [−0.09, 0.1]

CC POST – CC PRE 0.02 [−0.13, 0.19]

CC POST – HOME POST 0.08 [−0.04, 0.22]

C-section:yes – C-section:no 0.06 [−0.06, 0.24]

Sibling:yes – Sibling:no −0.02 [−0.12, 0.07]

Table 3.  Estimated model parameters for microbiota diversity (Shannon).

Figure 4.  Bayesian hierarchical robust linear model group posteriors for microbiota alpha diversity. Means of 
Shannon diversity per group with 95% CI are shown with the black point range. The observed values are shown 
as black points within the blue bar. The Bayesian posterior predictive intervals are shown in blue. The predictions 
were made using the median for average number of breast-feedings and median age at PRE and POST.
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Discussion
This study examined the effect of entry into center-based childcare (CC) on gut microbial composition of 
3–4-month-old infants by comparing the microbial composition between infants that entered CC at 3 months 
and infants that were cared for at home (HOME) at that age. For all infants, we assessed microbial composition 
at two time points: At 10 weeks of age (PRE), which was before CC entrance for the CC group, and 4 weeks later, 
or 4 weeks after entrance for the CC group (POST). We accounted for known covariates including age, presence 
of siblings (yes vs no), delivery mode (natural vs C-section) and the average number of breast-feedings per day in 
the period before measurement of the microbiota. We combined multivariate (Redundancy analysis and Random 
Forest algorithm) with Bayesian univariate statistical methods to test our hypothesis that CC entrance is associ-
ated with changes in microbial composition over time.

The microbiota of all the infants exhibited a low microbial diversity as it was dominated by only a few typical 
bacterial groups from the phylum Actinobacteria (Bifidobacterium spp and Collinsella), facultative anaerobes 
from the Firmicutes (such as Streptococcus spp, Lactobacillus spp and Enterococcus spp), Proteobacteria (E.coli 
and bacteria related to Enterobacter aerogenes) and Bacteroidetes (Bacteroides spp). These findings are in line with 
findings from previous studies in the US and Europe (Germany, Finland, Sweden and the Netherlands)38,59,60.

In contrast to breastfeeding, birth mode, age, and the presence of siblings, CC was not associated with gut 
microbiota composition according to Redundancy analysis (RDA). In line with that, we could not achieve higher 
accuracy than by chance using the Random Forest algorithm to classify CC vs HOME using the POST samples. 
Bayesian univariate analyses, that also take the individuality of the starting microbiota into account, did show a 
few taxa to be differently distributed between the two groups in the POST samples. In the HOME group the rela-
tive abundances of Proteobacteria related to Enterobacter aerogenes and Klebsiella pneumoniae were lower while 
that of Streptococcus intermedius was higher compared to the CC group at time POST. Except for bacteria related 
to Streptococcus intermedius, these bacterial groups were also heavily influenced by other environmental variables. 
Using the same Bayesian approach, we observed a lower Shannon alpha diversity in the CC group compared to 
the HOME group at time POST. All in all, our results show that entrance to CC does not result in a complete and 
homogeneous ‘disruption’ or ‘dysbiosis’ of the microbiota as reported for rodents subjected to early life stress.

There are several possible explanations for the lack of a general effect of the entrance to childcare on infants’ 
gut microbiota. First, although CC entrance may be considered a major stressor in a young infant’s life that is 
accompanied by substantial rises in stress hormones33–36, it might not be comparable in severity to maternal 
separations in rodents. E.g. in our CC sample infants were taken care of by surrogate caregivers, while in mater-
nal separation paradigms with rodent pups, there is no surrogate caregiver during the separation27. Also, Dutch 
infants typically attend childcare for around 2 days a week61; this contrasts with practices elsewhere in the world 
and may not be enough exposure to produce major effects on the microbiota. Second, rodents lack the geno-
typical variation found in human populations and are kept and studied in controlled laboratory environments 
in which the individual variation in gut microbiota is small62,63. Hence, in rodent models the effects of environ-
mental pressures can be studied in complete isolation. This may lead to a much greater response to an individual 
stressor than it normally would when other (stronger) environmental drivers of microbiota composition are 
present. Finally, the infant gut microbiota at 3–4 months of age is still in an unstable, dynamic, highly individual 
developmental stage17,24–26,38. This was confirmed by a very large intra and inter-individual microbiota varia-
bility in our population. Microbiota at these young ages appears to show large fluctuations, probably resulting 
from a myriad of environmental influences. Additionally, infants of the present study went to different childcare 
centers, which exposed them to different built environments, caregivers and other infants with different microbi-
omes, thereby increasing the variety of environmental influences on the microbiota. Nevertheless, a generalizable 
stress-related effect across centers would most likely have been detectable, despite these (unknown) and potential 
center-specific confounding variables. Other factors than those we controlled for are e.g. fever, contact with ani-
mals, and/or genetics26,38. The instability of the infant microbiota might also possibly be an intrinsic property of 
the dynamics of the gut microbial colonization and may obscure the effects of individual environmental factors 
that may each have only a modest influence on gut microbiota composition. In other words, an environmental 
factor would need to be very strong to generate a universal disruption in the microbial composition that overrides 
the normally occurring fluctuations in infant gut microbiota in the first months of life.

The results of our study showed significant associations with known important environmental factors. Their 
effects were often partly overlapping and impacted similar bacterial groups (Fig. 2A,B), possibly indicating 
an accelerated colonization process in infants born by C-section. For instance, being older and being born by 
C-section were both positively associated with the abundance of the highly variable facultative anaerobes from 
the Bacilli and related to S. bovis and S. mitis L. plantarum and Granulicatella at the expense of Bifidobacterium 
and several Proteobacteria. Contrarily, a younger age and being born vaginally were both associated with higher 
relative abundances of Bifidobacterium, Collinsella and several Proteobacteria in line with previous research of 
(Dutch) infants59,64. The latter pattern, except for Collinsella, was also associated with having no siblings. C-section 
delivery was associated with higher Shannon diversity. This increase in diversity may be the result of the lower 
proportions of the generally dominant Bifidobacterium in this group of infants, as has been previously reported65.

Breastfeeding showed the strongest association with infant gut microbiota composition. However, surpris-
ingly, breastfeeding was only weakly related to Bifidobacterium, but was rather more associated with increases 
in mainly Staphylococcus and to a lesser extent, Proteobacteria (Serratia, E. coli, Klebsiella pneumoniae and 
Enterobacter aerogenes et rel) and Bacteroides vulgatus et rel. Breastfeeding was also strongly associated with a 
decrease in Enterococcus and Collinsella. In recent years in European countries, infant formulae have often been 
supplemented with prebiotics such as short chain galacto-oligosaccharides (scGOS) alone, or in a mixture with a 
chicory root derived inulin containing long chain fructo-oligosaccharides (lcFOS)66. Prebiotics mimic the bifido-
genic effect of oligosaccharides found in human milk thus preventing the difference in Bifidobacterium abun-
dance that was previously associated with formula feeding60. Furthermore, human milk itself has been found to 
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contain bacteria, including Proteobacteria, as well as Staphyloccocus, which is generally associated with the skin67. 
The latter has also been previously found to be depleted in formula-fed infants in concordance with our earlier 
findings60. In total, the environmental variables explained a non-redundant ~5.9% of the microbiota composition. 
This is in the same order of magnitude as previously reported in other human studies68. This means that in infants 
generally only a relatively small proportion of the gut microbial composition can be explained by the factors that 
are most commonly accounted for.

Despite the fact that we did not find an effect of CC entrance on the microbiota at the group level even after 
using different statistical approaches, it is not possible to conclude that there was no disrupting effect on the 
microbiota at the individual level. Individual infants did show large changes in the microbiota between the two 
assessments, but these changes were not uniform across individuals. Although temporal microbial dynamics at 
the population level, with regards to bacterial succession patterns, have been shown to be universal over different 
cultures and geography59 it is known that this process is very variable between individuals17,24–26. Future studies 
including larger populations and especially repeated measurements from before and after life changing events 
are necessary to determine whether the resulting bacterial shift is typical or deviant for a specific individual. 
Subsequently, potential sub-groups of infants displaying specific signatures of dysbiosis can be determined, and 
their microbial signatures related to possible adverse health outcomes later in life. However, given the impor-
tance of gut microbial colonization for the development of the microbiota-gut-brain axis and the future health 
of the individual11, it is also possible that the colonization process might be robust against perturbations such as 
entrance to CC, hence explaining the lack of microbial change at the group level.

This is the first human study that examined the effect of entrance to center-based childcare on microbiome 
development. The strengths are that it included a relatively large population of healthy infants with a natural 
variation of environmental variables and an ecologically valid stressor as opposed to typical rodent studies that 
generally include low number of individuals under strictly controlled laboratory conditions. Another strength is 
that we used a combination of different multivariate and Bayesian univariate statistical methods to analyze the 
data. However, there are also some weaknesses with regards to this study. Our population was ethnically and 
socio-economically uniform69. This can be seen as an advantage, but it precludes generalization to the larger 
population. Also, to conclude whether the microbiota is disrupted at an individual level, more sample time points 
than just PRE and POST would be needed. For example, it would be interesting to follow infants entering child-
care for a longer period of time, as elevated infant cortisol has been observed throughout the first months in 
childcare34. Larger and more stable differences in the gut microbiota of infants attending childcare and those 
being taken care of at home, may only appear after a longer period of time in childcare.

Conclusion
Entering center-based childcare has been shown to produce large increases in stress hormones in infants and 
can therefore be considered a significant stressor in early life. Childcare includes maternal separation and in 
animal models early life maternal separation has been found to lead to large shifts in gut microbial composition. 
However, in the present study infant gut microbiota was not impacted in a uniform way by entering childcare at 
the age of 3 months. Large shifts in gut microbiota were observed, but were idiosyncratic to individual infants 
and were also observed in infants not attending center-based childcare. In general, the infants’ gut microbiota was 
found to be intrinsically very dynamic. Other environmental variables, namely breastfeeding, birth mode, age, 
and the presence of siblings, were shown to significantly impact the microbial composition, with effects that were 
largely overlapping and typically included the most abundant and variable taxa. Our results suggest that in infants 
the stress-inducing effects of childcare entry might not be as strong as the maternal separation paradigms of 
animal models. Alternatively, general effects may potentially only become visible after longer periods of childcare 
entry and when infants are older and their gut microbiota has become more stable.
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