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It has been almost a decade since the 2009 influenza A virus pandemic hit the globe

causing significant morbidity and mortality. Nonetheless, annual influenza vaccination,

which elicits antibodies mainly against the head region of influenza hemagglutinin (HA),

remains as themainstay to combat and reduce symptoms of influenza infection. Influenza

HA is highly antigenically variable, thus limiting vaccine efficacy. In addition, the variable

HA head occupies the upper strata of the immunodominance hierarchy, thereby clouding

the antibody response toward subdominant epitopes, which are usually conserved

across different influenza strains. Isolation of monoclonal antibodies from individuals

recognizing such epitopes has facilitated the development of recombinant vaccines that

focus the adaptive immune response toward conserved, protective targets. Here, we

review some significant leaps in recombinant vaccine development, which could possibly

help to overcome B cell and antibody immunodominance and provide heterosubtypic

immunity to influenza A virus.
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INTRODUCTION

Influenza viruses belong to the family of Orthomyxoviridae and consists of A, B, C, and D
types. Types A and B are currently circulating among humans (1–4). Influenza causes significant
morbidity (30–50 million cases yearly) and mortality, with infection-associated respiratory deaths
in the range of 4–8.8 per 100,000 individuals, posing heavy socioeconomic burden to society
(5). Annual vaccination remains as the mainstay to prevent influenza infection, but, according
to Centers for Disease Control and Prevention, it is effective only in 20–70% of the population,
depending on season (6). Based on antigenic and phylogenetic properties of influenza surface
glycoproteins, hemagglutinin (HA), and neuraminidase (NA), there are 18 HA (H1–H18), and 11
NA (N1–N11) Influenza A virus (IAV) serotypes and two influenza B of B/Victoria and B/Yamagata
lineages (7, 8). HA is further divided into two phylogenetic groups. The current seasonal flu
vaccines are either trivalent or quadrivalent containing HA from circulating H1N1, H3N2, and
B/Victoria lineage or both influenza B lineages (9). IAV possess an error prone RNA polymerase,
which results in mutations in surface antigens, leading to antigenic drift and antibodies being
no longer effective. Therefore, it is necessary to update and administer vaccines every year by
forecasting the drifted strains. In addition, the annual vaccination becomes ineffective during
pandemic outbreaks, in which a new viral strain of zoonotic origin acquires the ability to replicate
in humans (10, 11).
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HA is the most abundant glycoprotein on the influenza
virion surface and is crucial for host viral entry by binding
to the terminal sialic acid residues on epithelial cells, resulting
in fusion of viral and host cell membranes. HA is a trimer
consisting of a globular head, harboring the receptor binding
site, and an elongated stem region (12). Even though stem-
specific B cells and antibodies are generated during infection
and vaccination, the HA head is the main target of neutralizing
antibodies. However, possibly due to its immunodominance (13),
the head is subjected to higher rate of evolution (2.2–4.4 times)
than the stem (14, 15). Intriguingly, while in animals, at least
12 mutations are necessary to drive full escape from immune
sera (16), in humans, it appears that the polyclonal response
can be extremely focused on one antigenic site (17–19). For
example, in a circulating span of 35 years in humans, a single
amino acid substitution at only seven sites in HA head beside
the receptor binding site (RBS) was enough to drive major
antigenic change in H3N2 (17, 20). HA stem, as a target for
universal influenza vaccine, has gained enormous traction in
recent years. One could argue that the stem region is inaccessible
to B cells and antibodies (21). However, a study using a broad
neutralizing antibody showed that nearly 75% of the HA on
pandemic H1N1 is bound by a stem-specific mAb (22). There
is an urgent need to introduce universal vaccines, targeting
conserved regions and providing lifelong protection. This review
focuses on possible strategies for developing universal influenza
vaccines, mainly based on HA. Such strategies are summarized
in Figure 1.

HEMAGGLUTININ STEM—A PROMISING
UNIVERSAL VACCINE TARGET

HA stem has been an important candidate for development of
universal vaccines because the stalk region is relatively conserved
and evolves much slower and accommodate less amino acid
substitutions as compared to the head domain. This could be due
to minimal antibody pressure from low amount of circulating
anti-stem antibodies (23, 24) and low tolerance to mutations
in the stalk domain, which can lead to loss of viral fitness
(25, 26), even though partial escape mutations in the stem can
be generated (27). However, amino acid substitutions in the
stalk have been reported to minimally affect the neutralization
capacity of human cross-reactive, anti-stalk monoclonal
antibodies (14, 28).

HA stem antibodies protect by (i) preventing viral entry by
blocking the fusion of host cell membrane and viral membrane
(29), (ii) reducing viral egress by blocking neuraminidase
activity through steric hindrance (30–32), and (iii) FcR-mediated
induction of antibody-dependent cellular cytotoxicity (ADCC),
antibody-dependent cellular phagocytosis and reactive oxygen
species production (33–35). Several human-derived broadly
neutralizing anti-stem antibodies have been identified against
either influenza group 1 (36–39) or group 2 (38, 40–42) or
both groups (40, 43–50) or even against both influenza A and
B subtypes (51). The identification of these antibodies was an
incentive to develop vaccines, which are discussed below.

HEMAGGLUTININ STEM—HUMAN
IMMUNE RESPONSES

In humans, memory B cells (Bmem), and antibodies against HA
stem are subdominant and present in low levels. Analysis of
serum samples from 202 healthy individuals collected between
2004 and 2010 revealed that anti-stem antibodies of group 1
specificity is found in 84% of the population (52); however,
their level, as measured in human Intravenous Immunoglobulin
preparations, is very low (23).

Ellebedy and colleagues (53) found that immunization
with H5N1, which is not currently circulating in humans,
boosted cross-reactive antibody response toward HA stem,
when compared to seasonal vaccines. Because of the existence
of lower levels of H5 head-specific Bmem as compared to
stem-specific Bmem, H5N1 vaccination led to recruitment of
stem-specific Bmem, their expansion, and antibody production.
On the contrary, boosting with the same HA favors anti-
head responses (53). Another study found that nearly 6 out
of 10 individuals have Bmem specific between group 1 and
2 HA (50). Indeed, it appears that baseline levels of H5–
H1 cross-reactive Bmem and H1-specific Bmem are no more
than 2-fold different (54). However, after priming with an H5
DNA plasmid vaccine and boosting with A/Indonesia/05/2005
monovalent-inactivated virus, both head and stem Bmem were
expanded but only head-specific Bmem persisted, while stem-
specific Bmem expanded and contracted rapidly (50, 54).
Finally, Andrews et al. observed that immunization with
group 1 virus (H5N1) elicited anti-stem memory responses
exclusively against group 1, while group 2 (H7N9) induced
high levels of cross-protective anti-stem memory B cell
responses with diverse repertoire despite a lower overall
response. This study in humans suggests the potential of
group 2 based vaccines to provide a broader protection
as compared to group 1 (55). While all these studies
highlight the ability of individuals to generate stem-specific
Bmem and plasmablasts, they all note a rapid contraction
of stem-specific cells. This disconnect between cell numbers,
longevity, and serum antibodies highlight the complexity of B-
cell fate decision. Understanding how antigen specificity can
influence cell differentiation is a crucial challenge for next
generation vaccines.

SITES OF VULNERABILITY IN
HEMAGGLUTININ HEAD

Although HA stem is an excellent candidate for the development
of universal vaccines, anti-HA stem titers in human correlates
only with reduced viral shedding but do not predict the severity of
influenza infection (56, 57). A recent study in humans indicated
that a 2-fold increase in hemagglutination inhibition titer gave
a 23.4% reduction in H1N1 infection risk, while the same
increase in HA-stem-specific antibodies conferred only 14.2%
reduction (58).

The globular head of the HA is target for most of the
neutralizing antibodies, which prevents the viral entry by
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FIGURE 1 | Summary of some promising strategies currently used to elicit broadly cross-reactive anti-HA B-cell responses.

blocking the binding of RBS to sialic acid residues on host cell
membrane (59). RBS is a shallow depression on HA head and
consists of 130 loop, 150 loop, 190 helix, which are relatively
conserved, and 220 loop, which is diverse among IAV subtypes
(60, 61). Amino acid substitutions in the RBS determine host
tropism, and specific substitutions are connected to altered
receptor binding within subtype (62). Some RBS binding, broadly
neutralizing antibodies have been identified, such as C05, S139/1,
and F045-092, which neutralize within groups; CH65, 5J8, 2G1,
and H5.3, which neutralize within subtype (63–71); and C12G6
and CR8033, which neutralize both influenza B lineages (51, 72).

Apart from RBS, broadly neutralizing antibodies have been
identified against other conserved sites on HA head (73). An
antibody (F005-126) which neutralizes 12 H3N2 subtypes by
occupying the cleft formed by twoHAheadmonomers and cross-
linking them is known to prevent viral entry by blocking pH-
induced HA conformational change (74). Bajic et al. found that
subdominant antibodies can target an occluded epitope located
on the lateral surface on HA head between two monomers using
an H3 immunogen, hyperglycosylated on dominant epitopes.
These antibodies protected against H3N2 challenge in an Fc-
dependent manner (75). Similarly, two independent studies
identified broadly neutralizing antibody, which bind hidden
epitopes at HA trimer interface. These antibodies do not

neutralize the virus but are suspected to disrupt the HA trimer
integrity. Passive transfer experiments revealed that they protect
mice from groups 1 and 2 viruses by preventing cell-to-cell viral
spread or by FcγR or complement mediated effector mechanism
(76, 77). HA exhibits “breathing” phenomenon at neutral or low
pH where reversible separation of HAmonomers exposes hidden
epitopes to these specific antibodies (78–80). Vestigeal esterase
domain is another possible HA target; it is located at the base of
the HA head and can be target of broadly protective antibodies,
which protect within subtypes (81, 82) and both lineages of
influenza B virus (83). Like stem-directed antibodies, they protect
through variousmechanisms such as blocking viral egress, fusion,
or by ADCC.

For most of the epitopes described above, we are just at the
first step of the reverse vaccinology pipeline. However, there is
hope that using some advanced de novo protein design tools, we
will be able to create effective immune-focusing antigens (84, 85).

BIOENGINEERING ANTIGENS TO
REFOCUS IMMUNE RESPONSES

Headless Hemagglutinins
One of the obvious ways to increase the anti-stem
antibody response is to remove HA head to circumvent
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its immunodominance (13, 86). Even though this sounds
simple, removing the head and the transmembrane domain
may cause conformational changes in the stem leading to
loss of recognition by anti-stem antibodies (87). One of
many successful attempts was achieved by creating stable
trimeric mini-HA from H1N1, which retained similar binding
affinity to two broadly neutralizing antibodies, CR9114 and
CR6261, as that of full-length HA. When used to immunize
non-human primates, the elicited antibodies competed with
CR9114, induced ADCC, and neutralized H5N1 virus (88).
Another study used H1HA10-Foldon and H3HA10-Foldon
mini-HA, which generated neutralizing antibodies cross-
reactive to both groups 1 and 2 IAV in vitro but with
limited cross-group protection in vivo (89, 90). In contrast
to these mini-HAs, an H5-based mini-HA produced and
purified from Escherichia coli elicited anti-stem antibody
responses and protection against both IAV subtypes (91).
Pre-existing immunity plays a role in subsequent immune
response to viral infection and vaccination (92). When
tested in non-human primates who have been exposed to
flu infection, mini-HA were shown to induce higher cross-
protective antibody response as compared to seasonal trivalent
inactivated vaccine, indicating their potential as a universal
vaccine (93).

Ferritin is an iron storage protein which self-assembles
into a nanoparticle consisting of 24 repetitive polypeptides,
which can induce strong immune response and antigen
presentation (94). Based on this, Yassine et al. engineered
a nanoparticle containing intact HA stem from H1 (H1-ss-
np), which generated anti-stem response almost 2-fold higher
than that of trivalent inactivated vaccine. When immunized
with H1-ss-np, mice and ferrets elicited broad antibody
response against group 1 IAV as well as group 2 IAV,
demonstrating heterosubtypic protection (95). Based on this,
influenza H1 stabilized stem ferritin vaccine (H1ssF_3928)
has entered a phase I ongoing clinical trial to evaluate its
tolerability and immunogenicity in healthy adults. However, a
thermostable and immunogenic nanoparticle vaccine containing
group 2 H3 and H7 stem conferred only protection against
homosubtypic viral challenge. Given the fact that these stem
immunogens activates IgM BCR of unmutated common ancestor
of the cross-reactive human anti-stem antibodies, the authors
speculate that the lack of cross-group protection in vivo
might be due to difference in BCR repertoire in mice and
human (96).

Chimeric Hemagglutinin
Chimeric HAs (cHA) are full-length HA with stem derived from
human viruses and globular head from distinct, exotic HAs.
Based on this concept, repeated immunization with cHA with
head from different flu subtype and same H1 HA stem induced
high titers of stem-reactive antibodies against homologous and
heterologous viruses (97). Several such cHA constructs, which
confer protection by eliciting stem Abs, have been developed for
group 1, group 2, and Influenza B viruses, with some inducing
long-lasting antibodies (98–105). An interim report on a clinical
trial using a cHA prime boost strategy was recently released

(106). In this study, healthy volunteers, with measurable baseline
H1-stalk antibody levels, were boosted with cHAs. The sharpest
stem-antibody level increase was obtained when challenging
with cH8/1N1 in AS03 adjuvant intramuscularly. However,
further immunization with other cHA did not additionally
boost stem responses. To build upon these promising
findings, more studies are needed to assess the longevity of
these responses and their stability upon natural infection or
seasonal immunization.

Immune-Focusing Strategies
N-linked glycosylation on HA has been known to stabilize HA
and shield virus from host immune response (107). Creating
monoglycosylated HA or unmasking HA-stem of N-glycans
could induce cross-strain neutralizing anti-stem antibodies (108,
109). Conversely, hyperglycosylating the HA head can also
refocus response on stem (110). A recent study used “protect,
modify, and deprotect” method to focus antibody response
toward a stem epitope. In this strategy, after masking target
epitope on stem with a monoclonal antibody, the surrounding
undesired epitopes are chemically modified to reduce their
antigenicity (111). On the other hand, other residues, outside
stem, can also influence the neutralizing sensitivity to anti-stem
antibodies by affecting HA-stalk stability and antibody access to
stem epitopes (112).

Vaccine Engineering for Cross-Protection
Kanekiyo et al. used a ferritin nanoparticle displaying a
repetitive array of HA hyper variable receptor binding domains
(RBD from different H1N1 strains). Using this, they could
subvert B cell response from strain-specific immunodominant
epitopes to conserved, shared epitopes. Since cross-reactive B
cells can recognize conserved epitope from an heterogenous
array of RBD, these cells get preferentially activated due to
avidity advantage and could selectively activate pre-existing
cross-reactive Bmem. One of the antibodies generated after
immunization, 441D6, binds to a conserved epitope, which lies
opposite to RBS and protects against H1N1 strains spanning
from 1977 to 2009 (113, 114). Anderson et al. generated
cross-reactive antibody responses by injecting a mix of DNA
vaccines containing HA genes from six members of group
1 IAV, which was further enhanced by inclusion of an
antigen presenting cell targeting unit specific for MHCII, thus
favoring BCR cross-linking (115). Another strategy to elicit
broadly reactive antibodies within IAV subtypes is to use
computationally optimized broadly reactive antigens (COBRA),
which are displayed on virus like particles or expressed in
live attenuated influenza vaccine. This approach uses multiple
rounds of consensus generation to aggregate HA epitopes of
IAV from different time periods. Such vaccines elicit polyclonal
B cell responses and was shown to protect within subtypes
(116–123). Combining several COBRA vaccines could confer
heterosubtypic protection.

M2e-Based Vaccines
M2 is an ion channel with its ectodomain (M2e) exposed
on virion and infected cell surfaces (124). M2e is quite
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TABLE 1 | Characteristics of antibody responses to current universal vaccine targets and ability of seasonal vaccination to recall memory B cells and specific antibodies.

Antibodies Seasonal vaccination

Broadly cross reactive Neutralizing Act via effector functions Recall memory B cells Elicit antibodies

HA head – + – (33) + +

HA head conserved targets + +/–a +/–b ?c (73, 143) ?d (143)

HA stem + + + (33) –/+e (21, 144) –/+e (21)

NA + +/–f (141) + (145) –g (136) +/–g (146, 147)

M2e + – (148) + (149) – –

aHA head conserved targets comprise lot of different targets. Neutralization ability depends on the target.
bSee in the body of this review for references, depending on the target.
cNot many studies address this question. It appears that vaccination with newly introduced viruses might recall these B cells.
dNot many studies are addressing this issue, which is probably dependent on the target.
eStem-specific memory B cells are mainly recalled and antibodies induced when new viruses are introduced (for example with H1N1/pdm2009).
fNA antibodies usually have NA-inhibition activity, which correlates well with plaque reduction but are not neutralizing, by definition.
gNA-B cells and antibodies are most likely not properly boosted, after seasonal vaccination, due to poor vaccine formulation, with variable/low NA amount.

conserved across IAV; therefore, it has historically been
considered as an ideal universal vaccine candidate (125).
The mechanism of M2e-mediated protection is debated with
both antibodies and T cells being important players (126–
128). Several approaches have been undertaken to increase
M2e immunogenicity, using VLP or different adjuvants (129–
131). Of note, it appears that M2e antibodies act via
effector functions and thus are infection permissive, making
M2e vaccines more suitable when used in combination
with others.

NEURAMINIDASE—THE EMERGING
PLAYER

IAV NA as vaccine target has been neglected for decades,
despite early discovery of potent anti-viral activity of NA
antibodies (132). Even more surprisingly, NA amount in
licensed vaccines varies enormously and is not checked by
manufactures or regulatory authorities (133). Exciting new
studies strongly point to a major role for anti-NA antibodies
in protecting from disease and as the best correlates of
protection (56, 134, 135). Critically, Chen et al. identified a
number of human NA antibodies that cross-protected mice
in therapeutic and prophylactic setting (136). Even more
promising, several broadly neutralizing anti-NA mAbs have
been isolated from an infected patient. These mAbs, directed
to NA active site, demonstrated an unusual breadth in binding
several IAV and IBV NA and mediating cross-neutralization
and cross-protection in vivo (137). Still, despite some early
studies, we do not know enough about NA antigenicity and
the immunodominance of its antigenic sites (138–141). By
applying some of the methods that allowed us to study
in detail anti-HA responses, we should be able to break
down anti-NA responses and identify promising universal
vaccine candidates.

CONCLUSIONS—KNOW WHAT WE DO
NOT KNOW

Bioengineering and design of epitope-focused immunogens is
proceeding at an incredible speed in influenza and other fields.
Several promising immunogens are now in clinical trials and,
hopefully, will be available to the public soon, as long-lasting
universal vaccines. It is, however, crucial to understand more
about the basics of B cell responses to interpret results and inform
on vaccination policies.

Introduction of pandemic H1N1 2009 virus showed that most
individuals, with low serological anti-stem antibodies, were able
to mount a stem-directed response, but repeated vaccinations
skewed the immune response back to the immunodominant
head (21). It will be critical to understand when, in which
order and how often give universal vaccines to appropriately
boost stem response. Andrews et al. demonstrated that novel
B cells specific for variable epitopes have a different phenotype
compared to reactivated Bmem specific for stem (142). To
maximize success, efforts will need to be put in understanding
how B-cell specificity can influence their programming and
differentiation. Furthermore, it is still unclear howmuch of stem-
specific antibodies are required for optimal protection from a
drifted or heterologous virus. Table 1 summarizes what we know
about antibody responses to the major targets on IAV and how
seasonal vaccination is able to boost those responses.

Finally, but not less important, new vaccines platforms are
constantly being tested. RNA-based vaccines have shown exciting
results when expressing influenza proteins, at least in animals
[reviewed in (150)]. Some of the engineered vaccines discussed
in this review could be delivered as RNA vaccines, alone or
in combination, possibly avoiding clearance from pre-existing
antibodies. Other novel, slow-release, vaccine formulations
could help refocusing immune responses to subdominant
targets (151–153).

We are just entering an exciting season of clinical trials, and
while expectations are really high, we should not be discouraged
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if some of the early attempts fail but rather persevere in the quest
for a universal and long-lasting vaccine.
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