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Abstract: SnO2 nanoparticles are regarded as attractive, functional materials because of their versatile
applications. SnO2 nanoaggregates with single-nanometer-scale lumpy surfaces provide opportuni-
ties to enhance hetero-material interfacial areas, leading to the performance improvement of materials
and devices. For the first time, we demonstrate that SnO2 nanoaggregates with oxygen vacancies
can be produced by a simple, low-temperature sol-gel approach combined with freeze-drying. We
characterize the initiation of the low-temperature crystal growth of the obtained SnO2 nanoaggre-
gates using high-resolution transmission electron microscopy (HRTEM). The results indicate that
Sn (II) hydroxide precursors are converted into submicrometer-scale nanoaggregates consisting of
uniform SnO2 spherical nanocrystals (2~5 nm in size). As the sol-gel reaction time increases, further
crystallization is observed through the neighboring particles in a confined part of the aggregates,
while the specific surface areas of the SnO2 samples increase concomitantly. In addition, X-ray
photoelectron spectroscopy (XPS) measurements suggest that Sn (II) ions exist in the SnO2 samples
when the reactions are stopped after a short time or when a relatively high concentration of Sn (II) is
involved in the corresponding sol-gel reactions. Understanding this low-temperature growth of 3D
SnO2 will provide new avenues for developing and producing high-performance, photofunctional
nanomaterials via a cost-effective and scalable method.

Keywords: nanoparticles; SnO2; crystallization; freeze drying; low-temperature synthesis; oxygen
vacancies

1. Introduction

Over the last two decades, the synthesis of self-assembled tin oxide (SnO2) semi-
conductor nanoparticles has been a fascinating research area because of their potential
applications in gas sensing, lithium-ion batteries, solar cells, and catalysts for various
organic reactions [1]. These versatile applications associated with their photophysical,
chemical, and electronic properties can be realized by tuning certain factors, such as the
size, shape, crystallinity, and electronic states of the SnO2 nanoparticles [2]. In particular,
self-assembled 3D SnO2 nanoaggregates with high surface areas [3,4] have received con-
siderable attention. A bottom-up, wet-chemical synthesis is one of the major techniques
that enables the creation of nanoparticles with various dimensions, ranging from spherical
morphologies [5] to anisotropic 1D structures [6], 2D sheets [7], and self-assembled 3D
forms [1] of low-dimensional motifs. Thus far, such SnO2 production has relied heavily on
hydrothermal synthesis, which requires a high temperature and pressure. As an example,
to form the target hierarchical nanostructures, a conventional hydrothermal approach has
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been reported to produce a 3D flower-like SnO2 nano/microstructure material [8]. From
the SnCl4 precursor solution with a poly (acrylic acid) additive, flower-like particles with a
dimension of 100 nm consisting of needle-like single-crystal units (ca. 50 nm in size) were
obtained under acidic conditions at 150 ◦C. Several other syntheses of SnO2 particles with
flower-like morphology have also been reported to date, using various Sn (II) precursors
under hydrothermal conditions [9,10].

A low-temperature solution process employing a sol-gel method is considered an
alternative method for creating oxide nanoparticles with high surface areas. This is because,
in this method, nucleation and crystal growth at a single nanometer scale can be controlled
by the selection of base solvents, metal-ion sources, and organic additives, compared
to the cases in the well-known hydrothermal or solvothermal methods. Among wide-
bandgap semiconductor metal oxides, several controlled low-temperature hydrolyses and
polycondensations in TiO2 syntheses have been shown to produce TiO2 nanoparticles of
different sizes, crystal phases, and morphologies, with dimensions of less than 10 nm [11,12].
We recently demonstrated that organic-inorganic Ti (IV)-gels prepared at temperatures as
low as 40 ◦C could be used as a precursor to obtain anatase TiO2 nanoaggregates consisting
of particles with a grain size of 5 nm [13]. Freeze drying of the gel precursor accelerates
the polycondensation in the Ti-O framework to efficiently produce nanocrystals even at
low temperatures.

In contrast to the several low-temperature TiO2 syntheses reported in the literature,
the growth mechanism of SnO2 nanoparticles and their 3D structure formation at low
temperatures have not been adequately understood to date. SnO2 films processed at
relatively low temperatures are regarded as attractive materials with the progress of
new-generation solar cells, specifically halide perovskite solar cells [14–18]. Therefore,
fundamental research regarding SnO2 crystallization is essential for developing electron-
transport materials that boost device performance.

In this study, simple template-free reaction conditions employing SnCl2 and Na2CO3
in water were applied to investigate a low-temperature SnO2 crystal growth, along with
freeze-drying. The formation of 3D SnO2 nanoaggregates with uniform, single nanometer-
scale grains, and their crystallization were clarified, mainly using reaction time-dependent,
high-resolution HRTEM analysis. For the first time, we showed the low-temperature
crystal growth characteristics of SnO2 nanoaggregates involving the formation of oxygen
vacancies. The detailed crystallization of the pre-organized Sn-based gel precursors was
assessed to form 3D SnO2 nanoaggregates with controllable microstructure surfaces and
electronic properties.

2. Materials and Methods
2.1. Synthesis of SnO2 Nanoaggregates

SnCl2·2H2O and Na2CO3 were purchased from Sigma-Aldrich, St. Luis, Missouri,
USA and used as received. Three different synthesis methods were applied to synthesize
the semiconductor SnO2 nanoparticles. The mass ratio of ultrapure water (UPW), SnCl2,
and Na2CO3 were varied, as shown in Methods 1–3 below.

Method 1: The precursor solution was prepared by mixing SnCl2 (2 g) dissolved
in UPW (400 mL). Na2CO3 (400 mg) was dissolved separately in UPW (500 mL) and
completely mixed with the SnCl2 solution. The solution was placed in a water bath and
maintained at 40 ◦C for a given time, denoted as Day X (X: 1–7 or 1–8) hereinafter. The SnO2
solution was sampled by transferring 150 mL to a centrifugation container. Thereafter,
the container was centrifuged at 4000 rpm for 10 min. The reaction temperature was
maintained at 40 ◦C. After centrifugation, the liquid was discarded. The solid gel was
carefully mixed in 5–10 mL of water and sonicated for uniform dispersion. Subsequently,
it was added to a vial and capped. The vial was placed in a container filled with liquid
nitrogen for 5–10 min to freeze the gel solution. Afterward, the vial was placed into a jar
and attached to a vacuum freeze-drying apparatus (BenchTop Pro with Omnitronics, VirTis



Nanomaterials 2021, 11, 1738 3 of 13

SP Scientific, USA) at ~200 mTorr. After 24–48 h of freeze-drying to remove the moisture,
SnO2 nanoparticles were produced in a powdered form.

Method 2: The precursor solution was prepared using a mixture of SnCl2 (5 g) dis-
solved in UPW (500 mL). Na2CO3 (500 mg) was dissolved separately in UPW (500 mL) and
completely mixed with the SnCl2 solution. Thereafter, the solution was placed in a water
bath and maintained at 40 ◦C for a given period. The SnO2 nanoparticles were isolated
using a similar procedure to that in Method 1.

Method 3: The precursor solution was prepared by dissolving SnCl2 (20 g) in UPW
(500 mL), in contrast to using 5 g of SnCl2, as in Method 2. The SnO2 nanoparticles were
isolated using a similar procedure to that in Method 1.

2.2. Structure Characterization of SnO2 Nanoaggregates

SnO2 powder samples were characterized using X-ray diffraction (XRD; Rigaku RINT
Ultima/PC with monochromated Cu–Kα radiation, Tokyo, Japan). The crystallite size of
the SnO2 aggregates was estimated using the Scherrer equation (D = Kλ/βcosθ) based
on the XRD data, where D, K, λ, and θ indicate the crystallite size, Scherrer constant
(0.90), X-ray wavelength (1.54 Å), and Bragg angle, respectively. The SnO2 sample surface
was analyzed by XPS (XPS; ULVAC, Quantera SXM, Kanagawa, Japan). Nanostructure
analysis was carried out by TEM (JEM-2100, Tokyo, Japan). The Brunauer–Emmett–Teller
(BET) surface area was evaluated by N2 physisorption measurement at 77 K, using the
Micromeritics TriStar II 3020 (Kyoto, Japan). Photoabsorption spectra were measured using
a Hitachi U-4000 spectrophotometer. Ultraviolet–visible (UV–Vis) spectra were obtained
from the diffuse reflectance of the dry powder samples.

3. Results
3.1. XRD Patterns and XPS Spectra of the Obtained Powder Samples

We previously reported that anatase TiO2 nanoaggregates can be produced by freeze
drying using Ti-gel precursors [13]. This result stimulated our interest in the growth control
of SnO2 nanoaggregates at low temperatures. The XRD patterns of the powder samples
obtained using three sets of reactions (Methods 1–3) are shown in Figure 1a–c. All the
observed peaks are in agreement with those of tetragonal rutile SnO2 (JCPDS 01-072-1147),
except for the Method 1–Day 1 sample. In the early stage of the sol–gel process in Method 1,
only the impurity phase of NaCl is detected, and no SnO2 peak is observed. All the peaks
corresponding to SnO2 are identified for the rest of the samples obtained via Method 1.
It is observed that the intensity of the SnO2 peaks increases with the reaction times for
all methods, indicating that long reaction times lead to the enhancement of the SnO2
crystal growth.
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Figure 1. Powder X-ray diffraction (XRD) patterns of Method 1–3 samples synthesized by varying 
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The samples obtained via Methods 1 and 2 exhibited a pale-yellow color when the
solgel reactions were stopped in a short time (except for the Method 1–Day 1 samples, which
exhibited a white color), and became white when the reactions were extended. Conversely,
all the samples for Method 3 had a pale-yellow color (Figure 2). To understand the
color-change tendency, XPS measurements of Method 1–Day 1, Method 1–Day 8, Method
2–Day 8, and Method 3–Day 7 samples were carried out as illustrated in Figure 3a,b. The
binding energies corresponding to the peaks of Sn 3d5/2 for the Day 7 and 8 samples were
486.2, 486.4, and 486.2 eV for Method 3–Day 7, Method 1–Day 8, and Method 2–Day 8,
respectively, which are almost consistent with the reported values for Sn(IV) bound to an
oxygen atom in SnO2 [19–21]. Notably, all three pale-yellow samples showed a marked
peak shift compared to that of the Method 1–Day 1 sample. For the Method 1–Day 1
sample, the Sn3d XPS peaks were observed at a lower binding energy (485.2 eV) than those
for the other samples, suggesting that the Sn(II) in this sample was not oxidized to Sn(IV).
Similarly, a peak shift was observed for the pale-yellow sample (Method 2–Day 1) when
compared to that of Method 1–Day 1, as shown in Figure 3c.
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Figure 2. Photographs of the obtained representative powder samples synthesized by a sequential
low-temperature sol–gel and freeze-drying approach.

The high-resolution O 1s spectra from the same sample could be deconvoluted into
two peaks at approximately 530–532 eV, as indicated by the orange and blue lines. It
has been reported that the low energy peak is ascribed to the oxygen bound to Sn atoms,
whereas the high energy peak corresponds to the formation of oxygen vacancies [22,23].
Considering that SnO2 peaks were only detected in the XRD patterns, the large amount of
Sn(II) source for Method 3 probably enhanced the formation of oxygen-vacancy-induced
SnO2, even for long reactions.
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Figure 3. (a) X-ray photoelectron spectroscopy (XPS) spectra of Method 1–Day 1, Method 1–Day 8,
Method 2–Day 8, and Method 3–Day 7 samples corresponding to Sn 3d5/2; (b) XPS spectra of the
same samples (except Method 1–Day 1) showing O 1s peaks; (c) XPS spectra of Method 3–Day 1,
Method 2–Day 1, and Method 1–Day 1 samples.
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3.2. Proposed Growth Mechanism of SnO2 Based on TEM Analysis and Its Optical Property

To resolve the SnO2 nanostructures and elucidate their growth mechanism, HRTEM
measurements were performed, as shown in Figure 4. The crystallization was not sig-
nificant for all early-stage samples, such as the Method 1–Day 1 sample, as shown in
the selected area diffraction (SAD) pattern (not shown). As the reaction times increase,
lattice fringes with d-spacings of 0.33 nm and 0.27 nm corresponding to the (110) and
(101) planes, respectively, are clearly observed for all methods. The measurements in-
dicated that the aggregated particles consisting of tiny nanocrystals were formed from
precursor Sn(II)-based gels, where the average sizes of the primary nanocrystals were in
the range of 2~5 nm (Table 1), which are consistent with the estimated crystallite sizes in
Table 2. Notably, the diffraction spots in SAD patterns become more noticeable as the
reaction proceeds, although the corresponding measured area showed numerous tiny
nanoparticles, as shown in Figure 5. This further indicated the improved crystallinity of
the long-reaction-time samples.
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Figure 4. Transmission electron microscopy (TEM) images of (a) Method 1–Day 5, (b) Method 2–Day
1, (c) Method 2–Day 5, (d) Method 3–Day 1, and (e) Method 3–Day 5 samples.

Table 1. Sizes of SnO2 particles in the nanoaggregates observed in the TEM images of Figure 4a–e. The maximum length
perpendicular to the lattice fringes of SnO2 nanoparticles was measured. The average nanoparticle sizes for the TEM images
(a)–(e) were 2.6 nm, 2.7 nm, 4.4 nm, 3.5 nm, and 4.3 nm, respectively.

Nanoparticles
Size of Nanoparticles (nm)

Method 1-Day 5 Method 2-Day 1 Method 2-Day 5 Method 3-Day 1 Method 3-Day 5

1 2.7 2.4 5.0 4.3 4.3

2 2.8 2.6 3.9 3.4 4.2

3 2.0 2.9 4.9 2.6 4.2

4 2.0 2.7 4.3 3.6 4.6

5 3.0 4.0 3.4 4.4

6 3.0 4.4 4.7

Table 2. Crystallite sizes and specific surface areas of the SnO2 samples synthesized using different reaction conditions
and times.

Methods and Days Crystalline
Size (mm)

Specific Surface
Area (m2/g)

M1D2 2 44
M1D5 3 112
M2D1 3 44
M2D2 3 152
M2D5 5 133
M3D1 3 5
M3D2 3 52
M3D5 3 65
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Figure 5. Selected area diffraction (SAD) pattern of Method 1–Day 5, Method 2–Day 1,
Method 2–Day 5, Method 3–Day 1, and Method 3–Day 5 samples. These were measured using
the same samples as those in Figure 4, which shows the TEM images.

In addition, it was observed that the size of the SnO2 nanocrystals decreased slightly as
the SnCl2 amount increased (Table 2). In our low-temperature process, the amount of SnCl2
was another key factor in controlling the size of the primary SnO2 nanoparticles, along with
their crystallinity and generation rate of oxygen vacancies. As for the growth mechanism
of the SnO2 particles, it is most probable that Sn(II) hydroxide precursors are formed by the
hydrolysis of SnCl2 and subsequently converted into submicrometer-scale nanoaggregates
comprising uniform SnO2 spherical nanocrystals. Figure 6 shows a conceptual drawing
of the crystal growth characteristics of the SnO2 nanoaggregates in our low-temperature
sol–gel reaction of Sn(II) and the subsequent freeze-drying process. The longer the sol–gel
reaction time, the more enhanced the crystallization through its neighboring particles
in a confined part of the nanoaggregates, while the specific surface areas of the SnO2
samples increase. In other words, long reactions produce SnO2 nanoaggregates with
single-nanometer-scale lumpy surfaces, providing increased specific surface areas.
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Figure 6. Plausible crystal growth mechanism of SnO2 nanoaggregates depending on reaction times
of the low-temperature sol–gel process.

For Methods 2 and 3, the specific surface areas for Days 2 and 5 were almost compara-
ble, suggesting that both SnO2 nanoaggregates for Day 2 already had lumpy surfaces, as
illustrated on the right in Figure 6. Therefore, it is most likely that the SnO2 nanoaggregates
after 3–4 days had surfaces similar to the image on the right. For Method 1, it would also be
reasonable that, with increasing the reaction times, the SnO2 surface morphology changes
from left to right, as shown in Figure 6. However, the surface morphology after 3–4 days
cannot be explained solely by the change of the specific surface areas between Day 2 and
Day 5. More detailed nanostructure analyses of the assembled SnO2 particles, i.e., 3D grain
growth, will benefit from theoretical/computational modeling, in combination with the
HRTEM data of SnO2 particles [24].

Additionally, we measured the optical absorption of several SnO2 samples of Methods
1–3 using diffuse reflectance spectroscopy, as shown in Figure 7. Notably, the samples of
Method 1–Day 2, Method 2–Day 2, Method 3–Day 2, and Method 3–Day 7 showed an
absorption tail in the visible wavelength. Their observed bandgaps were estimated to
be 3.1, 3.0, 2.9, and 3.1 eV for Method 1–Day 2, Method 2–Day 2, Method 3–Day 2, and
Method 3–Day 7, respectively. It was reported that the narrower bandgaps compared to a
well-known bandgap of 3.6 eV [2,25] is due to the elevation of the valence-band maximum
of SnO2 induced by the oxygen vacancies [22,26]. The bandgap of Method 1–Day 8 and
Method 2–Day 7 was 3.6 eV.

As has been demonstrated in solar cells, such as perovskite solar cells, sintering SnO2
nanoparticles can enhance electron transport properties [14]. Additional studies to evaluate
the sintering effects of the obtained SnO2 particles on solar cell performance are in progress.
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4. Conclusions

A low-temperature growth mechanism of SnO2 nanoaggregates has been presented
for the first time, based on HRTEM, XRD, and XPS analyses of a series of SnO2 samples.
The changes in the SnCl2 and Na2CO3 concentrations in the reaction mixture enabled
the control of the lumpy surface of SnO2 at the single-nanometer scale, as well as the Sn
(II) formation in the SnO2 aggregates. As the sol-gel reaction times increased, the TEM
data suggested that the crystallization of tiny nanoparticles was enhanced to form SnO2
nanoaggregates with high specific surface areas. In addition, oxygen-vacancy-induced
SnO2 nanoaggregates could be obtained by adjusting certain factors, including the reaction
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