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Phase separation is a fundamentalmechanism for compartmentalization in cells

and leads to the formation of biomolecular condensates, generally containing

various RNA molecules. RNAs are biomolecules that can serve as suitable

scaffolds for biomolecular condensates and determine their forms and

functions. Many studies have focused on biomolecular condensates formed

by liquid-liquid phase separation (LLPS), one type of intracellular phase

separation mechanism. We recently identified that paraspeckle nuclear

bodies use an intracellular phase separation mechanism called micellization

of block copolymers in their formation. The paraspeckles are scaffolded by

NEAT1_2 long non-coding RNAs (lncRNAs) and their partner RNA-binding

proteins (NEAT1_2 RNA-protein complexes [RNPs]). The NEAT1_2 RNPs act

as block copolymers and the paraspeckles assemble through micellization. In

LLPS, condensates grow without bound as long as components are available

and typically have spherical shapes to minimize surface tension. In contrast, the

size, shape, and internal morphology of the condensates are more strictly

controlled in micellization. Here, we discuss the potential importance and

future perspectives of micellization of block copolymers of RNPs in cells,

including the construction of designer condensates with optimal internal

organization, shape, and size according to design guidelines of block

copolymers.
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Introduction

Intracellular phase separation, which induces the formation of biomolecular

condensates, is a fundamental mechanism of cellular compartmentalization. Such

condensates play essential functions, including reaction crucible, sequestration, and

chromatin hubs (Banani et al., 2017; Shin and Brangwynne, 2017; Alberti et al., 2019;

Lyon et al., 2020; Sabari et al., 2020). RNA molecules are ubiquitously present in most

condensates and play critical roles in the formation and function of biomolecular

condensates (Yamazaki et al., 2019; Roden and Gladfelter, 2020). RNAs contribute to
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the formation of biomolecular condensates by increasing

molecular interactions, such as RNA-RNA and RNA-protein

interactions (Roden and Gladfelter, 2020; Yamazaki and Hirose,

2021), whereas excessive amounts of RNAs nonspecifically

interacting with prion-like RNA-binding proteins (RBPs)

inhibit phase separation of the RBPs (Maharana et al., 2018).

Intermolecular interactions between RNA and protein

molecules, including RNA-RNA, RNA-protein, and protein-

protein interactions, contribute to the formation of

biomolecular condensates by phase separation (Van Treeck

and Parker, 2018).

Liquid-liquid phase separation (LLPS) is well studied as an

intracellular phase separation mechanism and is a phenomenon

with which the system is separated into domains of liquid phases

with differentmolecular compositions, analogous to the case of salad

dressing that separate into an oil-rich phase and a water-rich phase

(Shin and Brangwynne, 2017). LLPS is driven by the multivalent

interactions between prion-like or low complexity domains,

oligomerization domains, and modular interacting domains (e.g.,

RNA binding domains) (Sanders et al., 2020; Banani et al., 2022).

Strong molecular interactions, such as hydrogen bonding,

electrostatic interactions between multivalent ions, and

hydrophobic interactions, can act as transient crosslinks (Tanaka,

2011). With such strong molecular interactions, proteins in

biomolecular condensates can transiently assemble networks that

make the condensates viscoelastic (Mittag and Pappu, 2022).

Another important class of phase separation is microphase

separation, with which the system forms multiple stable

condensates (microphases) in the sea of different composition

(Leibler, 1980; Semenov, 1985; Ohta and Kawasaki, 1986;

Fredrickson and Helfand, 1987; Matsen and Schick, 1994; Matsen

and Bates, 1996; Bates and Fredrickson, 1999; Safran, 2003).

Meanwhile, we have recently identified that paraspeckle nuclear

bodies scaffolded by RNAs and RBPs use micellization, which is

distinct from LLPS and will be described in the following sections, in

their formation in living cells (Yamazaki et al., 2021).Micellization has

been studied formany decades, but for in vitro systems of amphiphiles

(Tanford, 1972; Tanford, 1974a; Tanford, 1974b), synthetic polymers

(Halperin and Alexander, 1989; Zhulina et al., 2005; Mai and

Eisenberg, 2012; Moughton et al., 2012; Bates and Bates, 2017),

and several polypeptides/proteins (Dreher et al., 2008; Williamson

et al., 2010; Crick et al., 2013; McDaniel et al., 2014; Warner et al.,

2017; Newcombe et al., 2018; Posey et al., 2018; Cable et al., 2019;

Rana et al., 2021) at the thermodynamic equilibrium. Paraspeckle

nuclear bodies are different from these systems because they are

scaffolded by RNA-protein complexes (RNPs) and are seeded by

transcription that drives the system out of the equilibrium, as

described in the following sections (Yamazaki et al., 2021).

In this article, we first describe the roles of RNAs as scaffolds

for biomolecular condensates and discuss why these molecules

are suitable for such a purpose. We then describe the

micellization of RNPs and discuss why cells use micellization

to construct biomolecular condensates.

RNAs as scaffolds of biomolecular
condensates

A class of RNAs termed architectural RNAs (arcRNAs) can be

essential scaffolds of biomolecular condensates (Chujo et al., 2016;

Chujo and Hirose, 2017; Yamazaki, 2018, Yamazaki et al., 2019).

The arcRNAs are localized and enriched in the specific biomolecular

condensates, and the removal of the RNA disrupts the condensates

(Chujo et al., 2016; Chujo and Hirose, 2017). Dozens of cellular

condensates are scaffolded by arcRNAs, which are found among

various organisms ranging from yeast to humans (Nakagawa et al.,

2021; Yamazaki et al., 2019; Yap et al., 2018;Miura et al., 2013; Fuller

et al., 2020; Mannen et al., 2016; Mannen et al., 2021; Abdalla et al.,

2019; Ninomiya et al., 2019; Ninomiya et al., 2021; Biamonti and

Vourc’h, 2010; Shevtsov andDundr, 2011; Hall et al., 2017;Wu et al.,

2016; Audas et al., 2016; Daneshvar et al., 2020; Dumbovic et al.,

2018; Lee et al., 2021; Cheng et al., 2021; Yamashita et al., 1998; Ding

et al., 2019; Hiraoka, 2020;Michelini et al., 2017; Iserman et al., 2020;

Cubuk et al., 2021; Savastano et al., 2020; Lu et al., 2021; Zhang et al.,

2015; Langdon and Gladfelter, 2018; Sharp et al., 2022; Sabari et al.,

2020; Hernandez-Verdun, 2011; Berry et al., 2015; Feric et al., 2016;

Lafontaine et al., 2021; Prasanth et al., 2000; Ishizuka et al., 2014;

Decker et al., 2022) (Figure 1). Pathologically expanded, repeat-

containing RNAs are also regarded as a type of arcRNA

(Wojciechowska and Krzyzosiak, 2011; Swinnen et al., 2019;

Ninomiya and Hirose, 2020) (Figure 1). The arcRNA list was

expanded by several recent studies, suggesting that phase

separation is a widely used mode of action in RNA functions,

includingmany long non-coding RNAs (lncRNAs) (Yamazaki et al.,

2019; Chujo et al., 2017; Yap et al., 2018; Quinodoz et al., 2021;

Elguindy and Mendell, 2021).

Transcription as a seeding event (nucleation) initiates the

formation of biomolecular condensates constructed by

nuclear arcRNAs near the transcription site (Mao et al.,

2011; Shevtsov and Dundr, 2011). The produced RNAs

recruit RBPs that possess domains prone to self-assembly,

such as low complexity and coiled-coil domains. These

molecular interactions induce phase separation by

increasing the local concentration of these RBPs (Yamazaki

et al., 2018; Yap et al., 2018; Quinodoz et al., 2021). Our recent

work with the soft matter physics theory describes the

mechanism and dynamics of such a phase separation

driven by transcription of arcRNAs and inhibited by

degradation of arcRNAs (Yamamoto et al., 2020a).

RNAs are suitable biomolecules for
scaffolds of biomolecular
condensates

We discuss three reasons why RNAs are suitable for scaffolding

biomolecular condensates, with reference to recent findings [also see

(Chujo et al., 2016; Yamazaki et al., 2019)] (Figure 2).
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First, RNA can induce phase separation in a spatially and

temporally regulated manner, enabling the local and transient

control of nuclear processes, such as gene regulation and

chromatin organization at a specific genomic position near

the transcription site (Figure 2A). As cellular signals induce

transcription of such RNAs, this mechanism would be useful

for responses to environmental changes including cellular

stressors. This idea is supported by how most arcRNAs, such

as NEAT1_2, HSATIII (highly repetitive satellite III), and IGS

(ribosomal intergenic spacer) lncRNAs, are stress-inducible

(Chujo et al., 2016; Yamazaki, 2018). In the cytoplasm, RNAs

can also induce temporally regulated phase separation. G3BP

proteins recognize RNAs released from ribosomes under stress,

and these interactions trigger phase separation to form stress

granules (Guillén-Boixet et al., 2020; Yang et al., 2020)

(Figure 2A). In addition, RNA copies produced by

transcription, a distinct feature from DNA, increase the local

concentration of arcRNAs (nucleation) that eventually induce

phase separation. Condensates reportedly quickly disappear

when transcription of arcRNAs is stopped (Fox et al., 2005;

Mao et al., 2011; Shevtsov and Dundr, 2011). When degradation

of arcRNAs is inhibited, the condensates become larger

(Imamura et al., 2018; Fukushima et al., 2020; Machitani

et al., 2020; Tanu et al., 2021). These data suggest that the

continuous supply of RNAs by ongoing transcription and the

RNA degradation rate can maintain the phase-separated state

and temporal regulation of condensate formation. Although

many lncRNAs are often expressed at low levels, such

expression patterns can have a significant impact on the

confined space via the phase separation mechanism if the

valency of interaction among the lncRNAs and other

molecules, such as RBPs, is high. Thus, lowly expressed

lncRNAs may impact the biological processes at specific times

and space via phase separation.

Second, RNA can effectively sequester many RBPs into the

condensates through their short sequences, usually

4–17 nucleotides, or secondary structures (Lunde et al., 2007;

Prikryl et al., 2011). This sequestration significantly impacts the

freely available pool of RBPs. A recent study has shown that

NORAD lncRNAs sequester Pumilio proteins (PUM) into

NORAD-PUM (NP) bodies in the cytoplasm (Elguindy and

Mendell, 2021). Quantitative analyses have revealed that

NORAD efficiently sequesters 42-fold PUM through LLPS,

involving NORAD-PUM and PUM-PUM interactions,

compared with a stoichiometric decoy mechanism

(Figure 2B). These data demonstrate the importance of phase

separation in sequestration and how a smaller number of RNAs

can impact the regulation of many proteins via this process.

Third, RNA can design biomolecular condensates with

various forms and functions by recruiting a wide variety of

RBPs through its sequence and structure. RNA is negatively

charged, soluble, flexible, and usually a much longer polymer

than protein, therefore making it suitable to act as a scaffold.

More than 1,500 human RBPs, which possess a wide variety of

biological functions, can bind RNAs. Consequently, RNAs can

integrate the functions of these RBPs by assembling a variety of

RBPs and forming the condensates. In the case of lncRNAs, as

they do not need to have translatable open reading frames, their

sequences may be only constrained by the requirements to design

the structure and function of condensates (Figure 2C).

FIGURE 1
Biomolecular condensates with RNA scaffolds. Biomolecular condensates with RNA scaffolds in various organisms are illustrated. The scaffold
RNAs are described in parentheses if they are identified. Species other than humans are also described in parentheses.
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Furthermore, RNA can scaffold various condensates with a

specific shape, size, and structure by micellization like

paraspeckles (described below) (Yamazaki et al., 2021).

From these features, lncRNAs (and protein-coding RNAs

with non-coding functions) perform distinct functions that are

not achieved by other biomolecules.

NEAT1_2 lncRNA has multiple
functional RNA domains that dictate
form and function of the paraspeckle

One representative arcRNA is NEAT1_2 lncRNA, a scaffold

of paraspeckle nuclear bodies localized adjacent to nuclear

speckles. NEAT1_2 is a long intronless transcript (22.7 kb in

humans) produced from theNEAT1 gene by RNA polymerase II-

mediated transcription and is essential for paraspeckle assembly

(Chen and Carmichael, 2009; Clemson et al., 2009; Sasaki et al.,

2009; Sunwoo et al., 2009; Naganuma et al., 2012). The NEAT1

gene also encodes a short isoform NEAT1_1, which is

dispensable for paraspeckle formation but has several

important functions (Li R. et al., 2017; Naveed et al., 2020).

The paraspeckle contains more than 60 protein components (Fox

et al., 2002; Naganuma et al., 2012; Fong et al., 2013; West et al.,

2014; Kawaguchi et al., 2015; Yamazaki and Hirose, 2015;

Mannen et al., 2016; Fox et al., 2018; An et al., 2019; Barra

et al., 2020; Chen et al., 2020; McCluggage and Fox, 2021). A

recent study using a new method called HyPro-seq has expanded

the paraspeckle proteins (PSPs) (Yap et al., 2022). Among the

PSPs, several are essential for paraspeckle formation (Naganuma

FIGURE 2
RNAs are suitable biomolecules for scaffolds of biomolecular condensates. (A). RNA can induce phase separation in a spatially and temporally
regulatedmanner. Transcription of nuclear architectural RNAs (arcRNAs) (nucleation event) induces nuclear condensates with roles such as reaction
crucible, molecular sponge, and chromatin hub. The stress granule is shown as an example of the formation of cytoplasmic condensates with RNA
scaffolds. (B). RNA can effectively sequester many proteins into the condensates by liquid-liquid phase separation (LLPS) compared with a
stoichiometric decoy mechanism. The NP (NORAD-PUM) body is shown as an example. (C). RNA can create biomolecular condensates with various
forms and functions by recruiting a wide variety of RNA-binding proteins (RBPs) (~1,500 kinds of RBPs in humans).
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et al., 2012; Kawaguchi et al., 2015; Yamazaki et al., 2018). These

PSPs are involved in NEAT1_2 stability, isoform switching, and

NEAT1_2 RNP assembly (Naganuma et al., 2012; Kawaguchi

et al., 2015; Yamazaki et al., 2018). Prion-like domains of FUS

and RBM14, and NOPS and the coiled-coil domain of NONO are

essential for paraspeckle assembly (Hennig et al., 2015; Yamazaki

et al., 2018). In addition to the protein components, specific

RNAs, including inverted Alu repeat-containing RNAs, CTN-

RNA (cationic amino acid transporter two RNA), AG-rich

RNAs, mRNAs of nuclear-encoded mitochondrial proteins,

and poorly processed RNAs, are recruited to the paraspeckles

(Chen and Carmichael, 2009; Clemson et al., 2009; Hu et al.,

2015; West et al., 2016; Wang et al., 2018; Yap et al., 2022). In this

manner, the paraspeckles sequester a particular set of proteins

and RNAs to control gene expression (Chen and Carmichael,

2009; Clemson et al., 2009; Hirose et al., 2014; Imamura et al.,

2014; Wang et al., 2018; Tanu et al., 2021). The paraspeckles can

also interact with chromatin genome-wide that are enriched in

active promoters and enhancer elements (West et al., 2014; Li X.

et al., 2017; Sridhar et al., 2017; Fang et al., 2019; Bonetti et al.,

2020; Cai et al., 2020). NEAT1_2 is induced by various stressors

and pathological conditions, such as proteasome inhibition, viral

and microbial infections, neurodegenerative diseases including

amyotrophic lateral sclerosis (ALS) and frontotemporal

dementia (FTD), fibrosis, and cancer/p53 activation

(Nishimoto et al., 2013; Hirose et al., 2014) (Tollervey et al.,

2011; Tsuiji et al., 2013; Imamura et al., 2014; Adriaens et al.,

2016; Idogawa et al., 2017; Imamura et al., 2018; Fukushima et al.,

2020; Rheinbay et al., 2020). These data suggest the general

importance of NEAT1 in the stress response (McCluggage and

Fox, 2021).

NEAT1_2 lncRNA possesses multiple functional

NEAT1 RNA domains required for stability, including a triple

helix structure, isoform switching from NEAT1_2 to NEAT1_1,

paraspeckle assembly, and recruitment of specific proteins

(Brown et al., 2012; Wilusz et al., 2012; Yamazaki et al., 2018;

FIGURE 3
The functional RNA domains of human NEAT1 long non-coding RNA (lncRNA). (A). Schematics show the domains of human NEAT1_2 lncRNA
required for the form and function of paraspeckles. These domains include NEAT1_2 stability, isoform switching from NEAT1_1 to NEAT1_2,
polyadenylation signal (PAS), UG-repeats that sequester TDP-43 proteins, R-loop formation (Dumelie and Jaffrey, 2017), DNA:RNA triplex formation
(Sentürk Cetin et al., 2019), paraspeckle assembly (B block), shell-formation (A and C blocks). The spherical and cylindrical paraspeckles with
restricted size (Sx: ~360 nm in HeLa cells) form through micellization, a type of phase separation. (B) Deletion of the NEAT1_2 middle domain
(8–16.6 kb region, B block) causes the formation of smaller paraspeckle foci (magenta). Nuclei are stained with DAPI (blue). (C) Schematics show
NEAT1 mutants lacking the 5′ and/or 3′ domains (shell-forming domains) and the paraspeckles constructed by these mutants. Localization of
NEAT1_2 within these paraspeckles and their size are shown.
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Hirose et al., 2019; Yamazaki et al., 2019; Modic et al., 2019;

Yamazaki et al., 2021) (Figure 3A). The major assembly domain

is located on the NEAT1_2 middle domain (8–16.6 kb region of

NEAT1_2), which is essential for constructing intact

paraspeckles (Yamazaki et al., 2018) (Figure 3B). This

NEAT1_2 middle domain increases the local concentration of

paraspeckle core proteins, such as NONO and FUS, by recruiting

these proteins to the RNA domain (Yamazaki et al., 2018). This

feature shows the importance of the multivalent interaction in

phase separation. Long UG repeats in NEAT1_2, which are

evolutionally conserved in humans and mice, are essential for

recruiting TDP-43 proteins that strongly bind UG stretches

(Modic et al., 2019; Tollervey et al., 2011; Yamazaki et al.,

2019) (Figure 3A). Accordingly, NEAT1_2 lncRNA domains

determine the features of the paraspeckle.

Micellization of RNP block
copolymers: A newly identified
mechanism in the formation of
biomolecular condensates

The paraspeckle has several structural features: 1) highly

organized internal core-shell structure, where 5′ and 3′ terminal

regions (5′ and 3′ regions) of NEAT1_2 localize in the shell and

the middle region localize in the core (PSPs are also localized in

shell, core, and patch), 2) the paraspeckle shows a spherical or

cylindrical shape with restricted short axes (Sx), 3) the

paraspeckles are elongated to form cylindrical shapes by

NEAT1_2 transcriptional upregulation (Souquere et al., 2010;

Hirose et al., 2014; West et al., 2016; Yamazaki et al., 2018)

(Figure 3A). We have recently identified the NEAT1 RNA

domains for these features. The 5′ and 3′ RNA domains of

NEAT1_2 determine the shell localizations of the 5′ and 3′
regions of NEAT1_2, respectively (Yamazaki et al., 2021).

Deletion of either the 5′ or 3′ region causes the redistribution

of either end into the core of the paraspeckle (Figures 3A,C).

Furthermore, simultaneous deletion of both the 5′ and 3’ regions
causes random distribution within the paraspeckles (Figures

3A,C). By applying soft matter physics theory to explain these

features, we found that the paraspeckles form through

micellization, a new intracellular phase separation mechanism

of biomolecular condensates (Yamamoto et al., 2020b; Yamazaki

et al., 2021). This model treats NEAT1_2 RNPs as block

copolymers and paraspeckles as polymer micelles.

Block copolymer and micellization

The block copolymer consists of two or more chemically

different polymers joined by covalent bonds. When there are two

or three polymer blocks, the block copolymer is referred to as an

AB block copolymer or ABC triblock copolymer, respectively.

For an AB block copolymer, if the A block is hydrophilic and the

B block is hydrophobic, then the AB block copolymer can form

micelles by self-assembly of the B blocks in the core and

localizing the A block on the shell in water. The micelles have

various shapes, including spherical, cylindrical, lamellar, and

vesicular, and are analogous to amphiphiles, such as

detergents or phospholipids (Figure 4A). These internal

organizations and shapes are similar to paraspeckles. The

lengths of the polymer blocks determine the size of the

micelles. Furthermore, the permutation of blocks along the

copolymer determines the structure of the micelle and the

configuration of the block copolymers within micelles

(Moughton et al., 2012). The ratio of the A to B blocks

mainly determines the shape (Mai and Eisenberg, 2012; Bates

and Bates, 2017) (Figure 4A). As the fraction of the A block is

reduced (and the fraction of the B block increases), the shape of

the assembly changes from spherical, to cylindrical, lamellar, and

vesicular (Figure 4A). The polymer concentration also

contributes to determining the shape. This type of phase

separation in which assemblies have optimal size, internal

morphology, and shape is called micellization.

ABC triblock copolymer micelle model of
the paraspeckle

The NEAT1_2 middle domain is a major paraspeckle

assembly domain, and the 5′ and 3′ domains are shell-

formation domains (Yamazaki et al., 2018; Yamazaki et al.,

2021) (Figure 3A). The NEAT1_2 5′ and 3′ regions localize in

distinct areas in the shell of the paraspeckle (Figure 4B). As RBPs

usually coat RNAs, we presume that RBPs bound to the 5′ and 3′
domains determine the hydrophilicity of the shells of the

paraspeckle. The middle assembly domain of

NEAT1_2 interacts with several oligomer-forming proteins

such as NONO, which oligomerizes mainly through

hydrophobic interactions (Passon et al., 2012; Yamazaki et al.,

2018) (Figure 4C). Therefore, we treated NEAT1_2 RNPs as

amphipathic ABC triblock copolymers, where the middle major

assembly domain corresponds to the hydrophobic B block and

the 5′ and 3’ domains correspond to the hydrophilic A and C

blocks, respectively (Figure 4D).

To construct this block copolymer micelle model, we

consider five free energetic contributions (Yamamoto et al.,

2020b; Yamazaki et al., 2021) (Figure 4E):

1) The surface free energy of the core (B block) of the polymer

micelle (the paraspeckle): this is the energy cost because the B

block units at the surface of the core have fewer B block units

at the neighbor to interact than the B block units in the

interior of the core.

2) The free energy from the excluded-volume interactions

between the A blocks and those between the C blocks in
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FIGURE 4
ABC triblock copolymer micelle model of the paraspeckle. (A) Schematics of AB amphipathic (di)block copolymers with different block lengths
and themicelles they form in water. (B) The 5′ and 3′ domains of NEAT1_2 localize in distinct shell domains of the paraspeckle. The super-resolution
images (structured illuminationmicroscopy) with indicated probes are shown. Dotted circles indicate the domains within the paraspeckles where the
5′, 3′, and/ormiddle domains of NEAT1_2 localize. (C) RNA-binding proteins (RBPs) coat the shell-formation domains and the assembly domain
of the NEAT1_2 long non-coding RNA (lncRNA). (D) ABC triblock copolymer micelle model of the paraspeckle. (E) Energetic contributions (1–5)
considered in the ABC triblock copolymer micelle model of the paraspeckle are shown in a schematic.
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the shell: these interactions are repulsive because

these blocks are hydrophilic and thus tend to mix with

water.

3) The elastic free energy of B blocks: this is caused by the

stretching of the B blocks (Doi, 1996). Because of their

connectivity, polymers behave as (thermal) springs and

favor shrunken states. Because A and/or C blocks are

localized at the shell, B blocks are more stretched as the

size of the paraspeckle core is enlarged (Semenov, 1985). A

previous report estimates an approximately 20-fold

compaction of NEAT1_2 within the paraspeckle (Souquere

et al., 2010).

4) The free energy from the excluded-volume interactions

between the A and B blocks or between the C and B

blocks: these are free energy costs because entering the A

(or C) blocks (the shell) into the B blocks (the core) disturbs

the interaction between the B block units.

5) The mixing free energy from thermal fluctuations: this free

energy decreases when A or C blocks between the core and the

shell are randomly distributed.

Free energetic contributions (1, 2, and 3 in Figure 4E)

can explain the size of wild-type (WT) paraspeckles because

both the 5′ and 3’ domains localize in the shell and the

middle domain localizes in the core. This structure does not

change with the upregulation of transcription. When the

size of the paraspeckle becomes large, the surface free energy

of the core (1 in Figure 4E) decreases, whereas the free

energy from the repulsive interactions between the A blocks

or C blocks (2 in Figure 4E) and the elastic free energy (3 in

Figure 4E) becomes large (Semenov, 1985; Halperin and

Alexander 1989; Zhulina et al., 2005). The system evolves to

decrease the free energy while nascent NEAT1_2 is added as

its transcription proceeds. The interaction free energy and

elastic free energy make micellization different from LLPS.

If there is no repulsive interaction, condensates grow

without bound as long as components are available. This

is indeed the case with condensates formed by LLPS. These

repulsive interactions and elastic free energy limit the

incorporation of NEAT1_2 into the assemblies,

influencing the size and number of the assemblies.

To consider the internal morphology changes observed in the

NEAT1_2 mutants, we consider the energetic contributions

shown as 4 and 5 in Figure 4E. These free energies influence

the balance of energetic contributions shown as 1, 2, and 3 in

Figure 4E. Therefore, the balance of the energies (1–5) defines the

size, shape, and internal morphology of the assemblies. As a

result, the block copolymer micelle has optimal size, shape, and

internal morphology.

Our model also considers the transcription dynamics of

NEAT1_2. Thus, we can predict how the transcription rate

influences the size and internal morphology of the paraspeckle

(Yamamoto et al., 2020b).

Experimental validation of the ABC block
copolymer model of the paraspeckle

Our ABC triblock copolymer micelle model can explain

features of the paraspeckle constructed by WT and mutant

NEAT1_2.

A and C blocks are essential for the core-shell
internal architecture of the paraspeckle

Our micelle model can explain the organization of the

NEAT1_2 ends within the paraspeckles in NEAT1_2 mutants.

The model predicts that as the A or C block becomes shorter, the

A or C block is redistributed to the core of the paraspeckle

(Yamazaki et al., 2021). Consistent with this prediction, partial

deletion of the NEAT1_2 3′ region (16.6–20.2 kb) (the C block)

results in a random distribution of the 3′ region. Further deletion
of the NEAT1_2 3′ region (16.6–22.6 kb) results in complete

redistribution of the 3′ region into the core (Yamazaki et al.,

2021) (Figure 3C). In addition, NEAT1_2 lacking the 5′ and 3′
domains (Δ5’/Δ3’) (the A and C blocks) forms paraspeckles

without internal ordered structures (Yamazaki et al., 2021)

(Figure 3C).

A and C blocks limit the size (short axis) and
number of paraspeckles by restricting the
incorporation of NEAT1_2 molecules into the
paraspeckle

Ourmicelle model predicts that the length of the A or C block

determines the number of NEAT1_2 molecules in a paraspeckle

and the size/Sx. Deletion of the A (or C) block increases the

number of NEAT1_2 molecules in a paraspeckle by reducing the

repulsive excluded-volume interactions between the hydrophilic

A (or C) blocks. Size/Sx is limited by excluded-volume

interactions between the A (and C) blocks (and the elastic

free energy of the B blocks: discussed in the following section)

(Figure 3C).

Experimentally, the paraspeckles become large when deleting

the 5′ and/or 3′ domains. The extreme case is the NEAT1_2 Δ5’/
Δ3′ mutant (Figure 3C). This mutant lacks most of the

hydrophilic domains (A and C blocks), reducing or losing

repulsive interactions between NEAT1_2 RNPs. In this case,

condensates form likely through LLPS. Paraspeckles constructed

by the NEAT1_2 Δ5’/Δ3′ are ~2-fold larger in average Sx than

WT paraspeckles (Yamazaki et al., 2021). We estimated the

number of NEAT1 lncRNA molecules per paraspeckle in the

NEAT1 Δ5′, Δ3′, and Δ5’/Δ3′mutants compared with WT. This

estimation showed a ~2-fold increase in the Δ5′ and Δ3′mutants

and ~3-fold increase in the Δ5’/Δ3′ mutant (Yamazaki et al.,

2021). As a spherical WT paraspeckle contains about

50 NEAT1_2 lncRNAs (Chujo et al., 2017), a paraspeckle in

these NEAT1 mutants contains 100–150 NEAT1_2 lncRNAs

(Chujo et al., 2017; Yamazaki et al., 2021). Taken together, the

presence of the 5′ and 3’ domains of NEAT1_2 switches the
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paraspeckle formation process from LLPS to micellization

(Figures 5A,B).

The B block is the hydrophobic core of the condensates,

where the NONO proteins form oligomers mainly through

hydrophobic interactions (Passon et al., 2012). When the

length of the B block is constant, the lengths of the A and C

blocks determine the size of the condensate. As the length of the

B block becomes shorter, the size of the condensate becomes

smaller. As described above, deleting the NEAT1_2 5′ and 3’

domains (the A and C blocks) increased the Sx of the paraspeckle.

Deletion of the NEAT1_2 assembly domain (the B block) (e.g.,

major assembly domain, the middle domain [8–16.6 kb]) formed

much smaller paraspeckles than WT paraspeckles (Yamazaki

et al., 2018) (Figure 3B). Thus, the balance of the length of A/C

blocks and the B block determines the condensate size.

Paraspeckles are reportedly often found as clusters

containing multiple paraspeckles (Visa et al., 1993; Hirose

et al., 2014; Yamazaki et al., 2021) (Figure 5B, left). Block

copolymer micelles rarely coalesce each other. When the sizes

of the micelles are smaller than their optimal sizes, they can

coalesce. However, the coalescence kinetics are much slower than

the fusion of LLPS-condensates because their micelle shells

become barriers to contacts between the cores of the micelles.

When NEAT1_2 expression levels are constant and the number

of NEAT1_2 molecules in a paraspeckle increases, the number of

paraspeckles is reduced. Because the number of

NEAT1_2 lncRNAs per paraspeckle increases in the NEAT1

Δ5′, Δ3′, and Δ5’/Δ3′ mutants, there are fewer paraspeckles in

these mutants (Yamazaki et al., 2021). In particular, most of the

paraspeckles in the NEAT1 Δ5’/Δ3’mutant form paraspeckles as

FIGURE 5
Differences of the condensates formed by liquid-liquid phase separation LLPS and micellization. (A) Schematics show condensates formed by
LLPS andmicellization. Their internal morphologies and behaviors upon transcriptional upregulation are also shown. Different RNA-binding proteins
(RBPs) are illustrated as other color circles (blue and yellow). The condensates formed by LLPS and micellization can contain many types of RBPs,
although the illustration shows one or two types of RBPs for simplicity. (B) Representative images of the paraspeckles in HAP1 NEAT1 wild type
(WT) and Δ5’/Δ3′ cell lines are shown. Insets are magnified images of the paraspeckles in these cell lines. The 5′ domains of NEAT1_2 are shown in
green and the middle domains of NEAT1_2 are shown in magenta. Nuclei are shown in blue.
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a single entity, likely through LLPS (Yamazaki et al., 2021)

(Figures 5A,B).

Excluded-volume interactions between A and C
blocks and elastic free energy of the B block
determine the shape of the paraspeckle

Our micelle model can explain the shape of the paraspeckle.

The WT paraspeckles show cylindrical as well as spherical

shapes, while the NEAT1_2 Δ5’/Δ3’ mutant forms large

spherical paraspeckles likely through LLPS, in which the

condensates become spherical by minimizing the surface free

energy (Figure 5B). The transition of the shape from a sphere to a

cylinder is determined by the competition among surface free

energy of the B blocks, the repulsive interactions between the A

blocks and between the C blocks, and the elastic free energy of the

B block in the core (Yamazaki et al., 2021) (Figure 6A). As the

condensates become larger, the contribution of the elastic free

energy of the B block becomes dominant. Then, the shape

changes from a sphere to a cylinder, which has a shorter Sx

than a sphere. This reduces the elastic free energy of the B blocks

and the excluded-volume interactions between the A or C blocks.

The transcription rate determines the size and
internal morphology of the paraspeckle

Our micelle model predicts how the production of

NEAT1_2 by transcription influences the Sx of the

paraspeckle. As the transcription rate increases, the number of

NEAT1_2 molecules associated with the paraspeckle increases

(Yamazaki et al., 2021). The number of NEAT1_2 molecules in a

paraspeckle is determined by the competition between the

stabilizing and destabilizing factors. The stabilizing factor is

the multivalent interactions between the middle domain (B

block) of NEAT1_2. The destabilizing factors are the

excluded-volume interactions between terminal blocks in the

shell and the elastic energy from the stretching of the middle

domain (Yamazaki et al., 2021) (Figure 3C). In contrast to the

micellization, paraspeckles constructed by the NEAT1_2 Δ5’/Δ3’
mutant become larger as NEAT1_2 expression levels increase

(Yamazaki et al., 2021) (Figures 5A,B).

Our model also predicts that the transcription rate influences

the internal morphology of the paraspeckle. As the transcription

rate increases, A (or C) blocks tend to relocalize to the B block

(the core) (Figure 6B). As the production of NEAT1_2 increases,

the repulsive interactions between A blocks and between B blocks

dominate the repulsive interactions between A (or C) blocks and

the B blocks in the core (Yamazaki et al., 2021) (Figure 6B). In

our experiment, when NEAT1_2 expression levels increased, the

fraction of the shell decreased in the NEAT1 mutant lacking the

5’ domain (Yamazaki et al., 2021).

The paraspeckle has relatively constant Sx because of the size

limitation in the micellization (Yamazaki et al., 2021). Lack of A

and C blocks (hydrophilic blocks that generate repulsive

interactions) causes high variability in the size of the

paraspeckles, as observed in the NEAT1 Δ5’/Δ3’ mutant

paraspeckles (Yamazaki et al., 2021) (Figure 5B).

Transcription may be a key determinant of this size

variability. The duration and/or strength of

NEAT1_2 transcription bursts may influence the size and

shape of the paraspeckle. Furthermore, the frequency of the

bursts may influence the number of paraspeckles. This

hypothesis is supported by a previous study which

demonstrated that NEAT1 transcriptional activation by

mitochondrial signals can increase the number of elongated

paraspeckles (Wang et al., 2018).

FIGURE 6
Transcription rates influence the shape and internal
morphology of the condensates. (A) Free energetic contributions
in the sphere-cylinder transition are shown in a table. Free
energetically favored states (shape) are shown in magenta
when more RNA-protein complexes (RNPs) are incorporated into
condensates. Schematics of the transition are also shown. If a large
micelle forms, the shape is energetically unfavorable from elastic
free energy caused by stretches of RNP polymers in the core. (B)
The contribution of the transcription rate in the internal
morphology of condensates is shown. Excluded-volume
interactions between A (or C) blocks become dominant compared
with excluded-volume interactions between A (or C) and B blocks
in the core when more RNPs are incorporated into the
condensates upon transcriptional upregulation.
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As described in this article, we identified a new intracellular

phase separation mechanism using theoretical analyses. We

termed block copolymers made of RNPs as “RNP block

copolymers”. Therefore, a method combining molecular biology

experiments and theoretical physics is a powerful approach to

investigate the mechanism of intracellular phase separation.

Potential functional importance of
micellization

There are several differences between LLPS (macroscopic

phase separation) andmicellization. As described above, in LLPS,

the condensates typically have a spherical shape and show

coarsening and coalescence to minimize the surface free

energy. However, micellization has several features, including

1) optimal size, 2) optimal shape (such as sphere, cylinder,

lamellar, vesicle), 3) optimal internal morphology, and 4) rare

coalescence of the condensates. These features determined by

micellization would be related to functions of the condensates.

Here, we discuss the potential functional importance of these

features of the paraspeckle, which may generalize the significance

of the condensates formed by micellization in cells.

Generating the core-shell architecture of
condensates

A distinct feature of the paraspeckle is the core-shell internal

architecture, which is evolutionally conserved (Souquere et al.,

2010; Cornelis et al., 2016; West et al., 2016; Yamada et al., 2022).

As various proteins and RNAs are sequestered at the

paraspeckles, the shell may be a platform to gather specific

proteins and RNAs, as described above (Figure 7A). For

example, the AG-rich RNAs are sequestered at the shell of the

paraspeckles, suggesting the importance of the shell for this

process (West et al., 2016). In block copolymer micelles, the

shells are thought to be sparse. In the paraspeckle, the electron

density of the shell of the paraspeckle is low (Souquere et al.,

2010). Thus, the shell may act as a nest for interacting factors of

NEAT1_2 RNPs to perform sequestration, biochemical

reactions, and macromolecular assembly (Figure 7A).

Controlling the size, shape, and number of
condensates

LLPS condensates grow without bound by coarsening and

coalescence as long as the components are available. By contrast, in

micellization, the size of the condensate is restricted by the length

of the block copolymer. Thus, this micellizationmechanismwill be

useful for tighter size control of condensates compared with other

size control mechanisms, such as the elastic energy of the

cytoskeleton, kinetic limitations on coarsening, stoichiometric

constraints, multiple nucleation sites, stabilization of condensate

surface by RNAs, nascent RNAs as surfactants, microemulsion,

and emulsification including the Pickering stabilization

(Brangwynne et al., 2009; Berry et al., 2018; Style et al., 2018;

Garcia-Jove Navarro et al., 2019; Dar and Pappu, 2020; Martin

et al., 2020; Ranganathan and Shakhnovich, 2020; Rosowski et al.,

2020; Sabari et al., 2020; Wei et al., 2020; Folkmann et al., 2021;

Hilbert et al., 2021; Snead and Gladfelter, 2021; Yamamoto et al.,

2021; Mittag and Pappu, 2022). NEAT1_2 forms spherical or

cylindrical paraspeckles with relatively constant Sx (approximately

360 nm on average Sx in HeLa cell line) from the size limitation of

micellization (Souquere et al., 2010; Yamazaki et al., 2021). In

contrast, NEAT1 Δ5’/Δ3’ mutant paraspeckles form larger

condensates than WT ones. In this way, WT paraspeckles do

not become too large. Thus, the paraspeckles may have optimal

sizes to perform their functions (Figure 7B). For example, it may be

possible that condensates that are too large have difficulties

diffusing in the nucleoplasm, possibly by the interference of

nuclear structures (Figure 7B). In addition, large condensates in

the nucleus could disturb nuclear processes, such as chromatin

organization and gene expression. Thus, this size limitation might

minimize such adverse effects (Figure 7B).

The paraspeckles often have cylindrical shapes, and this

feature is evolutionally conserved in humans, mice, and

FIGURE 7
Potential functional importance of micellization. (A–D)
Features of condensates formed through micellization are shown
(Left). Potential functional importance related to the features on
the left is listed (Right).
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opossums. This shape is possibly important for its functions. A

cylinder has a larger surface area than a sphere, which may be

important for the shell functions such as sequestration, as

described above (Figure 7B). In addition, cylindrical

paraspeckles are reportedly less dynamic than spherical

paraspeckles and have increased capability of mRNA

sequestration (Wang et al., 2018). Further studies will be

required to understand the molecular mechanism and

functional importance of the cylindrical shape of the paraspeckle.

The number of NEAT1_2 RNPs that are incorporated into a

paraspeckle is limited by repulsive interactions between the

RNPs. When the NEAT1_2 lncRNA expression levels are the

same, the number of condensates is larger in micellization than in

LLPS. This increased number of condensates, which also

increases the condensate surface area, would be beneficial for

efficient sequestration and widespread chromatin interactions

(Figure 7B).

Making condensates soluble in the
nucleoplasm

It has been reported that paraspeckles that form near the

NEAT1 gene locus are released from the locus to the nucleoplasm

(Mao et al., 2011; Shevtsov and Dundr, 2011). In the NEAT1 Δ5’/
Δ3’ mutant, the paraspeckles form a few large spherical

condensates per nucleus, presumably localized near the

NEAT1_2 transcription sites (Yamazaki et al., 2021)

(Figure 5B). Therefore, the hydrophilic surface of the micellar

structure (solubility), as well as the size of condensates, may be

important for dispersion or motility of paraspeckles in the

nucleoplasm by solubilization (Figure 7C). This dispersion

could contribute to genome-wide targeting of the paraspeckles

to chromatin (West et al., 2014; Li X. et al., 2017; Sridhar et al.,

2017; Bonetti et al., 2020; Cai et al., 2020).

Suppressing coalescence of condensates

During micellization, coalescence of the assemblies is

suppressed. This feature may be necessary to minimize

adverse effects from coalescence (Figure 7D). If paraspeckles

frequently coalesce, this may influence various nuclear events

such as chromatin organization and gene expression because the

NEAT1_2 lncRNAs are highly expressed, frequently interact

with chromatin, and function in regulating gene expression. A

recent report using the CasDrop system has shown that the

fusion of condensates formed by LLPS reorganizes the nuclear

chromatin architecture and connects chromatin (Shin et al.,

2018). Instead, diffusion of the condensates may be

functionally important during micellization, as described above.

As discussed here, these characteristics and structures are

likely related to the functions. Further investigations will help

reveal the functional importance of the micellization of RNP

block copolymers.

Future perspectives

We have investigated the paraspeckle as a model to

understand how RNAs can form biomolecular condensates.

From these investigations, we propose a new concept that RNPs

can act as block copolymer micelles and form micelles in cells.

An additional question requiring further investigation is what

the molecular determinants of the RNP block copolymer

micelles are. As RBPs usually coat RNAs, we reason that

some proteins interacting with the shell-forming domains

contribute to shell formation of the RNP block copolymer

micelles (Figure 4B). Indeed, we recently identified proteins

that contribute to shell formation (T. Yamazaki, unpublished

observation). Thus, it would be important to understand how

these RBPs function. In addition to analyzing these RBPs, it

would be important to elucidate the specific RNA sequences

and structures to construct RNP block copolymers by mainly

determining the interacting RBPs. Unlike synthetic block

copolymers, the binding sites of the RBPs that determine A

(hydrophilic) or B (hydrophobic) blocks may be not uniform in

the RNAs. The ratio and number of these RBPs would

determine the domain as an A (hydrophilic) or B

(hydrophobic) block. It is tempting to speculate that the

RBPs determining the A block (hydrophilic) would be

required for the dispersion of RNPs, such as messenger

RNPs that seem to not form condensates, which might be

beneficial for their biogenesis. Furthermore, it would be

essential to use constructive approaches to understand

requirements for the formation of RNP block copolymer

micelles and the determinants of their functionality. These

analyses will elucidate the molecular basis of how RNPs act

as block copolymers and open the door to create designer

condensates using RNPs with various structures, physical

properties, and functions, according to the design guidelines

of block copolymer micelles, called “designer soft materials”.

Currently, the molecular mechanisms and theoretical

principles of some structural features of the paraspeckles

remain unknown. These features include how 1) the

NEAT1_2 RNPs are bundled, 2) the NEAT1_2 5′ and 3’

domains occupy distinct shell domains, and 3) the paraspeckle

proteins localize in the patch, as well as the shell and core

(Kawaguchi et al., 2015; West et al., 2016). Further work,

including dissection of the NEAT1 RNA domains and

theoretical analyses, would help answer these questions.

Another critical question is how the micelles eventually play

physiological and pathological roles through their molecular

functions. As described, the micelles possibly contribute to the

molecular functions, such as acting as a molecular sponge or

chromatin hub. Various physiological roles of NEAT1 have been
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reported. NEAT1 is physiologically important in mammary

gland development and lactation, corpus luteum formation,

and the establishment of pregnancy (Nakagawa et al., 2014;

Standaert et al., 2014). As described above, NEAT1 is relevant

to various diseases including cancer, viral infection, ALS, and

FTD. Thus, NEAT1 would be an interesting model to understand

the links among features of RNP block copolymer micelles,

molecular functions, and physiological and pathological roles.

Finally, it is essential to understand how widely micellization

is used in biological systems. For example, the nuclear stress

body, a primate-specific, stress-induced nuclear condensate

constructed by HSATIII lncRNA, has a sea-island structure, a

typical structure formed by block copolymers (Chiodi et al., 2000;

Kawaguchi et al., 2015). It may be also conceivable that if

biomolecular condensates are small, then the condensates

formed by micellization may not be distinguishable from

those formed by LLPS because of microscope resolution

limitations. Thus, micellization may be overlooked and

widely used.
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