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Abstract: (1) Background: The objective of this review was to synthesize available data on the use
of machine learning to evaluate its accuracy (as determined by pooled sensitivity and specificity)
in detecting keratoconus (KC), and measure reporting completeness of machine learning models in
KC based on TRIPOD (the transparent reporting of multivariable prediction models for individual
prognosis or diagnosis) statement. (2) Methods: Two independent reviewers searched the electronic
databases for all potential articles on machine learning and KC published prior to 2021. The TRIPOD
29-item checklist was used to evaluate the adherence to reporting guidelines of the studies, and
the adherence rate to each item was computed. We conducted a meta-analysis to determine the
pooled sensitivity and specificity of machine learning models for detecting KC. (3) Results: Thirty-five
studies were included in this review. Thirty studies evaluated machine learning models for detecting
KC eyes from controls and 14 studies evaluated machine learning models for detecting early KC eyes
from controls. The pooled sensitivity for detecting KC was 0.970 (95% CI 0.949–0.982), with a pooled
specificity of 0.985 (95% CI 0.971–0.993), whereas the pooled sensitivity of detecting early KC was
0.882 (95% CI 0.822–0.923), with a pooled specificity of 0.947 (95% CI 0.914–0.967). Between 3% and
48% of TRIPOD items were adhered to in studies, and the average (median) adherence rate for a
single TRIPOD item was 23% across all studies. (4) Conclusions: Application of machine learning
model has the potential to make the diagnosis and monitoring of KC more efficient, resulting in
reduced vision loss to the patients. This review provides current information on the machine learning
models that have been developed for detecting KC and early KC. Presently, the machine learning
models performed poorly in identifying early KC from control eyes and many of these research
studies did not follow established reporting standards, thus resulting in the failure of these clinical
translation of these machine learning models. We present possible approaches for future studies
for improvement in studies related to both KC and early KC models to more efficiently and widely
utilize machine learning models for diagnostic process.

Keywords: keratoconus; diagnosis; early detection; artificial intelligence; machine learning; reporting
completeness

1. Introduction

Corneal diseases are the second largest cause of blindness worldwide, behind only
cataract in overall importance [1]. Keratoconus (KC), one of the most common corneal
conditions, is characterized by bilateral, progressive corneal thinning that results in an
abnormally steep cornea, and decreased vision [2]. The disease primarily affects young
adults and children [3]. Globally KC patients comprise the second largest group of patients
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requiring corneal transplants, and there are thus associated risks of surgical complications
and immune rejection of the graft [4,5].

In the medical field, the recent availability of biomedical data has led to the advent
of the big data era [6,7], creating opportunities for more comprehensive data-informed
decision making. The challenge for the clinician has expanded beyond data collection to
encompass the interpretation of a greater amount of information. Artificial intelligence
(AI) is the ability of a machine to learn and display intelligence [8]. Machine learning
methods represent a branch of AI where computational algorithms can be used to process
and identify patterns in large amounts of data at a scale that is beyond the ability of humans
to synthesize. Through advanced pattern mining, innovative detection solutions, referred
to as automatic detection models, can be based on these massive amounts of data [9].

Increased detailed data about the cornea resulting from corneal topography and to-
mography systems are essential for diagnosing KC. They are especially useful for detecting
early indications of KC, prior to the development of typical KC clinical characteristics [10].
Corneal tomography provides parameters and images [11], which are laborious to ana-
lyze manually. This has also been a motivating force in the use of machine learning for
KC detection since 1995 [12], with a growing volume of machine learning research being
conducted in KC detection over the following years.

There is no existing study that summarizes the use of machine learning in KC, identifies
limitations, and makes recommendations for future directions. The aim of this study and
meta-analysis was to systematically review all currently available literature to determine
accuracy (through the use of pooled sensitivity and specificity) of machine learning in the
detection of KC, addressing this knowledge gap.

2. Materials and Methods
2.1. Literature Search Strategy

A web-based systematic literature search was performed for articles published from
inception through 28 February 2021, on PubMed, Web of Science, and MEDLINE (Figure 1).
Database searches were supplemented by hand-search and grey literature search techniques
to ensure all publications in this field were included. The protocol for this systematic review
was registered on PROSPERO (registration number CRD42021237167).
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PubMed, Web of Science, and MEDLINE were interrogated using search strings
pertaining to keratoconus and machine learning. Key words were used by search engine
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and designated filters according to PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines (Figure 1). The search string was ((keratoconus
AND [artificial intelligence]) OR (keratoconus AND [machine learning]) OR (keratoconus
AND algorithms) OR (keratoconus AND [automatic scoring]) OR (keratoconus AND
[automatic detection])).

The following sections define the inclusion and exclusion criteria.
Primary research articles, meeting the following requirements were deemed suitable

for inclusion in this review:

- Full text original papers that evaluated machine learning algorithms in the diagnosis
of KC;

- No limit on the year of publication was applied;
- Publications only in the English language were included;
- Publications in which KC was the only corneal condition evaluated.
- Criteria for exclusion:
- Publications evaluating other corneal diseases without focusing only on KC;
- Publications evaluating the efficacy of machine learning in treating KC (treatments);
- Review papers;
- Publications in which no machine learning algorithms were included, but only statisti-

cal research was undertaken;
- Non-English publications.

The review articles were imported into Endnote (version X9), which was used to
perform the initial screening. Two independent reviewers (K.C. and S.S.) screened the
titles and abstracts of journals for possible qualifying studies, and inconsistencies were
settled by consensus. Both reviewers thoroughly analyzed all potential qualifying studies
for inclusion/exclusion. (Figure 2).
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2.2. Data Extraction

A customized analysis form was generated in Microsoft Excel. The following items
were reviewed from each study: authors, publication year, country, study objective, sample
size, reference standard diagnosis methods, corneal imaging systems used to generate data
and machine learning method used, indicators of studies’ quality, and the number of true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). If the
number of TP, FP, TN, or FN were not presented, then these values were derived from the
data provided, such as sensitivity and specificity. The meta-analysis omitted studies that
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lacked data on TP, FP, TN, or FN or that lacked the capacity to measure these data to create
a two-way contingency chart.

2.3. Reporting Completeness of Machine Learning Studies in KC

We evaluated the reporting completeness of machine learning research in this study
by referring to the TRIPOD (transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis; www.tripod-statement.org (accessed on 7 June 2021))
statement relevant to model development. This statement contains a 20-item checklist,
totaling 31 items when all sub-items are included. The checklist includes questions about
the title, abstract, background, methods, results, discussion, supplementary material, and
funding information. Two items (5c, i.e., “Give details of treatments received, if relevant”,
and 11, i.e., “Provide details on how risk groups were created, if done”) were omitted
since they were irrelevant to the research covered in this review. Each study was therefore
evaluated on a total of either 28 or 29 possible items. This total number of items varied
between 28 and 29 since item 14b (i.e., “If nothing on univariable analysis (in methods
or results) is reported, score not applicable”) may be rated as “not applicable” and was
thus omitted from the calculation of reporting adherence. If a study had data for several
models, we extracted data for the model with the highest performance. Each included item
received a score of “1” for adherence and a score of “0” for non-adherence. Multiple items
(items 1, 2, 3a, 4b, 5a, 6a, 7a, 7b, 9, 10a, 10b, 10d, 13a, 13b, 14a, 15a, 16, 17, 20 and 22) in the
TRIPOD analysis were derived from several sub-items (the sub-items for each number can
be found in www.tripod-statement.org (accessed on 7 June 2021)). The score was therefore
determined by the combination of several elements rather than a single element. The results
of each TRIPOD item for each paper and the level of reporting adherence for each TRIPOD
item were documented systematically in a spreadsheet.

For each machine learning study, we calculated the TRIPOD adherence score by
dividing the sum of TRIPOD items adhered to by the entire number of applicable TRIPOD
items in the study. The average adherence score was calculated using the median value
of the adherence score across all studies. For each TRIPOD item, the adherence score was
calculated by dividing the number of studies that adhered to the item by the total number
of applicable studies for the item. The median value was used to represent the average
adherence score for each TRIPOD item.

2.4. Statistical Methods

All analyses were configured in ‘mada’ and ‘metafor’ package from RStudio Server Pro
(PBC, Boston, MA) (Version 1.3.1056-1) for Windows. To measure the overall machine learn-
ing performance for KC detection, the sensitivity and specificity values for all presented
models were pooled, following the bivariate meta-analysis method of Reitsma et al. [13]
using linear mixed model techniques. The bivariate method retains the two-dimensional
nature (sensitivity and specificity) of the original data. Pairs of sensitivity and specificity
are jointly evaluated, accommodating any correlation that could exist between sensitivity
and specificity using a random effects approach. This was accomplished using the ‘mada’
package (Version 0.5.10) from RStudio. The 95% confidence interval (CI) of the sensitivity
and specificity of various imaging systems were compared. The Deeks’ funnel asymmetry
test, developed especially for diagnostic test accuracy [14], was used to determine if there
was cross-study publishing bias [15].

A hierarchical summary receiver-operating characteristic (HSROC) curve was fitted.
Each individual study was presented as a circle and plotted within the HSROC curve.
The summary point was represented by a dot surrounded by a 95% confidence interval
(95% CI).

www.tripod-statement.org
www.tripod-statement.org
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2.5. Outcomes Measure

The primary outcome indicator was the diagnostic accuracy of machine learning
algorithms through a variety of imaging technologies for the identification of KC, as
determined by the pooled sensitivity and specificity values.

3. Results
3.1. Search Collection

Of the initial literature search, 532 studies were retrieved, and 280 duplicates were
omitted. Following review of the title, abstract, and full text, 35 studies were included in
the review. There was an increasing trend of machine learning studies in KC published
over time (Figure 3), with the earliest study published in 1995 by Maeda et al. [12] and
increasing to over 30 studies in 2020.
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3.2. Search Characteristics

The 35 articles on machine learning and KC were reviewed were classified into three
categories based on their aims: detecting KC eyes from controls, differentiating early KC
from controls, and identifying different KC severities. Each study focused on one or more
of these aims, with 12 research papers focused on KC versus control, 4 research papers
focused on early KC versus control, 1 article focused on KC severity, and 18 publications
with multiple aims. There was no study examining the progression of KC.

Following classification of studies with multiple aims, the following results were
obtained: 30 studies [12,16–44] have evaluated machine learning models to distinguish
KC from controls, 14 studies [20,21,27–29,31,33,37,39,44–48] have evaluated machine learn-
ing models to distinguish early KC from controls, and 6 studies [12,33,35,40,42,49] have
assessed machine learning models in KC staging. In this review, we utilize the term early
KC rather than subclinical KC or forme fruste KC, due to a lack of unified criteria for these
terms [20,21,27–29,31,33,37,39,44–50]. Meta-analyses were conducted on each group of
studies. A summary of the final 35 studies included in this current study can be found in
Table 1.
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Table 1. Identified studies using machine learning in detection of KC and early KC.

Study Objectives First Author Year No. of Centers
Involved (Country) Sample Size No. of KC/Early

KC Eyes
Machine Learning

Method/s Used
Data Type (No. of

Parameters)
Corneal Imaging

Modality
Evaluation
Methods

Detect KC eyes
from controls

Maeda et al. [12] 1995 1 (USA) 176 44
Combined discriminant

analysis and
classification tree

P (8) TMS-1 Internal

Kalin et al. [16] 1996 NR 106 5
Combined discriminant

analysis and
classification tree

P (8) TMS-1 Validation study

Rabinowitz et al. [17] 1998 1 (USA) 241 99 Linear discriminant
analysis P (5) TMS-1 Internal

Twa et al. [18] 2005 NR (USA) 244 112 Decision tree P (36) Keratron Internal

Bessho et al. [19] 2006 2 (Japan) 165 63 logistic regression P (na) Orbscan II External

Saad et al. [20] 2010 NR 143 31 Discriminant analysis P (51) Orbscan IIz Internal

Smadja et al. [21] 2013 1 (France) 325 148 Decision tree P (55) GALILEI Internal

Mahmoud et al. [22] 2013 3 (Colombia, USA,
Switzerland) 407 163 logistic regression P (na) GALILEI External

Saad et al. [23] 2014 1 (France) 166 64 Discriminant analysis P (7) Orbscan IIz Internal

Silverman et al. [24] 2014 1 (UK) 204 74 Multiple methods P (161) Artemis-1 Internal

Koprowski et al. [25] 2015 1 (Brazil) 746 477 Decision tree P (11) Corvis Internal

Shetty et al. [26] 2015 1 (India) 128 85 Logistic regression P (na) Pentacam Internal

Kovacs et al. [27] 2016 1 (Hungary) 120 60 Neural network P (na) Pentacam HR Internal

Ruiz et al. [28] 2016 1 (Belgium) 648 454 Support vector machine P (22) Pentacam HR Internal

Ambrosio et al. [29] 2017 2 (Brazil, Italy) 756 276 Multiple methods P (na) Pentacam HR &
Corvis ST Internal

Silverman et al. [30] 2017 1 (USA) 141 30 Discriminant analysis P (240) Artemis-1 &
Pentacam Internal

Lopes et al. [31] 2018 5 (UK, Brazil, Italy,
USA) 3648 370 Multiple methods P (na) Pentacam Internal &

External

Chandapura et al. [32] 2019 NR 439 218 including 102
early KC Random forest P (27) Pentacam & OCT Internal

* Dos Santos et al. [41] 2019 1 (Austria) 142 70 Convolutional neural
network I OCT Internal

Issarti et al. [33] 2019 1 (Belgium) 624 312 Neural network P (28) Pentacam Internal
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Table 1. Cont.

Study Objectives First Author Year No. of Centers
Involved (Country) Sample Size No. of KC/Early

KC Eyes
Machine Learning

Method/s Used
Data Type (No. of

Parameters)
Corneal Imaging

Modality
Evaluation
Methods

Kamiya et al. [42] 2019 1 (Japan) 543 304 Convolutional neural
network I AS-OCT Internal

* Lavric et al. [43] 2019 NR 3000 1500 Convolutional neural
network I SyntEyes model Internal

Leão et al. [34] 2019 2 (Brazil, Italy) 574 223 Discriminant analysis P (na) Corvis ST NR

Bolarin et al. [35] 2020 1 (Spain) 169 107 logistic regression P Sirius Internal

Castro-Luna et al. [36] 2020 1 (Spain) 60 30 Naive Bayes P CSO Internal

* Issarti et al. [37] 2020 2 (Belgium) 812 508 Neural Network P (90) Pentacam HR Internal &
External

Kuo et al. [44] 2020 1 (Taiwan) 326 170 Convolutional neural
network I TMS-4 Internal

Lavric et al. [38] 2020 NR 3151 1181 including 791
early KC Multiple methods P (443) SS-1000 CASIA

OCT Internal

* Shi et al. [39] 2020 1 (China) 121 38 Neural network P (49) UHR-OCT &
Pentacam HR Internal

Velazquez-Blazquez
et al. [40] 2020 1 (Spain) 178 104 including 61

early KC Logistic regression P (27) Sirius Internal

Detect early KC
eyes from controls

Saad et al. [20] 2010 NR 143 40 Discriminant analysis P (51) Orbscan IIz Internal

Smadja et al. [21] 2013 1 (France) 224 47 Decision tree P (55) GALILEI Internal

* Ventura et al. [45] 2013 NR (Brazil) 204 68 Neural network P (41) Ocular Response
Analyzer Internal

Chan et al. [46] 2015 1 (Singapore) 128 24 Discriminant analysis P (na) Orbscan IIz Validation study

Kovacs et al. [27] 2016 1 (Hungary) 75 15 Neural network P (na) Pentacam HR Internal

Ruiz et al. [28] 2016 1 (Belgium) 261 67 Support vector machine P (22) Pentacam HR Internal

Ambrosio et al. [29] 2017 2 (Brazil, Italy) 574 94 Multiple methods P (na) Pentacam HR &
Corvis ST Internal

Xu et al. [47] 2017 1 (China) 363 77 Discriminant analysis P (na) Pentacam HR Internal

Lopes et al. [31] 2018 5 (UK, Brazil, Italy,
USA) 3537 259 Multiple methods P (na) Pentacam Internal &

External

Issarti et al. [33] 2019 1 (Belgium) 389 77 Neural network P (28) Pentacam Internal
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Table 1. Cont.

Study Objectives First Author Year No. of Centers
Involved (Country) Sample Size No. of KC/Early

KC Eyes
Machine Learning

Method/s Used
Data Type (No. of

Parameters)
Corneal Imaging

Modality
Evaluation
Methods

Cao et al. [48] 2020 1 (Australia) 88 49 Multiple methods P (11) Pentacam Internal

* Issarti et al. [37] 2020 2 (Belgium) 812 117 Neural Network P (90) Pentacam HR Internal &
External

* Kuo et al. [44] 2020 1 (Taiwan) 354 28 Convolutional neural
network I TMS-4 Internal

* Shi et al. [39] 2020 1 (China) 121 33 Neural network P (49) UHR-OCT &
Pentacam HR Internal

KC Severity Yousefi et al. [49] 2018 multi-center (Japan) 3156 Density-based clustering P (420) CASIA OCT NA

Study objectives: The aim of the research. It was either detecting KC from controls or detecting early KC from controls in this study. No. of Centers involved: The number of centers
involved is reported, NR indicated the center is not reported explicitly. Data type (No. of parameters): The kind of data used as inputs to machine learning models. It was either images
(graphics) or parameters in this study (numeric). The letter ‘P’ denoted parameters, while the letter ‘I’ denoted images. Corneal Imaging modality: Where the imaging system/systems
of the input data was derived. Evaluation methods: Described how the model’s performance was determined. External (evaluation in an independent database), internal (bootstrap
validation, cross validation, random training test splits, temporal splits). Asterisks (*) indicated studies that were excluded from the meta-analysis.



J. Clin. Med. 2022, 11, 478 9 of 19

Of the 35 studies, 33 focused on developing machine learning models, while 2 [16,46]
involved external validation of existing models (in a context other than that used for
the model development). Four studies [19,22,31,37] developed and externally validated
models in the same study (in a separate data set, eliminating random training test splits,
and cross-validation), and used data from several centers. The remaining studies ana-
lyzed data from a single center (1 study [29] analyzed data from two centers) and in-
ternally validated the developed model (e.g., via cross validation, random training test
splits). Studies were conducted in different countries, including the United States of
America (USA) (n = 4) [12,17,18,30], Japan (n = 3) [19,42,49], France (n = 2) [21,23], the
United Kingdom (UK) (n = 1) [24], India (n = 1) [26], Brazil (n = 2) [25,45], Belgium
(n = 3) [28,33,37], Hungary (n = 2) [27,33], Austria (n = 1) [41], Australia (n = 1) (conducted
by our group [48]), Spain (n = 3) [35,36,40], Taiwan (n = 1) [44], and China (n = 2) [39,47],
and 4 investigations [22,29,31,34] were cross-ethnicity studies.

3.3. Detecting KC from Controls and Meta-Analysis

A total of 26 studies [12,16–40] developed machine learning models that were based
either directly on captured parameters or as calculated parameters from corneal topography
or tomography systems. The number of parameters used in these studies ranged from 5 to
443 (Table 1). The machine learning algorithms explored in these studies included decision
tree, discriminant analysis, logistic regression, naive bayes, neural networks, random forest,
and support vector machine. The majority of these studies (n = 23) employed a single
machine learning algorithm, while 4 studies [24,29,31,38] compared several algorithms.

Four articles directly analyzed images [41–44] generated by corneal topography or
tomography systems, as opposed to the image parameters. Convolutional neural networks,
a common deep learning-based method, were used in all these studies.

Meta-analysis was performed on 26 of the 30 studies, with 4 studies [37,39,41,43] being
excluded due to inadequate data needed to quantify the TP, FP, TN, and FN. Asterisks (*)
indicated studies that were excluded from the meta-analysis in Table 1. Deeks’ funnel plot
(Supplementary Figure S1) was used to assess possible publication bias. No evidence of
publication bias was apparent (p = 0.91).

The pooled sensitivity and specificity for KC versus control were 0.970 (95% CI
0.949–0.982) and 0.985 (95% CI 0.971–0.993). Pooled performance was computed using a
bivariate random-effects model and represents a summary estimate of the sensitivity and
specificity values (i.e., TP, FP, TN, and FN) obtained from each individual research [13]. The
most frequently employed imaging technologies used were Pentacam (including Pentacam
HR), TMS (including TMS-1 and TMS-4), and Orbscan (including Orbscan II and Orbscan
IIz). Five studies analyzed data from the Pentacam, four studies from TMS, three studies
from Orbscan, and other studies used data from Corvis, GALILEI, Sirius, or Keratron.
For the studies based only on Pentacam data, the pooled sensitivity was 0.987 (95% CI
0.971–0.994) and the pooled specificity was 0.989 (95% CI 0.963–0.997). In the case of TMS,
the pooled sensitivity was 0.943 (95% CI 0.897–0.969) and the pooled specificity was 0.978
(95% CI 0.954–0.989), whereas for the Orbscan data, the pooled sensitivity was 0.947 (95%
CI 0.886–0.976) and the pooled specificity was 0.983 (95% CI 0.917–0.997) (Table 2).

Table 2. Diagnostic performance of artificial intelligence in detection of KC versus controls using
different imaging modalities.

Imaging Modalities Pooled Sensitivity Pooled Specificity

Pentacam (n = 5) 0.987 (95% CI 0.971–0.994) 0.989 (95% CI 0.963–0.997)
TMS (n = 4) 0.943 (95% CI 0.897–0.969) 0.978 (95% CI 0.954–0.989)

Orbscan (n = 3) 0.947 (95% CI 0.886–0.976) 0.983 (95% CI 0.917–0.997)
Pooled total (n = 26) 0.970 (95% CI 0.949–0.982) 0.985 (95% CI 0.971–0.993)
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3.4. Detecting Early KC from Controls and Meta-Analysis

A total of 13 studies [20,21,27–29,31,33,37,39,45–48] evaluated machine learning mod-
els to assess early KC from controls using corneal topography parameters. These studies
used fewer parameters compared to those utilized to identify KC in controls, varying
from 11 to 55 parameters (Table 1). Ten studies applied a single algorithm and three com-
pared several algorithms (one of which was conducted by our group [48]). Additionally,
one study [44] built the model by combining convolutional neural networks and TMS
derived images.

Ten studies were included in the meta-analysis, out of a total of fourteen. As shown by
an asterisk (*) in Table 1, four studies [37,39,44,45] were omitted from the meta-analysis due
to inadequate evidence to calculate the TP, FP, TN, and FN. Assessment of publishing bias
with Deeks’ funnel plot (Supplementary Figure S2) found no significant effect (p = 0.18).

Overall, the pooled sensitivity was 0.882 (95% CI 0.822–0.923) and pooled specificity
was 0.947 (95% CI 0.914–0.967) for early KC versus control. The most widely used imaging
machines in the detection of early KC from control eyes were the Pentacam (including
Pentacam HR) and Orbscan (including Orbscan II and Orbscan IIz). Six studies used
Pentacam data, two studies used Orbscan data, and an additional two studies used data
from either GALILEI, or a combination of Pentacam and Corvis. Early KC detection
(Table 3) was correlated with a pooled sensitivity of 0.882 (95% CI 0.795–0.935), and a
pooled specificity of 0.935 (95% CI 0.874–0.967) for models utilizing Pentacam data. When
using Orbscan data, a pooled sensitivity of 0.842 (95% CI 0.504–0.965), and a pooled
specificity of 0.958 (95% CI 0.821–0.991) were obtained.

Table 3. Diagnostic performance of machine learning on detection early KC using different imag-
ing modalities.

Imaging Modalities Pooled Sensitivity Pooled Specificity

Pentacam (n = 6) 0.882 (95% CI 0.795–0.935) 0.935 (95% CI 0.874–0.967)
Orbscan (n = 2) 0.842 (95% CI 0.504–0.965) 0.958 (95% CI 0.821–0.991)

Pooled total (n = 10) 0.882 (95% CI 0.822–0.923) 0.947 (95% CI 0.914–0.967)

The pooled diagnostic performance of detecting KC compared to controls was superior
to that of early KC with sensitivity (0.970 (95% CI 0.949–0.982) vs. 0.882 (95% CI 0.822–0.923)
and specificity (0.985 (95% CI 0.971–0.993) vs. 0.947 (95% CI 0.914–0.967)). This difference
implied that early KC detection using machine learning algorithms are still in their infancy.

The Pentacam tomography system was the most commonly used corneal imaging
device for both the KC and early KC categories. In Figure 4, we compare studies that used
the Pentacam data set to diagnose KC and early KC. Diagnostic efficiency for detecting KC
was superior to that for early KC, as shown by the higher sensitivity (y-axis) and specificity
(x-axis) in the plot.
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Figure 4. Summary receiver-operating characteristic curves of the diagnostic performance of machine
learning detecting KC (black circle) and early KC (triangle) from controls using Pentacam parameters.
The white circle is the summary estimate point (sensitivity (0.956 (95% CI 0.897–0.982), specificity
(0.968 (95% CI 0.931–0.985)) of studies using Pentacam parameters. The Y-axis represents sensitivity,
with higher values indicating greater sensitivity, and the X-axis represents false positive rate, which
was equal to 1-specificity, with lower values indicating greater specificity.

3.5. Detection of Different KC Severities

Along with detecting KC eyes as a distinct category, six of the published studies
grouped their KC eyes into clinical stages and used machine learning algorithms to identify
each stage separately. These studies classified KC eyes into various categories based on
a variety of measures. Kamiya et al. [42] classified eyes into Grades 1–4 according to the
Amsler–Krumeich (AK) classification scheme, which is mostly focused on keratometry,
but often incorporates refraction and pachymetry [51]. Bolarin et al. [35] and Velazquez-
Blazquez et al. [40] graded eyes into Grade I–IV plus or mild KC, using a different clas-
sification system named RETICS, based on corrected distance visual acuity (CDVA) [51].
Another study, Issarti et al. [33] classified their KC eyes into mild and moderate stages using
a self-defined classification (described at the end of Table 4), whereas Maeda et al. [12] did
not specify their staging method. Table 4 summarizes these findings. Since no consistent
grading system was used for classifying KC severity in these studies—and indeed none is
globally established [52]—the findings were therefore not directly comparable.

Table 4. Characteristics of machine learning-assisted studies for detection of KC severity.

First Author Year Severity Grading
(No. of Eyes)

Definition/Classification
Methods

Corneal Imaging
Modality

Reported Sensitivity in
Detection of Each Severity Level

Maeda et al. [12] 1995
Mild (15)

Moderate (18)
Advanced (11)

NA TMS-1
Mild: 100%

Moderate: 100%
Advanced: 91%

Kamiya et al. [42] 2019

Grade 1 (108)
Grad e2 (75)
Grade 3 (42)
Grade 4 (79)

Amsler–Krumeich
classification AS-OCT

Grade 1: 88.9%
Grade 2: 68%

Grade 3: 71.4%
Grad e4: 74.7%

Issarti et al. [33] 2019 Mild KC (220) a Self-defined Pentacam 98.81%

Issarti et al. [33] 2019 Moderate KC (229) b Self-defined Pentacam 99.91%

Bolarin et al. [35] 2020

Grade I (44)
Grade II (18)
Grade III (15)
Grade IV (15)

Grade IV plus (15)

RETICS grading Sirius

Grade I: 59.1%
Grade II: 33.3%
Grade III: 40%
Grade IV: 80%

Grade IV plus: 86.7%

Velazquez-Blazquez
et al. [40] 2020 Mild KC (42) RETICS grading Sirius Mild KC: 63%

a A clear cornea, tomography maps compatible with KC, a Fleischer ring at the apex base, slight thinning, and
anterior and/or posterior corneal steepening; b Slit-lamp findings compatible with KC, corneal thinning at the
apex, Vogt striae, a clearly visible Fleischer ring and corneal tomography compatible with KC; The severity of KC
was considered to be increasing from Grade 1 to Grade 4 and for Grade I to Grade IV plus.
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The first attempt at proposing a data-driven KC classification scheme was based on
density-based clustering by Yousefi et al. [49] using OCT-based parameters from 3156 eyes.
They identified five clusters that could represent five stages of KC, ranging from normal to
advanced KC.

3.6. Reporting Completeness of Machine Learning Studies in KC

Publications had only low to moderate adherence to TRIPOD items, ranging between
3% and 48%, with a median of 28%. Each item on the TRIPOD checklist was adhered to by
between 0% and 69% of studies, with an average (median) of 23% (Figure 5). Eight items
were reported in over 50% of studies, whereas ten items were reported in fewer than 10% of
studies. Supplementary Table S1 details results of each TRIPOD item for each paper and the
level of reporting adherence for each TRIPOD item. The title, abstract, predictor assessment,
management of missing data, model performance assessment, and description of partici-
pant characteristics were the most poorly rated items, with no research fulfilling all require-
ments. In 69% of studies (24/35) [16,17,21–24,27,30–33,35–40,42–44,46–49], the medical con-
text explanation was well stated, elucidating the reason for creating the models for detecting
KC. Moreover, in 66% (23/35) of studies [12,16,17,20–23,25,28,30–34,36,41–44,46–49], the
type of transformation of continuous predictors (e.g., linear or nonlinear) were specified.
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4. Discussion

This is the first comprehensive meta-analysis on KC and machine learning, and it
has demonstrated that by using data from a variety of corneal imaging devices, machine
learning can reliably distinguish KC eyes from control eyes (pooled sensitivity > 0.90).
However, the performance of machine learning models in distinguishing early KC eyes from
controls was poorer, with the maximum pooled sensitivity of 0.88. Overall completeness of
model was evaluated using the TRIPOD guidelines, and standard reporting compliance was
found to be inadequate in all published KC machine learning research so for undertaken.

Machine learning models in KC were developed for a variety of imaging systems.
Models themselves are therefore not directly interchangeable owing to the different input
expectations. This may have a detrimental effect on the clinical translation of these models.
For example, Smadja et al. developed a machine learning model that had a sensitivity
of 93.6% and a specificity of 97.2% for discriminating normal eyes from early KC in their
study [21]. This model was constructed using the anterior and posterior asphericity asym-
metry indices (AAI and OSI), corneal volume, paracentral mean keratometry, and anterior
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chamber depth derived from a GALILEI machine. Parameters such as AAI and OSI are not
accessible in other corneal tomography imaging systems, such as Pentacam [53], suggesting
that the generated model cannot be utilized in clinics equipped with the Pentacam system.
Pentacam is one of the most frequently used corneal tomographic technologies in clinical
practice [11], and our research discovered that the Pentacam is the most frequently utilized
source of data in the publications we reviewed [26–28,31,33,37,47,48]. As a consequence,
despite the fact that the model created by Smadja et al. showed a high level of performance
for early KC diagnosis, it is not generally applicable.

The machine learning models that used data from the Pentacam demonstrated a higher
pooled sensitivity and specificity in detecting KC and early KC from control eyes compared
to other imaging machines. This is likely due to the ability of the Pentacam machine to
generate a wider spectrum of data than other systems, including data on the front cornea,
the back cornea, corneal pachymetry, and other areas of the anterior eye segment [54,55].

A review of the literature on the application of AI to evaluate corneal topography
for the diagnosis and early detection of corneal ectasias was recently published [56]. That
article summarized significant advances in corneal imaging and the application of AI in
KC as viewed by an Eye Care Professional, a biomedical engineer, and a data scientist. It
concluded that AI in corneal imaging may improve refractive surgery and diagnosis of
corneal ectasias. That review focused exclusively on corneal imaging modalities and their
performance in relation to AI. In contrast to that study, our systematic review included meta-
analysis-additional information on individual studies as well as the pooled performance
of existing machine learning models for detecting KC as well as early KC. In addition, we
also reported on the assessment of completeness of items included in the machine learning
models using the TRIPOD reporting system. We analyzed each study by its objectives
and showed that while substantial research had been undertaken on KC detection, much
less had been undertaken on early KC detection, KC severity detection, and detection of
progression. Our analysis also evaluated the parameters utilized in prior studies, indicating
that no study had analyzed all available parameters despite the extensive use of corneal
imaging data. Additionally, we compared and contrasted the corneal imaging systems
used. These aspects have not been previously reviewed.

4.1. Reporting Completeness of Machine Learning Studies in KC

Only when all model components are completely and transparently reported can
the model’s potential clinical usefulness be appropriately assessed. The main objec-
tive of machine learning models is to help clinicians in making medical decisions about
an individual patient [57]. Users or doctors will need information on the clinical set-
ting in which the diagnosis is needed (e.g., primary care, secondary care, or the gen-
eral population), as well as the patients for whom the model is appropriate. Addi-
tionally, they will need information about which clinical data, referred to as predic-
tors in the model, are necessary for model usage, as well as the definition of the pa-
tient outcome to which the model is referring. Unfortunately, this systematic review
suggests that the studies on machine learning and KC often lacked sufficient descrip-
tion. Only 34% provided target setting [12,19,24,30,31,33,35,39,42,44,47,49], 23% defined
all necessary predictors precisely [17,21,23,25,34,39,45,48], 26% exactly defined the patient
outcome [21,28,29,39,44,46–49], and none completely described participant characteristics
(e.g., basic demographics, clinical features, and available predictors).

Attempting to replicate the process of model construction using one’s own data, ma-
chine learning researchers working in KC will need to specify information on the approach
used to handle any missing data, the full prediction model, and a comprehensive explana-
tion of all model-building procedures. However, only one study (3%) defined the whole
model-building process [28], 14% provided the complete prediction model [20,21,26,35,47],
and none explained how missing data were handled explicitly.

One factor contributing to the low percentage of adherence is that not all elements are
relevant to all machine learning research. For example, it is impractical to mathematically
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specify the final model in a study using non-regression techniques such as random forest,
support vector machine, or neural network. While this is a legitimate rationale, it is
important to refer to relevant TRIPOD items and provide as much information about
model creation as possible in order to guide the modelling choices and facilitate subsequent
validation.

4.2. Limitations in the Current Literature

For the studies that reported the number of parameters employed, the range was
between 5 and 443. Ruiz et al. used 22 Pentacam parameters to construct a machine
learning model for identifying KC and early KC [28]. The parameters they employed, such
as corneal curvature and pachymetry, were mostly those found on Pentacam’s four-map
selectable report, which is widely used in clinics to assess KC. As noted in their research,
these 22 clinically relevant parameters were chosen from a pool of over 1000 accessible
from Pentacam. Such pre-modelling parameter selection was observed in the majority of
reviewed studies [12,17–24,26,27,29–40,42–45,47–49]; although, it was unclear why certain
predictors were chosen as inputs. As a consequence of this filtering, the role of unexplored
parameters in the identification of KC has remained unclear.

While the majority of research developed novel models for KC detection, only
four [19,22,31,37] conducted external validation using other data sources. One common
concern is that local data sets used for validation are unlikely to be representative of the
target population on a global scale [57]. When evaluated on data sets collected in the United
States of America and Switzerland, the machine learning model developed in a cross-ethnic
research by Mahmoud et al. [22] performed differently. This implies that most of the current
identified models cannot be used in a broad clinical setting since their performance may
vary and it will most likely be poorer when applied to other external clinics or nations.
We recommend that any model be externally evaluated on a large scale to understand this
variation. This is especially true given the relatively small sample sizes reported in each
study; international collaboration would therefore be highly advantageous to move this
field along.

The development of KC is frequently manifested not only by corneal changes, but also
by clinical symptoms such as vision, refraction, and slit-lamp findings. No study has ever
incorporated all pertinent data [12,16–49]. Demographic data, such as age and gender, as
well as potential risk factors for KC, such as eye rubbing and family history, may also aid
in KC detection. We have limited knowledge of how these critical factors may influence the
detection of KC in the machine learning models currently employed. Due to the lack of
known risk factors for KC [2], it should be possible to start assessing potential risk factors
and include in future machine learning models to assess their importance in diagnosis.

The bulk of reported studies of KC have used data derived from a single corneal
topography or tomography imaging device to train their machine learning models. Thus,
there is a dearth of information as to what impact combining data from multiple devices
would have on machine learning models in the detection of KC. Other forms of data, such
as from the corneal epithelial thickness map produced with optical coherence tomography
(OCT) and corneal biomechanical measurements, are also increasingly being recognized
as crucial in the diagnosis of KC [30], particularly early KC [58]. Integrating data from
multiple devices and considering a broader variety of factors may therefore further improve
the early detection of KC.

The majority of studies employed a specific machine learning method; although,
there was limited information on how or why the authors chose a particular algorithm
from a large number of potential alternatives. Given that machine learning algorithms
are sometimes referred to as ‘black boxes’, it would be advantageous to evaluate several
machine learning algorithms on the same data set and select the best one [59]. This process
may assist in avoiding selection bias and may aid in improving early KC detection.

Imbalanced sample sizes were found in about half of the studies
analyzed [12,16,20,21,27–31,33,44,46], which could skew the machine learning model and
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impair its capacity to identify cases. In comparison to the number of control eyes, most
studies included a lower number of KC or early KC eyes for model establishment. This may
be a concern when considering the performance of the model. For example, in the study by
Lopes et al. [31], a random forest model was constructed using 2980 stable (control) eyes
and 71 ectatic susceptibility eyes, achieving a sensitivity of 80% and a specificity of 96.8%.
However, their model’s baseline accuracy, defined as the ability to identify all eyes in the
control group without constructing a model, was 97.7%. Although the analysis obtained a
high specificity of 96.8%, this could be deemed as suboptimal in comparison to its potential
baseline accuracy. Instead of utilizing accuracy, sensitivity, and specificity, precision value
(also known as positive predictive value) may provide a more interpretable evaluation for
models with unbalanced sample sizes. This metric has been employed in several studies to
evaluate their models [22,28,32,33,36,47,48].

There have been fewer studies on identifying the different stages of KC, and a stan-
dardized classification system for KC has yet to be devised. There has been no machine
learning study using longitudinal data on KC progression. While applications of machine
learning have benefited in predicting and detecting progression indicators in AMD, diabetic
retinopathy, and glaucoma [60–64]. The combination of machine learning methods and
large clinical data sets may assist in the analysis of KC progression.

4.3. Approach for Future Studies

Machine learning has been increasingly used in KC over the last three decades, mostly
for the identification of KC and early KC. The advantage of machine learning is that it allows
consistent and unbiased diagnosis, which is critical when diagnosing patients at an early
stage, as early intervention using treatments such as corneal crosslinking (CXL), could delay
or slow disease progression, thus preventing the need for a possible corneal transplant.

There is still room to improve the efficiency of machine learning models in detecting
early KC. This may be accomplished by allowing the use of all publicly available data,
including complete databases from corneal imaging systems, clinical data, genetic data,
and other risk factors. There is also a need to maximize the potential of machine learning
techniques by optimizing their output at the methodology and data space levels.

Currently, there are no successful examples of machine learning models being used
in clinical practice. This may be due to a lack of large patient populations to validate
results, the utilization of various imaging devices, a local participant group comprised
of individuals of various ethnic backgrounds, clinicians’ overall acceptance of machine
learning techniques for diagnosis and their relative reliability to humans. External model
validation on a diverse patient population, as well as the creation of platform-independent
models that can be generalized through several corneal imaging systems, are therefore
needed. Finally, research on machine learning in KC should also address additional
research gaps in the area, such as classifying KC severity, and identifying and forecasting
KC progression.

5. Conclusions

We present an up to date, comprehensive review on the use of machine learning in
KC detection and identify the substantial limitations that need to be overcome to make the
diagnostic process more efficient for early keratoconus. In light of our findings on pooling
detection performance and low adherence to the TRIPOD checklist, we believe that both
improved machine learning model performance in early KC detection and improved quality
machine learning research in KC is sorely needed. Despite various challenges, the future of
integrating machine learning technologies into clinical practice is promising with the advent
of advanced imaging modalities. Machine learning can be further investigated for broad
application to the entire process of KC detection and management. In particular, some
open avenues for research include early KC detection, risk factor evaluation, prediction of
progression, and clinical management guidance. However, global collaboration is essential
to obtain larger data sets and more robust models.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm11030478/s1, Figure S1: Assessment of publication risk bias
across studies using Deeks’ funnel plot asymmetry test in detecting KC from controls. ESS, effective
sample size, which is determined as a function of the number of diseased (n1) and non-diseased (n2)
subjects: (4n1 * n2)/(n1 + n2). The y-axis shows the inverse of the square root of the effective sample
size (1/root(ESS)). The x-axis shows the natural logarithm of the diagnostic odds ratio (lnDOR (TP *
TN)/(FP * FN)). In this figure, the vertical line represents the meta-analysis summary estimate, and
each black circle represents one study, and dispersed symmetrically right and left the vertical line
implies a low probability of publication bias for the included research. The dotted line indicates
the ESS weighted regression tests of funnel plot asymmetry, and p values < 0.05 were considered as
significant; Figure S2: Assessment of publication risk bias across studies using Deeks’ funnel plot
asymmetry test in detecting early KC from controls. ESS, effective sample size, which is determined
as a function of the number of diseased (n1) and non-diseased (n2) subjects: (4n1 * n2)/(n1 + n2).
The y-axis shows the inverse of the square root of the effective sample size (1/root(ESS)). The x-axis
shows the natural logarithm of the diagnostic odds ratio (lnDOR (TP * TN)/(FP * FN)). In this figure,
the vertical line represents the meta-analysis summary estimate, and each black circle represents
one study, and dispersed symmetrically right and left the vertical line implies a low probability of
publication bias for the included research. The dotted line indicates the ESS weighted regression tests
of funnel plot asymmetry, and p values < 0.05 were considered as significant; Table S1: Results of
each TRIPOD item for each paper and the level of reporting adherence for each TRIPOD item.
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