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Abstract. Agrin, an extracellular matrix-associated 
protein extracted from synapse-rich tissues, induces 
the accumulation of acetylcholine receptors (AChRs) 
and other synaptic components into discrete patches 
on cultured myotubes. The appearance of agrin-like 
molecules at neuromuscular junctions suggests that it 
may direct synaptic organization in vivo. In the pres- 
ent study we examined the role of extracellular matrix 
components in agrin-induced differentiation. We used 
immunohistochemical techniques to visualize the spa- 
tial and temporal distribution of laminin, a heparan 
sulfate proteoglycan (HSPG), fibronectin, and type IV 
collagen on cultured chick myotubes during agrin- 
induced aggregation of AChRs. 

Myotubes displayed significant amounts of laminin 
and HSPG, lesser amounts of type IV collagen, and 

little, if any, fibronectin. Agrin treatment caused cell 
surface laminin and HSPG to patch, while collagen 
and fibronectin distributions were generally unaffected. 
Many of the agrin-induced laminin and HSPG patches 
colocalized with AChR patches, raising the possibility 
of a causal relationship between matrix patching and 
AChR accumulations. However, patching of AChRs 
(complete within a few hours) preceded that of laminm 
or HSPG (not complete until 15-20 h), making it un- 
likely that matrix accumulations initiate AChR patch- 
ing at agrin-induced sites. Conversely, when AChR 
patching was blocked by treatment with anti-AChR an- 
tibody mAb 35, agrin was still able to effect patching 
of laminin and HSPG. Taken together, these findings 
suggest that agrin-induced accumulations of AChR and 
laminin/HSPG are not mechanistically linked. 

F 
UNCTIONAL transmission across the neuromuscular 
junction requires the precise localization of cell sur- 
face, cytoskeletal, and extracellular components at 

the point of nerve-muscle contact (reviewed by Peng, 1987; 
Schuetze and Role, 1987; Steinbach and Bloch, 1986; Rubin 
and Barald, 1983; Dennis, 1981; Fambrough, 1979). It is 
quite remarkable that these components accumulate in such 
a discrete region, which represents only ~,0.1% of the 
myofiber surface. Acetylcholine receptors (AChRs) ~, for 
example, are packed into the synaptic membrane at densities 
approaching 15-20,000 per square micron, hut are virtually 
absent elsewhere on the myofiber surface (reviewed in Sal- 
peter and Loring, 1985). To understand the mechanisms in- 
volved in the formation and maintenance of synaptic struc- 
ture, we have treated cultured myotubes with agrin, a 
synaptic-organizing molecule that appears to be related to 
factors that function at synapses in vivo. 

Studies by McMahan and colleagues demonstrated that in 
vivo matrix-associated factors can play a significant role in 
the regeneration of neuromuscular structure (Sanes et al., 

Dr. Nitkin's present address is NICHD-MRDDB, Bldg. EPN, Rm. 631, 
6130 Executive Blvd., Bethesda, MD 20892. Address reprint requests to 
him. 

1. Abbreviations used in this paper: AChR, acetyicholine receptor; HSPG, 
heparan sulfate proteoglycan. 

1978; Burden et al., 1979; McMahan and Slater, 1984; An- 
glister and McMahan, 1985; see also Bader, 1981). This led 
to the screening of matrix-enriched fractions of Torpedo 
electric organ for factors that affect AChR distribution 
(Rubin and McMahan, 1982; Nitldn et al., 1983;~ Godfrey 
et al., 1984). In this manner a proteinaceous factor, termed 
agrin, was identified and characterized (Nitldn et al., 1987). 
Agrin induces on cultured myotubes dense accumulations of 
AChRs, which are also associated with acetylcholinesterase 
(Wallace et al., 1985; Wallace, 1986) and other synaptic 
components (Wallace, 1989). mAbs against the active com- 
ponent recognize a related series of polypeptides with mo- 
lecular masses of 70, 95, 135, and 150 kD (Nitldn et al., 
1987; see also Godfrey et al., 1988a). These mAbs were also 
used to demonstrate that agrin-like molecules are concen- 
trated at neuromuscular junctions in vivo (Fallon et al., 
1985; Reist et al., 1987; Godfrey et al., 1988a). Therefore, 
not only is agrin a useful means of inducing "synaptic" 
differentiation on cultured myotubes, but it appears to be 
related to factors that direct synaptic development in vivo. 

Several observations suggest that agrin-induced AChR 
patching occurs through a specific, physiological cellular 
mechanism. Agrin effects myotubes in a dose-dependent 
manner, although at higher agrin levels the number of AChR 
patches per myotube plateaus off (Godfrey et al., 1984; Wal- 
lace, 1989), suggesting that AChR patching may be limited 

© The Rockefeller University Press, 0021-9525/90/09/1161/10 $2.00 
The Journal of Cell Biology, Volume 11 I, September 1990 1161-1170 1161 



by cellular constraints. The accumulation of AChRs into dis- 
crete, high density patches takes a few hours (Godfrey et al., 
1984), which argues against a mere cross-linking of AChRs 
by agrin (by contrast, antibodies and other multivalent 
ligands that induce reorganization of surface components 
operate within minutes, to patch, cap, and rapidly internalize 
bound receptors). Furthermore, the AChR accumulations 
induced by agrin are coordinated with accumulations of 
synapse-specific cytoplasmic, membrane, and extraceUular 
components (Wallace et al., 1985; Wallace, 1986; Wallace, 
1989). Agrin-induced AChR aggregation appears to involve 
calcium, metabolic energy, and possibly phosphorylation 
(Wallace, 1988). 

AChR accumulations can be triggered by a variety of fac- 
tors including neural extracts (reviewed in Peng, 1987; 
Schuetze and Role, 1987), basal lamina components (Peng, 
1987; Schuetze and Role, 1987), interaction with the tissue 
culture substratum (Bloch et al., 1985), positively charged 
latex beads (Peng and Cheng, 1982), and electric fields 
(Orida and Poe, 1978). In contrast to agrin, some of these 
treatments significantly increase AChR synthesis which 
could indirectly impact on AChR distribution. The AChR 
patches induced by brain extract and latex beads appear to 
be morphologically similar to those induced by agrin; the 
patches are likewise associated with esterase and basal lam- 
ina components. 

As a first step toward understanding how a myotube coor- 
dinates the accumulation of cell surface components at "syn- 
aptiC sites, we examined the possibility that specific ex- 
tracellular matrix components play a role in postsynaptic 
differentiation. Matrix components are present on develop- 
ing myotubes from the earliest stages of synapse formation 
(reviewed by Sanes, 1989). In some developing tissues, com- 
ponents of the extracellular matrix have been shown to inter- 
act with specific receptors to effect cellular differentiation 
(Buck and Horwitz, 1987). 

Embryonic myotubes have only wisps of organized basal 
lamina (Kelly and Zacks, 1969; Kullberg et al., 1977; Jacob 
and Lentz, 1979). This resembles the appearance of cultured 
myotubes (Burrage and Lentz, 1981; Bayne et al., 1984; 
Chiu and Sanes, 1984). As myotubes are innervated, matrix 
material accumulates at sites of nerve terminal contact, 
along with AChRs and other synaptic components (Weldon 
and Cohen, 1979; Nakajima et al., 1980; Anderson and 
Fambrough, 1983; Bayne et al., 1984; Buchanan et al., 
1989). Likewise, matrix material and AChRs accumulate at 
sites induced by neuronal extracts and even latex beads (Sal- 
peter et al., 1982; Daniels et al., 1984; Sanes et al., 1984; 
Olek et al., 1986; Peng and Cheng, 1982). This suggests that 
matrix accumulation and synaptic differentiation are part of 
a common developmental pathway which can be triggered by 
a variety of stimuli. Our studies with agrin focus on the 
mechanistic link between matrix accumulation and AChR 
clustering. 

Immunohistochemical techniques were used to examine 
the distribution of laminin, fibronectin, type IV collagen, 
and a heparan sulfate proteoglycan (HSPG) on cultured myo- 
tubes. We found that agrin caused the aggregation of laminin 
and HSPG, but had little effect on fibronectin or type IV col- 
lagen distribution. Under these conditions, many of the lami- 
nin and HSPG accumulations colocalized with AChR 
patches. 

To address the causal relationship between matrix ac- 
cumulation and AChR patching, we compared the time 
courses of these agrin-induced events. AChR patching (as 
detected by fluorescence microscopy) was completed well 
ahead of laminin and HSPG patching, suggesting that matrix 
accumulations do not serve as precursors for AChR patch- 
ing. In other experiments, AChR aggregation was prevented 
by treatment with anti-AChR mAbs. Under these conditions, 
agrin was still able to aggregate laminin and HSPG. These 
results suggest that agrin-induced patching of AChRs is not 
causally related to laminin/HSPG patching. Thus, agrin 
does not appear to use extracellular matrix organization to 
drive synaptic differentiation. 

Brief accounts of this work have appeared elsewhere (Nit- 
kin, R. M., and T. C. Rothschild. 1988. Soc. Neurosci. 
Abstr. 14:514.). 

Materials and Methods 

Chick Myotube Cultures 

Myotubes from hindlimb muscles of ll-12-d-old White Leghorn chick em- 
bryos (Avian Services, Frenchtown, NI) were cultured on 35-ram tissue cul- 
ture dishes coated with calf skin collagen (Calbiochem-Behring Corp., La 
]ella, CA) and maintained in MEM-based medium (Gibco Laboratories, 
Grand Island, NY) supplemented with 10% horse serum (Gibco Laborato- 
ries) and 2% chick embryo extract (Fischbach, 1972, with minor modifica- 
tions described in Godfrey et al., 1984). The experiments described here 
were performed on 5-9-d-old cultures. 

Agrin Extracts 

Agrin was partially purified from electric organ of Torpedo californica as 
previously described (Nitkin et al., 1987) except that the detergent extrac- 
tion steps were omitted. To achieve maximal AChR aggregation on myo- 
tubes, 3-10 U of cibacron pool extract (sp act 5-30 U/#g) were used. 

Localization of Extracellular Matrix Components 
and AChRs 

To visualize the distribution of extracellular matrix components, cells were 
incubated with primary antibodies (concentrations listed below) for 1-2 h 
at 37°C, washed three times in culture medium, then incubated for an addi- 
tional I h in fluorescein-conjugated goat anti-mouse or anti-rabbit Ig (Cap- 
pel division, Organon Teknika, Malvern, PA) diluted 1:200 in culture 
medium. Cultures were washed three to five times in Puck's saline (Puck 
ct al., 1958), then fixed for 10 rain at -20°C in reagent alcohol (etha- 
nol/methanol/isopropanol, 18:1:1). After removal of alcohol, cultures were 
allowed to air dry, and coverslips were affixed with a drop of 50% (vol/vol) 
glycerol in Puck's saline, with 1/~g/rul phenylenediamene as an antibleach- 
ing agent. Incubation of cultures in fluorescent secondary antibodies alone 
yielded only faint uniform labeling of cells, which was well below the levels 
of specific labeling presented here. 

For double labeling experiments, AChRs were labeled by including 2 × 
10 -s M rhodamine-Bgtx (Ravdin and Axelrod, 1977) in both primary and 
secondary antibody solutions. 

Cultures were examined through epifluorescence on an Orthoplan 2 mi- 
croscope equipped with I3 fluorescein and N2.1 rhodamine filters, and 63 × 
Planapo 1.4 NA oil immersion objective (E. Leitz, Rocldeigh, N/) at a total 
magnification of 504 x, and photographed using TMax 400 film (Eastman 
Kodak Co., Rochester, NY). 

Laminin was localized using mAb 31, which was raised against chick 
muscle laminin (Bayne et al., 1984). Optimal labeling was achieved with 
a primary antibody concentration of 3.7 ~g/ml. In other experiments (not 
shown here) cells were labeled with a rabbit antiserum (50 #g/ml) raised 
against laminin from the Engelbreth-Holm-Swann (EHS) mouse tumor and 
affinity purified against the P1 fragment (Yurchenco et al., 1985) of laminin; 
this antiserum showed no detectable cross reactivity to collagen (type I or 
IV) or heparin when tested in a competitive ELISA. 

HSPG was localized with mAb 33, which was raised against a chick mus- 
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cle proteoglycan (Bayne et al., 1984). Optimal labeling was achieved with 
a primary antibody concentration of 8.6/zg/ml. 

Type IV collagen was localized with a rabbit antiserum raised against 
type IV collagen purified from the EHS tumor (Yurcheneo and Ruben, 
1987). Cells were labeled at a 1:750 dilution of primary antibody. 

Fibronectin was localized with mAb B3, which was raised against avian 
fibroneetin (Gardner and Fambrough, 1983). Optimal labeling of cultures 
was achieved with a primary antibody concentration of 0.1/~g/ml. In other 
experiments, cells were labeled with a rabbit antiserum (1:20,000) raised 
against human plasma fibroneetin (Bethesda Research Laboratories, 
Bethesda, MD). 

Quantitation of AChR, Laminin, and HSPG Patches 

For each assay condition, patches were counted in 10-12 evenly spaced mi- 
croscopic fields (0.4 mm diana) from each of triplicate cultures (Godfrey 
et ai., 1984). A patch was defined as a distinct, intense island of fluores- 
cence ,o2-10 ~m across (e.g., Figs. 1 b, 2 b, 3 b, 4 b, 5, a-d). Control cul- 
tures had a small number of fluorescent patches as well (e.g., Fig. 1 a). 
These "control ~ patches had less distinct boundaries and tended to be less 
intensely fluorescent than the majority of those appearing in agrin-treated 
cultures. While surveying large numbers of fields, it was not practical to 
distinguish control patches from agrin-induced patches; thus, both types 
were included in all our counts. It is our feeling that similar numbers of con- 
trol patches are present in agrin-treated and control cultures. Small "micro- 
clusters" (<0.5/~m dium) that appeared in some myotube platings (see Wal- 
lace, 1988) were not included in any of our counts. 

Anti-AChR Antibody Treatment to Block 
AChR Aggregation 

Studies reported here utilized mAb 35, a rat mAb raised against Electropho- 
rus AChR (Tzartos et al., 1981), to modulate AChR number. Similar results 
(not shown here) were achieved with a rat antiserum raised against Torpedo 
AChR (provided by Jon Lindstrom, Saik Institute). 

The ability of mAb 35 to remove AChRs from the myotube surface was 
examined. Antibody-treated myotubes were incubated in 2 × 10 -s M t251- 
Bgtx (DuPont-New England Nuclear, Boston, MA) for 1 h at 37"C. Cul- 
tures were washed three times in Puck's saline to remove unbound t25I- 
Bgtx, then harvested in 0.5 ml 1 N NaOH. Cell-associated radioactivity was 
measured in a gamma counter. Nonspecific 125I-Bgtx binding, determined 
in the presence of a 100-fold excess of unlabeled Bgtx, was subtracted where 
appropriate. 

The effects of mAbs 35 on agrin-induced patching of AChRs, laminln, 
and HSPG were examined by exposing antibody-treated myotubes to agrin 
overnight, then labeling cells to visualize AChRs and laminin or AChRs and 
HSPG. 

Results 

Distribution of Extracellular Matrix Components on 
Cultured Myotubes 

Before agrin treatment, cultured chick myotubes displayed 
significant amounts of laminin (Fig. 1 a) and HSPG (Fig. 2 
a) immunofluorescence, ranging in distribution from punc- 
tare to mesh-like. The cells also displayed a few local ac- 
cumulations of laminin and HSPG (e.g., Fig. 1 a), which 
may represent attachment foci. The intensity and pattern of 
matrix immunofluorescence among cells did not correlate 
with any obvious morphological characteristics of the myo- 
tubes, such as width, flatness, maturity of striations, or 
amount of Bgtx labeling (not shown). 

In contrast to the rich laminin and HSPG immunofiuores- 
cence, most myotubes displayed only wisps of type IV colla- 
gen, although a few showed more substantial labeling (simi- 
lar to the cells in Fig. 3 a). Myotubes had virtually no 
fibronectin immunofluorescence, although occasionally 
small puffs a few microns across could be detected on some 
myotubes (similar to those in Fig. 4 a). By contrast, fibro- 

Figure L Laminin on chick myotubes accumulated in patches after 
exposure to agrin (5 U, 16 h). Laminin was labeled with mAb 31 
followed by fluorescein second antibody. Untreated myotubes (a) 
had significant amounts of laminin. Myotubes exposed to agrin (b) 
had much of the surface laminin in discrete patches (arrows), along 
with a concomitant loss of fluorescence between patches. Similar 
patterns were seen when cells were labeled with an affinity-purified 
laminin antiserum instead of mAb 31 (not shown). Bar, 30 t~m. 

blasts and glial-like cells (which were present at low num- 
bers in these muscle cultures) showed very bright, fibrous 
labeling. The substratum was intensely labeled by antifibro- 
nectin antibodies. This is probably due to fibronectin from 
the chick embryo extract which had absorbed out to the 
collagen-coated dish. Antifibronectin mAb B3 should not 
cross react with fibronectin from the horse serum (Gardner 
and Farnbrough, 1983). Likewise, in cultures labeled with 
a rabbit antiserum raised against human fibronectin (data not 
shown), minimally labeled myotubes contrasted with brightly 
labeled fibroblasts and glial-like cells. The substratum was 
not as brightly labeled by this antiserum, although myotubes 
still appeared as negative images. 

Effect of Agrin on ExtraceUular Matrix Components 

After 1-2 d treatment with agrin, some of the laminin and 
HSPG on the myotubes appeared in discrete patches, mostly 
along the edges of the cells (Figs. 1 b and 2 b; see also 5, 
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tially purified extracts using antiagrin mAb 11132 (Nitkin et 
al., 1987). The immunodepleted extract was not able to 
cause AChRs, laminin, or HSPG to cluster, while an extract 
passed over a column of control mouse serum retained 
clustering activity (data not shown). 

Most of the agrin-induced AChR patches coincided with 
patches of laminin (Fig. 5, a and b) and HSPG (Fig. 5, c and 
d). The high level of correlation between AChRs and lami- 
nin/HSPG (63-74 %) did not improve with an additional day 
of agrin treatment (Table I). At some sites accumulations 
of laminin and HSPG were slightly more widespread than 
AChRs, although overall their distributions were remarkably 
congruent. 

Agrin appears to have a selective effect on laminin and 
HSPG; it did not affect the distribution of type IV collagen 

Figure 2. HSPG on chick myotubes accumulated in patches after 
exposure to agrin (5 U, 16 h). HSPG was labeled with mAb 33 fol- 
lowed by fluorescein second antibody. Untreated myotubes (a) had 
significant amounts of HSPG. Myotubes exposed to agrin (b) had 
much of the surface HSPG in discrete patches along the edge of the 
cell membrane (arrows), with a concomitant loss of fluorescence 
between patches. Bar, 20/zm. 

a and c). The patching of laminin and HSPG appeared to be 
at the expense of other regions of the cell; that is, fluores- 
cence in away from patched regions was below the levels 
typically seen on untreated myotubes. Nonetheless, it was 
our impression that the total amounts of myotube-associated 
laminin and HSPG immunofluorescence were not signifi- 
cantly increased by this treatment. Thus, patching of matrix 
in response to agrin appears to involve redistribution rather 
than increased local synthesis or accumulation. 

The morphology of the laminin and HSPG patches resem- 
bled that of the agrin-induced AChR patches (bright ag- 
gregates a few microns in diameter, with distinct edges). 
This allowed us to quantitate laminin and HSPG patching in 
much the same manner as AChR patching. Occasionally, 
cultures were found in which laminin and HSPG did not 
patch in response to agrin treatment, although AChR patch- 
ing appeared normal. 

To demonstrate that laminin and HSPG accumulations 
were caused by agrin per se and not some other factor in the 
Torpedo extracts, agrin was specifically removed from par- 

Figure 3. Agrin did not affect the distribution of type IV collagen 
on cultured myotubes. Myotubes treated with agrin (5 U, 48 h) were 
simultaneously labeled with antiserum specific for type IV collagen 
(followed by fluorescein second antibody) and rhodamine-Bgtx, as 
described in Materials and Methods. The same field was viewed 
through fluorescein filters to show type IV collagen (a) and rhoda- 
mine filters to show AChR patches (b). The distribution of collagen 
on myotubes, which varied from wispy to more dense (as shown 
here), showed no correspondence with AChR aggregations. A simi- 
lar range of collagen distributions was found on control myotubes 
(no agrin), or those exposed to agrin for only 16 h (not shown). 
Bar, 40 ~tm. 
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Figure 4. Myotubes had minimal amounts of fibronectin, which was 
largely unaffected by agrin treatment. Myotubes treated with agrin 
(5 U, 48 h) were simultaneously labeled with antifibronectin mAb 
B3 (followed by fluorescein second antibody) and rhodamine-Bgtx, 
as described in Materials and Methods. The same field was viewed 
under fluorescein optics to show the distribution of fibronectin (a) 
and under rhodamine optics to show agrin-patched AChRs (b). 
Myotubes had virtually no surface fibronectin, which caused them 
to appear as negative images contrasted against the brightly labeled 
substratum. The immunofluorescence of the substratum was proba- 
bly due to fibronectin from the medium that had absorbed to the 
dish, as discussed in the text. Generally there was no association 
of fibronectin with agrin-induced AChR patches; on rare occasions 
(as shown here) faint patches of fibronectin could be correlated with 
AChRs (arrows). Bar, 30/~m. 

and had little, if any, effect on fibronectin. Even after 48 h 
of agrin treatment, collagen was still found in wispy patterns 
which bore no relation to the patched AChRs (Fig. 3, a and 
b). The amount of myotube-associated fibronectin remained 
minimal after agrin treatment, and generally did not corre- 
late with AChR accumulations (Fig. 4, a and b). Occasion- 
ally, small puffs of fibronectin could be correlated with 
AChR patches (Fig. 4 a, arrows), but such instances were 
ra re .  

Temporal Relationship of AChR and 
Laminin/HSPG Patching 
The colocalization of laminin and HSPG with AChR patches 

raised the possibility of a causal relationship between matrix 
accumulation and AChR patching. This was explored by 
comparing the rate of AChR patching with that of laminin 
and HSPG (Fig. 6). After treatment with agrin, increased 
numbers of AChR patches could be detected after only 2-3 h, 
reaching maximal levels by '~6-8 h (see also Godfrey et al., 
1984). However, the increase in the number of visible lami- 
nin and HSPG patches occurred much more slowly. By the 
time AChR patching had reached maximal levels, the num- 
bers of laminin and HSPG patches were only about halfway 
complete; they required ~20 h to reach maximal plateau lev- 
els. While these observations do not focus on the earliest 
stages of agrin-induced AChR and matrix accumulation, 
which may be below the level of visual detection, they show 
that AChR patching is completed hours before that of either 
laminin or HSPG. This temporal relationship makes it un- 
likely that extracellular matrix directs AChR patching at 
agrin-induced sites. 

Dissociation of AChR Patching from that of Laminin 
and HSPG 
To determine if accumulation of AChRs is necessary for 
agrin-induced patching of laminin and HSPG, we used the 
anti-AChR antibody, mAb 35, to block AChR patching. In 
other studies, AChR antibodies have been shown to decrease 
both the number and mobility of surface AChRs (Heinemann 
et al., 1977; Appel et al., 1977; Kao and Drachman, 1977). 
Direct binding tests (not shown) on alcohol-fixed myotubes 
(data not shown) demonstrated that mAb 35 does not prevent 
Bgtx from binding to available AChRs (also Tzartos et al., 
1981). 

The number of surface AChRs remaining after incubation 
in various concentrations of mAb 35 was quantitated with 
J25I-Bgtx (Table /I). All three concentrations of mAb 35 
were effective at reducing the number of AChRs. 39 aM anti- 
body was sufficient to achieve maximal effects (only 39 % of 
the AChRs remained). Higher concentrations of antibody 
(130 nM) were no more effective (38% remained). In the 
presence of agrin, mAb 35 was still able to reduce the num- 
ber of surface AChRs, although the effect was slightly less 
(45-54 % of the AChRs remained). A similar percentage of 
AChRs were removed when the myotubes were treated with 
a rat antiserum raised against Torpedo AChR (not shown). 

To examine the effect of agrin on the population of AChRs 
remaining after antibody treatment, myotubes were exposed 
to mAb 35 and agrin, then labeled with rhodamine-Bgtx. 
While antibody treatment reduced total AChR fluorescence 
(as expected due to the partial internalization of surface 
AChRs) most of the AChRs remaining were not patched by 
agrin treatment (Table II). The ability of mAb 35 to block 
agrin-induced patching was dose dependent. [3 nM mAb 
was sufficient to block the appearance of the majority of 
agrin-induced patches, while higher concentrations (39 and 
130 nM) reduced patching to <5%. Based on these experi- 
ments, it appears that mAb 35 concentrations of 39 nM or 
more would be sufficient to block virtually all visually de- 
tectable agrin-induced AChR patching. 

With AChR patching blocked by antibody treatment, we 
examined whether agrin could still induce patching of lami- 
nin and HSPG. Myotubes were incubated with 78 nM mAb 
35 and/or agrin, then labeled to visualize AChRs and laminin 
or AChRs and HSPG (Table III). 
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Figure 5. Laminin and HSPG accumulated at agrin-induced AChR patches. Agrin-treated (5 U, 24 h) myotubes were simultaneously labeled 
with mAbs against larninin or HSPG (followed by fluorescein second antibody) and rhodamine-Bgtx. In the upper pair, the same field 
was viewed through fluorescein and rhodamine filters to highlight the coincidence of laminin (a) and AChR (b) accumulations (arrows) 
on myotubes. In the lower pair, a field from another culture shows the coincidence of HSPG (c) and AChR (d) accumulations (arrows). 
Bar, 25 pro. 

As expected, agrin treatment alone induced significant 
patching of all three components; this maximal response was 
defined as 100%. Cells with no additions had few patches 
of these components; this level of patching (which probably 

Table L Appearance of Laminin and HSPG at 
Agrin-induced AChR Patches 

Length of agrin AChR patches AChR patches 
exposure with laminin with HSPG 

th) 
20 - 223/302 (74%) 
41 423/617 (69%) 64/101 (63%) 
65 294/404 (73%) 

Cultures were exposed to agrin (5-10 13) for the times indicated, then simul- 
taneously labeled for AChRs and laminin or AChRs and HSPG. Individual 
fields were viewed repeatedly, first under rhodamine optics to identify AChR 
patches (up to three at a time), then under fluorescein optics to determine 
whether laminin or HSPG had accumulated at these sites. Data are presented 
as fractions: denominator indicates total number of AChR patches examined 
and numerator indicates those that had coaccumulations of laminin or HSPG. 

includes attachment foci) was defined as 0%. Cultures 
treated with mAb 35 alone (no agrin) had even fewer AChR 
patches than control (<0%), suggesting that antibody treat- 
ment even prevented AChRs from accumulating at attach- 
ment foci. Anti-AChR antibody had no significant effect on 
the amount or distribution of laminin or HSPG immuno- 
fluorescence in nonagrin-treated cultures. In the presence of 
both mAb 35 and agrin, virtually no AChR patches could be 
seen, but significant numbers of laminin (91%) and HSPG 
(64%) patches were still detectable (Table llI). 

Long exposure photographs (10-15 s) of these cultures re- 
vealed a slightly different story (Fig. 7). The increased sensi- 
tivity of this technique showed that in mAb 35/agrin-treated 
cultures, low density accumulations of AChRs did occur at 
some laminin and HSPG patches; other patches were devoid 
of AChRs even at this level of scrutiny. This indicates that 
while mAb 35 treatment severely reduced AChR patching 
(so that it was not evident through simple visual inspection), 
it did not prevent AChR patching completely. Agrin-induced 
patching of laminin and HSPG was largely unaffected by the 
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Figure 6. Agrin-induced accumulations of AChRs occurred much 
more rapidly than those of laminin or HSPG. Muscle cultures were 
exposed to agrin (5 U) for various amounts of time indicated on the 
abscissa, then labeled to visualize the distributions of either AChRs 
(a, circles~solid line), laminin (b, squares~solid line) or HSPG (b, 
triangles~dotted line). Each time point is the mean number of 
patches per microscopic field, derived from 8-12 fields per dish, 
using triplicate dishes; vertical error bars show SEM among those 
dishes. In each experiment, the addition of agrin was staggered so 
that all cultures were labeled and counted together; thus, all deter- 
minations were made on the same age cultures. The upper and 
lower graphs were derived from experiments on two different mus- 
cle platings, resulting in different plateau levels for AChR and lami- 
nin/HSPG patching. 

antibody treatment (Table HI), suggesting that matrix ac- 
cumulations do not require the presence of  dense AChR 
patches. 

Discussion 

The experiments described here focus on the role of  extracel- 
lular matrix components in synaptic differentiation. We used 
immunohistochemical techniques to follow the distribution 
of  laminin, HSPG, fibronectin, and type IV collagen on cul- 
tured chick myotubes. In agreement with several other im- 
munohistochemical studies (e.g., Kuhl et al., 1982; Ander- 
son and Fambrough, 1983; Gardner and Fambrough, 1983; 
Daniels et al., 1984), we found that cultured myotubes have 
on their surface laminin, HSPG, and type IV collagen, but 
little if any fibronectin. 

We found that matrix accumulation at agrin-induced sites 
was selective. Laminin and HSPG colocalized with AChRs 
but fibronectin and type IV collagen distributions were not 

Table II. Anti-AChR Treatment Removes Surface AChRs 
and Prevents Agrin-induced AChR Patching 

Number of AChRs AChR patches 
Treatment (fmol/culture) (per field) 

No additions 77 + 0.4 100% 2.3 + 0.8 0% 
13 nM mAb 35 45 + 3.3 58 - - 
39 nM mAb 35 30 + 1.1 39 - - 
130 nM mAb 35 29 + 2.0 38 - - 

Agrin alone 79 + 3.0 103 20.2 + 2.8 100 
Agrin + 13nMmAb35 42 +2 .1  55 7.9 +4 .0  27 
Agrin + 39nMmAb35 42 + 0 . 4  54 2.9 4- 1.2 3 
Agrin + 130nMmAb35 35 + 0 . 7  45 3.3 +0 .9  5 

Myotubes were incubated for 48 h with agrin (5 U) and/or mAb 35 (at concen- 
trations indicated), ml-Bgtx binding was used to determine the number of 
AChRs on the myotube surface (nonspecific binding has been subtracted); cul- 
tures with no additions were defined as 100%. In sister cultures, cells were la- 
beled with rhodamine-Bgtx so that AChR patches could be counted; cultures 
with no additions were defined as 09~, while cultures treated with agrin alone 
were defined as 100%. Each entry is the mean + SEM (n = 3) of triplicate 
cultures. 

affected (agrin-induced HSPG aggregations have also been 
reported by Wallace, 1989), At this time we cannot deter- 
mine whether laminin and HSPG patching represent lateral 
migration of  matrix molecules already present on the cell 
surface or selective placement of  newly synthesized or newly 
bound material. It appears that agrin does not significantly 
alter the total amount of  surface laminin or HSPG, as judged 
by immunofluorescence. 

Molecules like agrin could be responsible for coordinating 
the localization of  extracellular matrix material with synap- 
tic components at sites in vivo, much as it does in culture. 
Agrin-like molecules have been detected at neuromuscular 
junctions from the earliest stages of  development (Godfrey 
et al., 1988b; Fallon and Gelfman, 1989). Furthermore, ini- 
tial patches of  AChRs are associated with laminin, HSPG, 
and type IV collagen, but not fibronectin (Anderson and 
Fambrough, 1983; Chiu and Sanes, 1984; Bayne et al., 
1984). 

Table IlL Although AChR Patching Is Prevented 
by Antibody Treatment, Agrin Can Still Cause Laminin 
and HSPG to Patch 

AChR Laminin HSPG 
Treatment patching patching patching 

(%) (%) (%) 

No additions 0 0 0 
Agrin alone 100 100 100 
mAb 35 alone (<0) 17 + 9 11 + 5 
Agrin + mAb 35 10 4- 10 91 + 20 64 + 18 

Myotubes were incubated for 48 h with 78 nM anti-AChR mAb 35 and/or agrin 
(3 U), then labeled to visualize the distribution of AChRs, laminin, and HSPG. 
Because each muscle plating bad inherently different levels of response, the 
numbers of AChR, laminin, and HSPG patches in different experiments could 
not be averaged directly. Cultures (treated in quadruplicate) were normalized 
against controls with no additions (0%) and cultures exposed to agrin (100%) 
to derive percent response. Percentages pooled from five experiments are 
presented above (mean + SEM, n = 5). In the case of "mAb 35 alone," anti- 
body treatment eliminated some of the spontaneous (background) AChR 
patches, resulting in even less AChR patches than control (<0%). In the pres- 
ence of'Agrin + mAb 35," significant patching of laminin and HSPG occurred 
despite the loss of AChRs. (Long exposure photographs revealed that low den- 
sity accumulations of AChRs were present at some laminin and HSPG patches, 
see Fig. 7.) 
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Figure 7. Laminin and HSPG accumulated at agrin-induced patches even though AChRs were blocked with antibodies. Myotubes were 
incubated for 48 h with 78 nM anti-AChR mAb 35 (to remove or immobilize AChRs) and agrin (3 13). The cultures were simultaneously 
labeled to visualize laminin or HSPG, and AChRs. In the upper pair, the same field was viewed through fluorescein and rhodamine filters 
to contrast the distribution of laminin (a) and AChRs (b), respectively. In the lower pair, a field from another culture contrasts HSPG 
(c) with AChRs (d). Because of the rnAb 35 treatment, only minimal accumulations of AChRs appeared at laminin or HSPG patches (ar- 
rows). To achieve adequate contrast in b and d, film exposures were about two times longer compared to other rhodamine-labeled cultures 
(e.g., Figs. 3 b, 4 b, 5 b, and d); adjustments in the developing process were also made. While surveying large numbers of fields by direct 
visual observations alone (e.g., Table liD, faint AChR patches such as those shown above (b and d) lack sufficient contrast to be detected. 
Bar, 40/~m. 

In this study, AChR accumulations and matrix differentia- 
tion were followed by fluorescence microscopy. While this 
technique is effective for monitoring relative distributions of 
components, it provides only a qualitative description of ac- 
tual site density. Indirect immunofluorescence makes quan- 
titative comparisons even more difficult, although we have 
tried to optimize binding of primary and fluorescein second- 
ary antibodies. The earliest stages of AChR/matrix accumu- 
lations could go undetected by these techniques. Agrin itself 
appears to function catalytically in the sense that only a few 
hundred molecules are sufficient to induce a patch contain- 
ing tens of thousands of AChRs (Nitkin et al., 1987). 

On agrin-treated myotubes, AChR patching was com- 
pleted quite a few hours ahead of laminin/HSPG patching 
(Fig. 6). While it is possible that small amounts of laminin 
and/or HSPG actually precede AChRs at some agrin- 
induced sites, our results indicate that the distribution of 
AChRs matures into dense discrete patches hours before that 
of either laminin or HSPG. Thus, unless matrix accumula- 
tion is a multi-step process, it is unlikely that it directs the 
placement of AChRs. 

Conversely, we considered the possibility that agrin-in- 
duced patching of AChRs is necessary to attract extracellular 
matrix components (AChRs do have extensive extracellular 
domains which could potentially interact with matrix mate- 
rial). We developed a means of specifically blocking agrin- 
induced AChR aggregation using the anti-AChR antibody, 
mAb 35. The reduction in AChR number is probably due to 
accelerated removal of AChRs from the myotube surface 
through antibody-mediated internalization. This process in- 
volves cross-linking of mobile surface receptors by a mul- 
tivalent ligand which rapidly leads to patching, capping, and 
ultimately internalization of bound receptors, mAb 35 was 
able to internalize AChRs without secondary antibodies; this 
may be due to the fact that each of the two alpha subunits 
of the AChR offers a potential site to allow for antibody 
cross-linking (Tzartos et al., 1981). AChRs were likewise in- 
ternalized by treatment with an antiserum raised against 
Torpedo AChR (not shown). 

The AChRs that remain on the myotube surface after anti- 
body treatment, ~40% in our studies (Table II), may repre- 
sent a population of less mobile receptors. Even on myotubes 
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not exposed to antibodies, a significant number of AChRs did 
not participate in agrin-induced patching (note diffuse rhoda- 
mine fluorescence between AChR patches, especially in 
Figs. 3 b and 4 b). The presence of a population of less mo- 
bile AChRs has been suggested by photobleaching studies 
(e.g. Axelrod et al., 1976). Thus, it is not surprising that the 
population of AChRs remaining after antibody treatment was 
not readily patched by agrin treatment (Table II). 

Long exposure photographs (Fig. 7, b and d) revealed that 
while AChR patching is significantly reduced by antibody 
treatment, a small number of AChRs still appear at agrin- 
induced sites. Over the 48-h antibody/agrin treatment, it is 
possible that some AChRs were not bound by mAb 35 or 
bound in a configuration that did not allow for cross-linking. 
These AChRs would then avoid immobilization/internaliza- 
tion and would be able to migrate into patches. We have not 
investigated whether AChRs that reach agrin-induced patches 
are immune to subsequent mAb treatment. 

Although mAb 35 had dramatic effects on AChR patching, 
it had much less effect on the number of agrin-induced ma- 
trix patches (Table I/I). The data pooled from five experi- 
ments indicate that laminin and HSPG were decreased only 
9 and 36 %, respectively, with significant variation among in- 
dividual experiments. In some experiments, the full comple- 
ment of agrin-induced matrix patches were present despite 
the virtual elimination of dense AChR patches by mAb35. 
The reason for this variability is unclear; it could be that 
prolonged exposure to antibodies (48 h) and subsequent 
AChR patching and capping begins to affect the distribution 
of other membrane receptors. Alternatively, it could suggest 
that there is some minimal direct connection between AChRs 
and laminin/HSPG localization. In vivo, AChR accumula- 
tions can be uncoupled from matrix differentiation. As mus- 
cles get innervated, AChRs are recruited away from matrix- 
associated regions to new sites beneath developing nerve 
terminals (Weinberg et al., 1981; Chiu and Sanes, 1984). 
Similarly, in culture AChRs that are initially associated with 
HSPG (and probably other matrix components) migrate to 
developing neuromuscular junctions, leaving much of the 
HSPG behind (Anderson et al., 1984; Anderson, 1986). 

Redistribution of extracellular matrix components could 
be brought about by a variety of mechanisms. Our results 
suggest that the accumulation of laminin and HSPG at agrin- 
induced sites is not stoichiometrically linked to the accumu- 
lation of AChRs (Table I1/). It is possible that matrix compo- 
nents accumulate in response to the recruitment of specific 
cell surface matrix receptors (reviewed by Buck and Hor- 
witz, 1987). For example, the myotube could localize inte- 
grins or other laminin receptors, causing extracellular laminin 
to follow. HSPG could be attracted to these sites because of 
specific proteoglycan-binding domains on laminin (Sakashita 
et al., 1980). This would account for the striking similarity 
between the time courses of laminin and HSPG accumula- 
tions (Fig. 6 b). 

ACILR patching is completed before that of laminin or 
HSPG, suggesting that matrix accumulation does not initiate 
%ynaptic" differentiation. Nonetheless, the matrix may have 
an important role in the maintenance of synaptic structure 
(Nitkin et al., 1987). The accumulation of matrix material 
at developing synapses could attract additional material (in- 
cluding more agrin), which would further enhance synaptic 
differentiation in that region. Such a reinforcing mechanism 

could be used to stabilize developing synapses as well as 
strengthen especially active synapses. This could have im- 
portant implications for the process of polyneuronal synapse 
elimination. Furthermore, if analogous mechanisms operate 
in the central nervous system, it could serve to reinforce 
specific pathways during learning. 
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