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Abstract: Biologically induced and controlled mineralization of metals promotes the development of
protective structures to shield cells from thermal, chemical, and ultraviolet stresses. Metal biomin-
eralization is widely considered to have been relevant for the survival of life in the environmental
conditions of ancient terrestrial oceans. Similar behavior is seen among extremophilic biomineralizers
today, which have evolved to inhabit a variety of industrial aqueous environments with elevated
metal concentrations. As an example of extreme biomineralization, we introduce the category of
“forced biomineralization”, which we use to refer to the biologically mediated sequestration of
dissolved metals and metalloids into minerals. We discuss forced mineralization as it is known to
be carried out by a variety of organisms, including polyextremophiles in a range of psychrophilic,
thermophilic, anaerobic, alkaliphilic, acidophilic, and halophilic conditions, as well as in environ-
ments with very high or toxic metal ion concentrations. While much additional work lies ahead to
characterize the various pathways by which these biominerals form, forced biomineralization has
been shown to provide insights for the progression of extreme biomimetics, allowing for promising
new forays into creating the next generation of composites using organic-templating approaches
under biologically extreme laboratory conditions relevant to a wide range of industrial conditions.

Keywords: biomineralization; polyextremophiles; extreme environments; extreme biomimetics

1. Introduction

The modern study of biomineralogy represents an interdisciplinary research field
dealing with the ability of life to form minerals through biologically mediated processes.
A special focus has centered on understanding fundamental mechanisms underlying the
biological production of minerals, as well as the fossil preservation of these minerals dur-
ing the billions of years of evolution of biomineralizers, which have included both uni-
and multicellular organisms [1–6]. Our review of numerous recent scientific publications
on biomineralization has revealed emphasis of the overall scientific attention towards
calcification [7–13], biosilicification [14–16], biomagnetism [17,18], and multiphase biomin-
eralization [19–23]. Traditional objects of study continue to include molluscs [24–28], sea
urchins [29], and skeletal structures such as eggshells [30], teeth [31,32], and bones [33–36].
While it is understandable to focus on the biomineralizing organisms typically encountered
by humans on Earth, this focus tends to overlook a variety of distinct biomineralization
pathways seen in extremophiles. As discussed in this work, an understanding of the varied
pathways for the biologically mediated production of minerals, including metals, offers
biomimetic avenues for the production of economically relevant materials and appears to
hold the key to understanding the fossil record of early life.
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It is well established [37] that the phenomenon known as “biologically induced”
mineralization is based on the secondary precipitation of minerals occurring as a result of
interactions between biological activity and the environment, where cell surfaces often act
as causative agents for nucleation and subsequent mineral growth [38]. Here, we propose
the introduction of the term “forced biomineralization” to refer to the special case for induced
biomineralization when a high concentration of metallic ions leads to the development
of diverse biomineralized structures contributing to the survival of extremophiles. This
article examines current views on how biomineralization processes have been employed
by organisms under extreme environmental conditions, such as high concentrations of
metal ions like Au, Zn, Mn, Cr, Ni, V, Fe, and metalloid As. In this review, we will discuss
a variety of organisms that sequester metals into biominerals. These organisms have often
been found living in the toxic waste pools and runoff areas of mines. While–following
the convention of other extremophiles–one might call these organisms a name such as
“metallophiles,” the current view is that many of these organisms do not “love” (“-phile”;
Greek) toxic metals, so much as tolerate them. In many of the cases we will discuss, forced
biomineralization is thought to be a common way for life to cope with environments with
high metal concentrations. These forced biominerals tend to have less morphological
complexity than, for example, the complex biomineralized spikes and shields developed
around the time of the Cambrian explosion. Yet, the pathways of forced biomineralization
can offer a window into biological strategies for coping with toxic environments.

This review article discusses a wide variety of extremophiles that exhibit forced
biomineralization. They range from single-celled prokaryotic and eukaryotic microorgan-
isms to various self-organizing multicellular forms such as microbial mats and metazoans.
While organisms exhibiting forced biomineralization tend to represent Life’s more recent
evolutionary forays into modern extreme (typically industrialized) environments, an un-
derstanding of forced biomineralization may offer a window into the types of strategies
used by life in special environmental conditions widely considered to be relevant to the
origin of life (i.e., areas of hydrothermal activity). Understanding of the processes behind
forced biomineralization may aid in the future mitigation of industrial disasters involving
metal contamination, or alternatively, stimulate the development of novel biominerals and
composite materials that incorporate organisms’ abilities to accumulate metals–including
metals less commonly encountered in nature, such as Europium [39].

2. Biomineralization of Gold

Gold of microbial origin, which occurs in nano-particulate, spheroidal, and bac-
teriomorphic forms [40–43], has been reported as a biological response to highly toxic
gold-complexes [44]. Both the geomicrobiology and the biogeochemistry of gold have
been described by Reith et al. [40,41] and Southam et al. [42], respectively. Microbially
originated gold is found in a variety of environmental niches, including those with very
low gold concentrations [45,46]. Gold does not form free ions in aqueous solution at
surface conditions but rather occurs as metallic nano-particles (0), as well as aurous (I)
and auric (III) complexes [47]. Biochemical responses to gold have been studied in numer-
ous bacterial strains, especially in Cupriavidus metallidurans and Delftia acidovorans, which
harbor the ability to withstand and accumulate high levels of gold (Figure 1) (for details,
see [48–50]. For example, the process of gold detoxification in C. metallidurans is a complex
phenomenon where several gene clusters, involved in metal resistance (cop, cup, ars, mer)
and gold-specific operon (gig), for gold-induced genes are involved.

Furthermore, the combination of efflux, reduction, and methylation of gold-complexes,
leading to the formation of gold (I)-C-compounds and metallic nano-particulate gold, have
been suggested [49]. It was also proposed that gene-regulated gold-handling systems
are involved in three processes: the uptake of gold complexes into the cytoplasm, the
export of gold (I) back to the periplasm after reduction, and further chemical reduction to
gold (0) in the periplasm [49]. Gold biomineralization occurs in strains of C. metallidurans.
These strains either show planctonic behavior [48] or reside in sheet-like biofilms [51,52].
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The gold formed on exopolymeric layers within biofilms was found to take on several
morphologies, including isolated nanoparticles, conglomerates of nano-particles directly
associated with cells, and larger (> 1 µm) extracellular rod-shaped, hollow spheroidal, and
framboidal particles [52].
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Figure 1. Transmission electron micrograph of a Cupriavidus metallidurans ultra-thin section contain-
ing a gold nano-particle (white arrow) in the periplasm. Reproduced from [53] with permission of
PNAS, Copyright 2009 National Academy of Sciences.

Various biomacromolecules have been reported to show templating activity with
respect to gold biomineralization in different microorganisms [54]. For example, the non-
ribosomal peptide of Delftia acidovorans, termed delftibactin A (Figure 2a), is responsible
for chelating soluble Au3+ and directly precipitating it as a complex, or by binding and
reducing gold through oxidative decarboxylation before chelating a second Au3+ ion and
precipitating a complex (Figure 2c) [55]. Delftibactin seems to be the first known case of
an evolutionarily co-opted metallophore that protects its producer from toxic soluble gold
and provides a mechanism for bacterial gold biomineralization.

Some cells of a Gram-negative, non-spore-forming, and metal resistant ß-proteobacterium
Ralstonia metallidurans displayed no discrete areas of gold accumulation and appeared to
be entirely covered by gold, which seems to be associated with sulfur- and phosphorus-
containing substances in the cell membrane or the cell wall [48]. In the cyanobacterium
Phormidium boryanum, biogenic synthesis of secondary octahedral gold crystals from gold
(III)-chloride solution occurs via an amorphous gold (I)-sulfide intermediate [56,57]. The
single-step biological synthesis of polycrystalline gold nanotriangles, using the extract of
endophytic actinomycetes Saccharomonospora sp.; has been reported by Verma et al. [58].
However, the exact mechanism for this shape-oriented synthesis of nanostructured gold re-
mains unclear. Gold ions bind on the oppositely charged mycelia of fungus Rhizopus oryzae
through electrostatic interaction with phosphoproteins and are then reduced to Au (I)
species due to the high redox potential of Au (III) [59,60].

Exopolysaccharides exhibit similar behavior. A recent study by Ravendraan and
co-workers [60] addresses potential applications of the substance mauran, a bacterial-
sulfated exopolysaccharide extracted from halophilic Halomonas maura, for the reduction
and stabilization of Au-nanoparticles [60]. Metal ion reduction and gold nanoparticle
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stabilization are also believed to occur by an enzymatic process [61]. This process is also
observed in an alkalothermophilic actinomycete Thermomonospora sp., which has optimum
growth at pH 9 and 50 ◦C [53].
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Figure 2. (a) Structure of defltibactin A, (b) Gallium NMR confirms that delftibactin has a single
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of colloidal and octahedral gold nanoparticles, reminiscent of those seen in natural deposits. Blue
arrow, colloidal gold. Red arrow, octahedral gold. (Scale bar 50 nm). Reprinted with permission from
Macmillan Publishers Ltd: Nature Chemical Biology [55], copyright 2013.

As reported by Jones et al. [62], enzymatically catalyzed precipitation of gold has also
been observed in thermophilic and hyperthermophilic bacteria and archaea (e.g., Thermo-
toga maritime, Pyrobaculum islandicum) isolated from hot spring systems in New Zealand.
In this case, biogenic gold was forming in hot anaerobic spring-waters (at ca. 75 ◦C).
Thermophilic microorganisms, in particular, seem to be an appreciable source of bioin-
spiration for designing new materials through approaches in extreme biomimetics. For
example, a novel approach was developed for preparing a composite biomaterial that con-
sists of gold nanoparticles trapped within an unfolded protein, the bovine serum albumin
(BSA) fiber [63]. In general, the formation of secondary gold nano- and micro-grains via
biomineralization, using diverse microorganisms, has stimulated the development of gold-
based biotechnology [64–67]. Biomineralized gold nanoparticles have been considered as a
potentially useful antitumor agent [68].

Another potential field of application is related to the antimicrobial activity of gold
nanoparticles, especially against pathogens resistant to multiple antibiotics (for review,
see [69,70]). It was demonstrated that the catalytic and antibacterial mechanism of gold
nanoparticles increases with a decrease in average size [67]. In laboratory experiments,
it was also shown that gold nanoparticles generate ‘holes’ in bacterial cell walls, thereby
increasing permeability, resulting in the leakage of cell contents and eventual cell death [70].
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However, this leaves us with a controversy: given that certain bacteria produce nanopartic-
ulate gold under specific environmental conditions, have these organisms evolved special
resistance to the antibacterial activity seen by gold nanoparticles? Or are the nanoparticles
produced by these organisms merely a “lesser of two evils,” such that the bacterially medi-
ated precipitation of gold into nano-nuggets is still damaging to cell walls but favorable for
survival due to the reduction of concentrations?

We would like to conclude this section with an optimistic note for biomaterials scien-
tists from a recent publication in Nature: “Deeper understanding of the link between bacteria
and gold could even lead to bacteria producing customized gold nuggets” [71,72]. Thus, good luck!

3. Bioscorodite

The metalloid arsenic (As) can form inorganic (As (V), arsenate; As (III), arsenite;
As (0), As (−III), arsine; As (−I) in arsenopyrite; and As (+II) in realgar) and organic
(i.e., methylated) compounds (for review, see [73]). Being more mobile in the environment,
As (III) is listed [73] as 25 to 60 times more toxic than As (V). Examples of extreme biomin-
eralization of As with respect to the formation of thermodynamically more stable phases
are also known.

The identification of several arsenic-sulfide minerals formed during microbial re-
duction of arsenate As (V) and sulfate (SO4

2−) have been reported [74]. For example,
an anaerobic moderately thermophilic arsenic-reducing bacterium closely related to the
Caloramator and Thermobrachium species and proposed as strain YeAs [75] produces an
arsenic sulfide mineral identified as ß-realgar (ß-AsS). A summary of the reactions involved
in the extreme biomineralization of arsenate to arsenic sulfides has been proposed by
Rodriguez-Freire [74].

Ethanol acetogenesis:

CH3CH2OH + H2O→ CH3COO− + 2 H2 + H+ (1)

Acetoclastic methanogenesis:

CH3COOH→ CH4 + CO2 (2)

Hydrogenotrophic methanogenesis:

4 H2 + CO2 → CH4 + 2 H2O (3)

Sulfate reduction coupled to H2 oxidation:

SO4
2− + 4 H2 +2 H+ → H2S + 4 H2O (4)

Arsenate reduction coupled to H2 oxidation:

H2AsO4
− + H2 + H+ → H3AsO3 + 2 H2O (5)

Mineralization:

x H3AsO4
− + y HS− + (3x − y) H+ → AsxSy↓ + 3x H2O (6)

When: x = y = 1 − realgar (AsS) formation
x = 2; y = 3 − orpiment (As2S3) formation
The arsenic-respiring bacterium Desulfosporosinus auripigmenti precipitates monodis-

perse spherical As2S3 particles, both intra- and extracellularly, under sulfate-reducing
conditions [76]. The anaerobic Shewanella sp. strain HN produce an extracellular network
of filamentous arsenic-sulfide (As-S) nanotubes in the presence of As(V) and S2O3

2−. These
arsenic-sulfide (As-S) nanotubes (20 to 100 nm diameter, 30 µm length) were initially amor-
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phous As2S3 but evolved with increasing incubation time toward polycrystalline phases of
the chalcogenide minerals realgar (AsS) and duranusite (As4S) [77].

One industrially relevant example of As-related biomineralization under extreme
conditions is bioscorodite (FeAsO4·2H2O), for which microbial crystallization was demon-
strated by Gonzalez-Contreras et al. [78–80] using As(V) as a reactant. Bioscorodite is
precipitated in one single step at pH 1.2 and 70 ◦C. Batch crystallization of bioscorodite
leads to agglomeration of precipitates and formation of flakes; scaling of bioscorodite
precipitates was also observed in continually stirred tank reactors. The term “indirect
biomineralization of scorodite” was proposed in 2012 and was patented by Paques B.V.
(Balk, The Netherlands) as the ARSENOTEQ™ process [79,80]. According to the proposed
biotechnological approach, the iron-oxidizing archaeon Acidianus suljidivorans is able to
precipitate scorodite in the absence of any primary minerals or seed crystals when grown on
0.7 g/L ferrous iron (Fe2+) at 80 ◦C and pH 0.8 in the presence of 1.9 g/L arsenate (H3AsO4).

Scorodite biomineral formation has also been noted by the acidophilic iron-oxidizing
Sulfolobales spp. at 75 ◦C and a pH of 1 [78,81]. It was suggested that the mechanism
of scorodite formation in this microorganism begins with the sorption of ferric iron and
arsenate onto the cell surface, followed by the formation of ferric arsenate nuclei from the
adsorbed metal species. Finally, partial encrustation of the cells was observed. Formation
of bioscorodite has been reported in thermo-acidophilic Fe(II)-oxidizing archaeon Ac. brier-
leyi under specific cultivation conditions as well, with an optimal pH of 1.5 to 2.0 and
temperature of 70 ◦C [82,83]. It was shown that bioscorodite can still be crystallized in the
presence of Cu(II) by feeding scorodite seeds from synthetic copper-refining As(III)-bearing
wastewaters [83].

The advantages of extreme biotechnology with respect to bioscorodite formation are
summarized by Gonzalez-Contreras [80] as follows:

• “ the bioscorodite crystal features are very similar to the mineral;
• supersaturation is controlled on a microscale by biological iron oxidation at 80 ◦C

without the use of seed material;
• the biological oxidation does not need the use of strong chemical oxidants;
• arsenic levels of at least 1g/L can be treated (potential future applications of bioscorodite

crystallization for metallurgical streams);
• crystal and agglomerates size enable an efficient solid-liquid separation.”

In spite of the progress of research with respect to bioscorodite [84,85], there remains a
lack of information about the role of organic matrices in the formation of biogenic scorodite
under the very specific conditions listed above. An understanding of this problem may
hold critical advances to the problem of arsenic separation from water.

4. Biogenic Hydrozincite

The toxic impacts of Zn ions can vary according to various factors, including high pH
or low water hardness. Depending on water hardness, the LC50 (50% lethal concentration)
of Zn2+ for Capoeta fusca fish is 13.7, 74.4, and 102.9 mg/L for soft, medium, and hard water
respectively [86]. Eisler [87] proposed aquatic life protection criteria to include mean Zn
concentrations of 47 to 59 µg/L in freshwater and 58 to 86 µg/L in seawater. However, in
some extreme environments–such as the Iron Mountains, California, or Sepetiba Bay,
Brazil– the concentration of zinc can reach grams per liter (see review [88]). Forced
biomineralization with respect to Zn leads to the development of specific biomineralized
structures (globules, shells) that likely help to prevent cell entombment.

A typical example of forced Zn biomineralization, leading to the formation of hy-
drozincite, Zn5(CO3)2(OH)6 (for structural details see [89]) as well as the Zn-bearing
amorphous biomineral, is a unique phenomenon occurring along the Naracauli stream,
Sardinia [88–90]. Due to local mining activities, the maximum Zn concentration in waters
from this area attains several hundred mg per liter [91,92]. The amorphous white Zn
biomineral shows a local atomic environment that may be compatible with a long-range
order of zinc silicate (hemimorphite, Zn4(Si2O7)(OH)2·H2O). It was shown [93] that the
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formation of hydrozincite is mediated by a photosynthetic community composed of a
single-cell photosynthetic microalga (Chlorella sp.; Chlorophyta) and a cyanobacterium
(Scytonema sp.). However, the precipitation of the amorphous Zn phase is associated with a
cyanobacterium identified as Leptolyngbya frigida. The biomineralization of hydrozincite
and Zn-silicate is possible due to long-term adaptations of the microorganism community
to prevailing hydrological, geochemical, and mineralogical conditions imposed by the
water chemistry of the Naracauli stream [94]. The mechanism governing the formation
of these Zn-based biominerals at the molecular level remains unclear. It is suggested that
hydrozincite biomineralization is an example of epicellular biomineralization [93], where
electronegatively charged extracellular polysaccharides show templating activity [95,96].

The biological driver of this kind of Zn biomineralization is probably based on the
ability of photosynthetic microorganisms to use hydrozincite to shield themselves from
UV radiation–and in the process, decrease Zn concentrations and increase their chances
of survival [94]. It was proposed [91] that the CO2 fixation from dissolved HCO3

− and
release of OH− during photosynthesis leads to a shift in the carbonate species equilibrium,
and consequently, to a local oversaturation with respect to hydrozincite, around the surface
of the microorganisms. The following reactions were proposed:

HCO3
− + H2O↔ (CH2O) + OH− + O2 (photosynthesis) (7)

HCO3
− + OH− ↔ CO3

2− + H2O (8)

2 CO3
2− + 5 Zn2+ + 6 H2O↔ Zn5(CO3)2(OH)6 + 6 H+ (9)

The hierarchical organization of hydrozincite is well-studied using different elec-
tron microscopy techniques [91,93,97]. Briefly, the spherical precipitates of hydrozincite
biomineral are made from nanocrystals, aggregated with an imperfect orientation. These
nanocrystalline aggregates form mesocrystals, about 100 nm thick platelets flattened onto
the (100) crystal surface. In turn, the mesocrystals aggregate to form globules and sheaths
all around the extracellular organic matrices on the surface of these microorganisms. These
globules merge into each other as they grow and appear to maintain a smooth texture, with
the porous structure only appearing at later stages of growth [98].

Spherical Zn-containing minerals that form aggregates up to 10 µm in diameter
have been observed within natural biofilms dominated by relatively aerotolerant sulfate-
reducing bacteria of the family Desulfobacteriaceae, in a flooded tunnel within carbonate
rocks that host the Piquette Pb-Zn deposit (Tennyson, Wisconsin) [99]. However, in this
case, spherical aggregates of 2 to 5 nm in diameter have been represented by sphalerite
(ZnS). Zinc concentrations in the biofilm were measured at about 106 times that of the
associated groundwater (0.09 to 1.1 ppm zinc). These results demonstrate that coupled
geochemical and microbial processes can efficiently strip Zn from solutions with Zn con-
tents < 1 ppm [97]. The phenomenon described in Science (2000) is now used for biotechno-
logical aims. As recently reported [100], microbially mediated zinc sulfide nanoparticles
were manufactured in large amounts using modern pilot-plant scale reactors.

Zinc-related forced biomineralization in metazoans has also been characterized. Ex-
amples include molluscs grown in mine-polluted seabed sediments [101], as well as in
Alvinella pompejana (Terebellida: Annelida) worms, which are typical representatives of
annelids in hydrothermal vent fauna communities. Nanocrystalline zinc-iron sulphide
minerals with the composition (Zn0.88Fe0.12)S were found within the exoskeletons of A. pom-
pejana [1] collected at 9◦ N on the East Pacific Rise. The nanocrystals of this sphalerite-like
biomineral are grouped in submicrometer-sized clusters, which form nanolayers concentri-
cally to the proteinaceous tube axis. Thus, this biomineral represents the unique example
of zinc-iron biologically induced mineralization in metazoans that survive under harsh
environmental conditions.
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5. Biogenic Manganese Oxides

Mn(II)-oxidizing bacteria and fungi are key players in ancient and modern biogeo-
chemical environments. Mn(II)-oxidizing microorganisms possess the ability to catalyze
the oxidation of divalent, soluble Mn(II) to insoluble manganese oxides of the general
formula MnOx (where x = 1, 2). They are ubiquitous in nature and are well investigated
and described, including possible mechanisms of the biomineral formation, in numerous
review papers [102–108]. Diverse Mn(II)-oxidizing organisms produce nanoorganized
structures called Mn(IV) bio-oxides [105], biogenic manganese oxides (BioMnOx) [109], or
manganese oxide biominerals [110] (see Table 1); with a broad variety of morphologies
such as biomineralized sheaths, globules, lamellas or nanonodules [111].

These have been studied in detail using different electron microscopy techniques.
Microbially determined Mn(II) oxidation was found in habitats where Mn can reach toxic
levels, and therefore, it is suggested that biogenic Mn-containing biominerals may serve to
protect cells from Mn toxicity or UV radiation [112]. The encrusted Mn oxides, which may
be acting as a protective barrier from toxic metal ions, have been found not only on cells
but also on spores and spore coats of numerous bacteria [113–116]. Recently, molecular
studies with marine Bacillus spores have identified the mnx (Mn oxidation) genes, including
mnxG, encoding a putative multicopper oxidase, as responsible for unique two-electron
oxidation [117].

Table 1. Diversity of biogenic manganese oxides.

Biomineral Name Chemical Composition Reference

Switzerite (Mn, Fe)3(PO4)2 [118]
Bixbyite (Mn, Fe)2O3 [118]

Hausmannite Mn2+Mn4+
2O4 [111,118]

Pyrolusite MnO2 [118]
Manganosite MnO [118]
Romanechite (Ba, H2O)2(Mn4+, Mn3+)5O10 [119]

Rhodochrosite MnCO3 [118]
Todorokite Mn4O7 H2O [120,121]
Birnessite Na4Mn14O27 9 H2O [122,123]

Bixybyite-like Mn2O3 [124]

Although the biomineralogy of the biogenic manganese oxide is ultimately dependent
on physico-chemical conditions, we still have limited knowledge about the formation
of biogenic Mn oxides in extremophiles. For example, there are only a few species of
Streptomyces and Cephalosportium, as well as some acidophilic microbial communities, which
are known to be able to produce these kinds of oxides at pH levels between 4.8 and 5.5 (for
review, see [125]). However, some microalgae are able to carry out Mn-biomineralization at
a lower pH. An acid-tolerant microalga, Chlamydomonas sp., was isolated and enriched from
a mat surrounding a drainage ditch with approximately 8 mg/L of Mn2+ at pH 2.1 [126].

Other extremophiles are related, not to acidophilic but, to thermophilic microor-
ganisms. Thermophilic Caldimonas manganoxidans strain HST isolated by Takeda and
co-workers from hot spring was an aerobic chemo-organotrophic bacterium with an opti-
mum growth temperature of 50 ◦C and the ability to produce biogenic manganese oxides
under laboratory conditions [127]. As reported by Dick et al. [128], marine Mn (II)-oxidizing
Bacillus sp. isolated from hydrothermal vent sediments may be able to grow in some moder-
ately hot sediments. However, they were most likely only present as spores at temperatures
above 60 ◦C.

Recently, it was hypothesized [129] that Mn biominerals, which are widespread in the
environment, could be used for the synthesis of new electrode materials.

6. Biogenic Nickel Minerals

The nickel homeostasis processes used by microorganisms are still under study (see
review [130,131], and much is left to learn about Ni-based biomineralization in both
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mesophile and extremophile communities. Only a few examples can be found in the
literature [132,133].

The formation of a new biomineral, identified as Ni-struvite (Ni(NH4)(PO4) 6 H2O),
using a nickel resistant E13 strain [131,132] has been described by Haferburg and co-
workers [133]. This microorganism was isolated from the former uranium mining area near
Ronneburg, Eastern Thuringia, Germany, where former mining activities have resulted
in nickel concentrations of up to 30 mM. It is postulated that the capacity to induce this
kind of forced biomineralization with respect to the formation of the nickel-containing
biomineral constitutes a resistance factor allowing the soil microorganism to withstand
high nickel concentrations [133].

One strain of Pseudomonas aeruginosa was reported, which accumulated nickel in
phosphide (Ni5P4, NiP2, and Ni12P5) and carbide (Ni3C) crystals, mostly in the cell en-
velope region. Thus, 88% of the accumulated nickel was restricted to the periplasm and
membrane [134].

7. Biogenic Vanadate

In spite of more than 200 reported minerals in which vanadium occurs in differ-
ent oxidation states [135,136], and despite the presence of concentrated vanadium in
various industrial and mining processes, vanadium-containing biominerals are rare. Pen-
tavalent vanadium is the more soluble compound and the most toxic form [137]. Some
cyanobacteria (Nostoc puncteforme strain N467, Phormidium laminosum strain N17), as well
as bacteria (Pseudomonas isachenkovii and Pseudomonas vanadium-reductans), can tolerate
high concentrations of vanadium in corresponding natural environments [138]. These
bacterial strains are capable of reducing pentavalent vanadium under anaerobic conditions
at pH 8 and at concentrations below their respective limits of tolerance. For example,
P. isachenkovii tolerated concentrations of pentavalent V greater than 6 g/L. In this study,
vanadate was reduced to tetra- and trivalent states by growing cultures with organic
electron donors, as well as with molecular hydrogen and carbon monoxide. Finally,
sherwoodite-like (Ca9Al2V5+

4V5+
24O80·56 H2O) biominerals have been identified on the

surface of bacterial cells [138]. More recently, microbial reduction of vanadate (V5+) by a
mesophilic (Methanosarcina mazei, optimal temperature 37 ◦C) and a thermophilic (Methan-
othermobacter thermautotrophicus, optimum temperature 65 ◦C) methanogen was studied by
Zhang et al. [139]. Both archeans reduced up to 10 mM and 5 mM of V5+ respectively in a
growth medium. Although the V5+ bioreduction occurred extracellularly and resulted in
concomitant precipitation of an amorphous V(IV) solid, this biomineral was not previously
identified or characterized.

Recently, it was reported that such basidiomycete fungi species as Amanita muscaria,
Armillaria cepistipes, Xerocomus badius, and Bjerkandera adusta were able to accumulate
vanadium from VOSO4 and NaVO3 medium up to 51.3 mg g−1 [140]. However, it is
not clear what specific types of V-based biomineral phases can be achieved using these
microorganisms. In contrast, a metal-reducing bacterium such as Geobacter sulfurreducens
is able to produce biogenic nanoscale vanadium magnetite by converting V(V)-bearing
ferrihydrites through corresponding reductive transformation [141].

8. Biogenic Chromium Minerals

Hexavalent chromium is generally found to be a particularly toxic ion [142]. Chromium-
resistant bacteria, and the mechanisms of chromium detoxification based on chromate
reductase activity, have been recently described in detail in the reviews by Narayani
& Vidya Shetty [143], Thatoi et al. [144], and Joutey et al. [145]. Intriguingly, some ex-
tremophilic microorganisms are also involved in this process. For example, an anaerobic
thermophilic bacterium (strain TOR 39) carries out the reduction of Cr(VI) at 65 ◦C [144,146]
and a hyperthermophilic archaea Geothermobacterium ferrireducens at 100 ◦C [147].

An unidentified Cr-containing precipitate has been observed on the surface of Thiobacil-
lus ferrooxidans cells that were able to tolerate Cr3+ concentrations up to 75 mM dur-
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ing growth on ferrous sulphate at pH 1.4 [142]. Furthermore, unidentified intracellular
chromium-containing aggregates have been observed using electron microscopy in marine
Roseobacter YSCB strains [148].

Recently, a method for biotransformation of toxic Cr(VI) ions into Cr2O3 nanoparticles
by the yeast Schwanniomyces occidentalis has been reported [149]. Unfortunately, the forma-
tion of these biogenic nanoparticles, sized between ~10 and 60 nm, has yet to be analyzed
from the biomineralogical point of view. A similar situation has been observed with root
nodule bacterium Sinorhizobium sp. SAR1 that tolerated Cr concentrations up to 1 mM due
to the production of exopolymers [150].

Cheng and co-workers [151] proposed that biomineralization is an environmentally im-
portant issue in the remediation of heavy-metal contamination, including chromium. They
described transformation from organo-Cr(III) to trivalent chromium minerals (guyanaite/grimaldiite)
by hydrothermal treatment at 200 ◦C to simulate geothermal conditions. The authors
show that amorphous complexes of glycine-Cr(III) are stable up to 150 ◦C. Heating up to
250 ◦C for 7 days results in the formation of α-CrOOH (grimaldiite) and layered β-CrOOH
(guyanaite) (Figure 3) crystals, 10 to 20 nm long and 2 to 3 nm wide. These results suggest
that naturally occurring amorphous organo-Cr(III) can be converted into minerals con-
sisting of nanosheets under certain environmental conditions, such as those in a volcanic
eruption or during geothermal activity. Such reactions may be a model for bioremediation
of pollution by soluble chromium.
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9. Iron Biomineralization and Extremophilic Organisms

Varied forms of iron-containing biominerals have been discovered in both pro- and
eukaryotic organisms, including humans. These biominerals can be synthesized intra-
cellularly [152–158], extracellularly [158–160], and are also found surrounding bacterial
adhesive stalks [161]. The strong influence of microbial activity on mineralogical diver-
sity of iron-containing minerals through extracellular and intracellular biomineralization
was recently shown [161]. Although Fe-encrusted biomineral structures produced by
certain species of Fe-depositing bacteria have been known since the early 19th century
(for review see [162,163]), recent work has described numerous species of the iron biomin-
eral Gallionella-related stalk-forming iron-oxidizing freshwater bacteria [161] and marine
Zetaproteobacteria bacteria [164–167].



Biomimetics 2021, 6, 46 11 of 30

The study of iron biomineralization is rapidly advancing [168]. After the classical work
by Richard Frankel “Iron biominerals: an overview” [169], detailed reviews on microbially
and chemically mediated reactions that form the biogeochemical Fe cycle [169,170], iron
biomineralization in vertebrates [171] and plants [172], as well as genetic and molecular
mechanisms of biomineralizaton [173], including that in magnetotactic bacteria [157] have
been recently published. Briefly, the majority of iron-based biominerals are secondary iron
sulfides and iron oxides like Fe2O3 (hematite), FeOOH (goethite), Fe3O4 (magnetite), green
rust (mixed valence hydroxide), Fe3(PO4)2 (vivianite), and FeCO3 (siderite) [174]. Hypothe-
ses concerning common ancestry between iron oxide- and iron sulfide-based biomineraliza-
tion are still under discussion [175]. Some microorganisms, such as Acidovorax sp., are able
to synthesize several Fe minerals (lepidocrocite, goethite, FePO4) simultaneously [176].

J. Kirschvink suggests that Fe3O4 (magnetite) biomineralization is the most ancient
matrix-mediated system; it may have served as the ancestral template for exaptation [177,178].
Consequently, it was not surprising to find reports about the formation of biomagnetite and
other iron biominerals in extremophiles and polyextremophiles [179]. Formation of biomag-
netite have been reported for: (i) anaerobic [180], (ii) acidophilic [181,182], (iii) alkaliphilic [183],
(iv) halophilic [184,185], (v) piezophilic [186,187], (vi) psychrophilic [188,189], and (vii) ther-
mophilic [190,191] microorganisms. For the overview of this specialized topic, we recommend
the outstanding paper entitled “Magnetotactic Bacteria from Extreme Environments” [192].

Overview of this specialized topic, we recommend the outstanding paper entitled
“Magnetotactic Bacteria from Extreme Environments” [192].

Fe oxidizing microorganisms, in the form of microbial mats, live within hot springs [193]
as well as near hydrothermal vents (Figure 4) worldwide, where iron concentrations are
very high. It was hypothesized that such microbial mats are fed by ultra-diffuse advection
of hydrothermal fluids, which derive from a higher-temperature source enriched in Fe, Mn,
and Si that has undergone extensive subsurface cooling [194,195].
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Microorganisms belonging to hyperthermophilic iron reducers, which are capable of
living completely independently of photosynthesis, are found within various hydrother-
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mal environments [167]. Even at temperatures of at least 121 ◦C, an obligate iron reducer
belonging to the Pyrodictiaceae family (Strain 121) was capable of growth in culture [193].
Diverse hyperthermophilic iron reducers, including Pyrobaculum, Geoglobus, Ferroglobus,
and Geothermobacterium species, produce iron-containing biominerals using H2 as the elec-
tron donor at temperatures between 85 and 110 ◦C [174]. Sulfolobus solfataricus is an aerobic
hyperthermophilic (70 to 90 ◦C) archaeon that thrives in acidic terrestrial thermal fea-
tures that are commonly associated with high iron concentrations. Wiedenheft et al. [196]
isolated a ~22 kDa protein with little sequence similarity to proteins of known function.
The obtained protein shares high sequence similarity with hypothetical proteins in other
archaeal and bacterial genomes. Nine of these hypothetical proteins form a monophyletic
cluster within the broad superfamily of ferritin-like diiron-carboxylate proteins. By apply-
ing higher-order structural predictions and image reconstructions, Wiedenheft et al. [196]
indicated that the S. solfataricus protein is structurally related to a class of DNA-binding
proteins from starved cells; it self-assembles into a hollow dodecameric protein cage having
tetrahedral symmetry. The outer shell diameter is ~10 nm, and the interior diameter is
~5 nm. Authors proved through in vitro experiments that the assembled archaeal protein
efficiently uses H2O2 to oxidize Fe(II) to Fe(III) and stores the oxide as a mineral core
on the interior surface of the protein cage. The described biomineralization mechanism
has been shown to be responsible for the protection of nucleic acids by physically shield-
ing DNA against oxidative damage by consuming the constituents involved in Fenton
chemistry [196].

In addition to thermophiles, there are other extremophiles with the capacity to pro-
duce iron biominerals under specific conditions. Procaryotic Fe(II) oxidizers are principally
divided into the following physiological groups: (i) the acidophilic aerobes, (ii) the neu-
trophilic aerobes, (iii) the neutrophilic photosynthetic anaerobes, and (iv) the neutrophilic
anaerobes dependent on nitrate, perchlorate, or chlorate reduction [197].

Examples of iron biomineralization have also been observed in microbial acidophilic
communities. ‘Gel-like reddish-brown soft tissue structures’ were formed by marine iron-
oxidizing bacteria in hot springs and geothermal areas in Japan [198], growing rapidly
and accumulating iron from acidic seawater. It was suggested that after using ferrous
ions as the energy source, other acidophilic bacteria could enzymatically oxidize ferrous
iron, decreasing the acidity of ambient seawater. Consequently, reactions promoted by
photosynthetic bacteria of this microbial community at near-neutral pH led to the formation
of solid forms of ferric iron, such as ferrihydrite [198].

The study of iron biomineralization is a growing interdisciplinary area of modern ap-
plied science that involves such fields as biotechnology [199,200], nanotechnology [201,202],
biomaterial science, and biomedicine [203,204]. Magnetotactic bacteria and magnetosomes
have been recently proposed for application in a variety of fields, including nano-scale
engineering [205,206], magnetic hyperthermia, magnetic resonance imaging, nucleotide
polymorphism detection, and immunoassays [207,208]. One challenging task currently
being considered is the use of genetic engineering approaches to transfer the capacity for
magnetosome-producing microorganisms to other organisms for the generation of syn-
thetic magnetic living systems for potential industrial-scale biotechnological applications,
including medicine, nanotechnology, and the remediation of chemical waste [157].

Knowledge from recently published studies on in vitro artificial diagenesis using Fe
(II)-oxidizing microbial mat that contains stalked bacteria [209] can be useful for extreme
biomimetics. Researchers simply simulated the temperature-pressure conditions of diagen-
esis in the laboratory. It was shown that unique mineral structures appear on stalks mainly
composed of long-chain saturated aliphatic compounds as temperature and pressure con-
ditions were increased to 250 ◦C and 140 MPa. Fe minerals, as they transform to stable
crystalline phases, probably act as physical protection for the biopolymer-based twisted
matrix and help preserve the main organic components under diagenetic conditions [209].
These experiments open the way for extreme biomimetics to design novel iron-containing
composite materials [210] simulating polyextremophilic conditions.
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10. Tellurium Biomineralization

The anaerobic formation of tellurium-based nanostructured biominerals (Figure 5)
is an additional example of forced biomineralization (see section above) and seems to
be one of the detoxification mechanisms used for dealing with Te-ions. It was clearly
shown [211] that the anaerobic growth of Bacillus selenitireducens and Sulfurospirillum barnesii
can be achieved by employing tellurium oxyanions Te(IV) and Te(VI) as electron acceptors
(Figure 5). Dissimilatory reduction of Te oxyanions by both microorganisms results in
the formation of unusual Te(0) crystals with different structures and nanomorphologies
that can occur internally but mainly externally. Those synthesized by B. selenitireducens
initially are nanorods (10 nm diameter and 200 nm length), which cluster together, forming
larger rosettes (about 1000 nm) composed of numerous individual shards [211]. However,
S. barnesii forms mostly irregularly shaped nanospheres (diameter < 50 nm) that coalesce
into larger composite aggregates. The presence of some organic templates within these Te-
containing biominerals is still unknown. However, preliminary analytical measurements
revealed the presence of functional amide groups on the Te(0), suggesting that some cell
wall proteins remained firmly attached to the Te(0) even after being subjected to our
purification steps [211].
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Figure 5. Formation of irregular Te(0) “nanospheres” by Sulfurospirillum barnesii. (a) Whole-mount
TEM image of a single cell grown on Te(VI), showing abundant external Te nanospheres (small
arrows) forming larger aggregates (large arrow) on the cell surfaces. (b) Lower-magnification TEM
image of another single cell grown on Te(VI) showing abundant external Te nanospheres. (c) Wide-
field SEM image of the Te(0) nanosphere aggregates formed after growth on Te(VI). (d) Unstained
TEM thin-section image of cells grown on Te(VI) showing internal accumulations of Te(0). (e) SEM
image of Te(0) obtained from a chemical supply house. Reproduced from [211] with permission from
the American Society for Microbiology.
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We suggest that the unexplored phenomena of anaerobic biomineralization have high
future potential with respect to the biogenic synthesis of metallic nanoparticles using se-
lected anaerobic microorganisms. Biosynthesis of Te-nanoparticles has also been observed
in select marine bacteria [212]. TeO needle-like particles (20–465 nm) have been recently re-
ported as a result of TeO3

2− exposure in the culture medium of Phanerochaete chrysosporium
fungus [213] that is able to reduce tellurite (TeO3

2−) to TeO.

11. Acidophilic Biomineralization as an Example of Forced Biomineralization

Acidic sulfate and chloride environments often contain Fe(II), As(III), and S(-II),
providing several electron donors for chemolithotrophic metabolism [214,215]. As a result,
the biomineralization of Fe(III) solid phases are a common occurrence; microbial cells also
serve as nucleation sites for the oxidation and or precipitation of Fe(III) minerals [216],
including Schwertmannite (Fe8O8(OH)6(SO4) n H2O) [217–219] and magnetite (Fe3O4). It
has been detected that both archaeal-bacterial and fungal members of extreme ecosystems
were shown to play an active role in the formation of stalactites [220]. Extreme acidophilic
organisms have an optimum pH of <3; some of them are even able to live at pH ~1 [214].
All modern organisms must control their intracellular metal and metalloid concentrations,
as some metals are essential micronutrients acting in processes such as electron transport.
In contrast, other metals such as As, Cd, Au, U, [215], and Hg have no known biological
function and are toxic at high concentrations. Therefore, acidophilic organisms have
developed a range of uptake and resistance strategies to maintain intracellular metals
at desired concentrations [216,217]. Acidophilic microorganisms, defined as having an
optimum growth pH of <5, are present in all three domains of life.

As an example of extreme biomineralization under acidic environmental conditions,
special consideration should be paid to microorganisms from Río Tinto in Spain, which
hosts an extreme aquatic environment with a remarkably constant acidic pH and a high
concentration of heavy metals (Fe, Cu, Zn, As, etc.) [221]. The combined use of conven-
tional and molecular microbial ecology methodologies has shown that 80% of Tinto basin
prokaryotic microorganisms correspond to microorganisms belonging to three bacterial
genera: Acidithiobacillus, Leptospirillum, and Acidiphilium, all members of the iron cycle. All
Leptospirillum spp. isolated from Río Tinto are aerobic iron oxidizers. On the other hand, it
has been observed that eukaryotic microorganisms contribute over 60% of the Tinto basin
biomass [219]. Acidophilic organisms contribute to the precipitation of amorphous iron
oxyhydroxides or siderite (FeCO3) [222] in the modern sediments of the river. It confirms
that the presence of biological nucleation sites (cell walls of bacteria or fungi) can modify
the expected mineral precipitation schemes offered by the bulk physicochemical conditions
in which microorganisms grow. Interestingly, several Leptospirillum bacteria species [223]
and fungal species Purpureocillium lilacinum [224,225] contribute to the formation of jarosite
(KFe3+

3(OH)6(SO4)2). It has been found that this mineral preferentially nucleates on the
fungal cell wall, even on dead cells, and the extracellular polymeric substances (EPS)
released by the microorganisms can serve as nucleation sites for this biomineralization
process. Results of experimental studies performed by Oggerin and co-workers [225] prove
that the concentration of ferric iron, the ratio between Fe3+/Fe2+, and the presence and
amount of nucleation sites are critical factors for the precipitation of jarosite, although the
presence of nucleation sites by themselves is not sufficient to promote jarosite formation.
However, the detailed mechanism that these organisms use to saturate hydronium-jarosite
but not goethite or hematite, the minerals expected to precipitate due to an increase in the
pH, is still unknown [224,225].

Understanding of the mechanisms responsible for the biologically induced forma-
tion of minerals by acidophilic organisms might be a new direction in the engineering of
biominerals for advanced purposes, including geometrically frustrated magnets [226,227]
or additives for building materials [228]. It is worth noting that the similarities between
the vast sulfate and iron oxide deposits on Mars and the main sulfide bioleaching products
found in the Tinto basin have given Río Tinto the status of a geochemical and mineralog-
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ical terrestrial Mars analog [221]. Endolithic environments, the pore space of rocks, is a
ubiquitous habitat for acidophilic microorganisms on the Earth and is an important target
of the search for life elsewhere in the Solar System [214]. Thus, the deep understanding
of biomineralization pathways in acidophilic organisms will have major implications for
understanding ancient mineral formation on Earth or extraterrestrial planets.

12. Prospects for Practical Use

Approaches inspired by forced biomineralization for metal nanoparticle synthesis
have been suggested as valuable alternatives to chemical methods. Synthesis and assembly
of metal nanoparticles using biological systems is relatively clean, non-toxic, and envi-
ronmentally friendly and is thus aligned with green chemistry and sustainable materials
engineering and development concepts [229–232]. Therefore, the increasing interest in
biological systems for inspiration and using microorganisms as “workers” in the so-called
“living factory” for the production of new functional nanomaterials is observed [230].
Weghuis [233,234] described the large-scale utilization of microorganisms in the production
of Bioscorodite at 70 ◦C as a highly efficient and cost-saving method for arsenic remediation
and detoxification. Suresh and co-workers used the advantage of forced biomineraliza-
tion and reported biofabrication of discrete Au [35] and Ag [235] nanocrystalites using
Shewanella oneidensis metal-reducing bacteria. Both nanoparticles show properties that
can be attractive for biomedical applications. Hennebel et al. [236] used fermentatively
cultivated bacteria in the formation of highly active, nanoparticulated Pd catalysts for
diatrizoate removal. On the other hand, Coker et al. [237] developed nanoscale ferrimag-
netic material (with enhanced magnetic properties) using the Fe(III)-reducing bacterium
Geobacter sulfurreducens and substitution of Fe ions with Co. Li et al. [238] synthesized
novel electrochemical materials with enhanced capacitance and cycling stability using a
fungal Mn biomineralization process. Furthermore, microbially-induced calcium carbonate
precipitation has been shown to have potential as a remediation strategy for toxic metals
such as As, Pb, Cd, Cr, and Cu, since these toxic metals can also be precipitated as insoluble
carbonates of biological origin [239].

These examples strongly illustrate how syntheses inspired by forced biomineralization
might, in the near future, pave the way towards the development of novel generations of
various sustainable metal-based materials with advanced applications.

Both extreme biomineralization and extreme biomimetics [240–245] represent scientific
niches with broad application in industry and in the study of evolutionary biology, studying
natural and artificial phenomena that occur “below the human zone of comfort” [246]. Both
were recently born at the crossroads between such scientific directions and disciplines as
prebiotic chemistry, prebiotic mineralogy, the origin and evolution of Life, hydrothermal
venting chemistry and biochemistry, astrobiology, cryobiology, and exobiology [247]. To
delve into these research fields, radical thinking must explore unusual and very unique
biomineralogical scenarios. Such studies could lead to a better understanding of:

• The biomineralization of iron-, silica- and calcium-based phases at extreme environ-
mental conditions;

• The survival strategies of pro- and eukaryotes using protective advantages of biomin-
eralization due to the functionalization of their cell envelopes;

• The mechanisms controlling fossilization, as well as exceptional preservation of or-
ganic templates which strongly bind to the mineral surface [248];

• The underlying mechanisms used by diverse extremophiles and polyextremophiles to
exhibit extreme cold (cryo-), heat (thermo-), and pressure (piezo-) tolerance.

Here, we have reviewed the biomineralization that occurs in polyextremophiles. These
organisms modify their local microenvironment to create appropriate physicochemical
conditions for the precipitation of inorganic compounds [239]. Consequently, their survival
appears linked to producing unique biominerals under toxic concentrations of metal ions,
habituating under complex environmental extremes such as anaerobic, acidic, or thermal-
alkaline conditions. Some of these kinds of biominerals are represented in Table 2. The
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existence of these biominerals is revolutionizing our understanding of the origin and
evolution of life under environmental extremes. Moreover, it is providing information on
the possible mechanisms of their formation and structural diversity, as well as enabling
direct comparison between physico-chemical and molecular records of biominerals that
have been produced under ambient and extreme environmental conditions.

Table 2. Selected examples of biominerals produced by a variety of forced biomineralization pathways.

Biomineral Chemical
Formula Organism Metal/Metalloid Ref.

Alamosite PbSiO3 Bacillus sp. KK1 Pb [249]

Bioscorodite FeAsO4·2H2O
Acidianus suljidivorans,

Sulfolobales spp.
(70 ◦C, pH 1.2)

FeAs [118,250,251]

Chernikovite H2(UO2)2(PO4)2·8H2O Anabaena torulosa
(cyanobacteria) U [118]

Eskaloite Cr2O3
Schwanniomyces occidentalis

(50 ◦C) Cr(VI) [252]

Greigite Fe3S4
Chrysomallon squamiferum
(thermophilic gastropod) Fe [253]

Hydro-
cerussite (Pb3(CO3)2(OH)2) Paecilomyces javanicus Pb [254]

Kutnahorite (Ca(Mn2+,Mg,Fe2+)(CO3)2)
Idiomarina sp.
(Halophilic) Ca, Mn, Mg, Fe [255]

Ni-struvite Ni(NH4)(PO4)·6H2O Streptomyces acidiscabies Ni [256]

Orpiment As2S3

Shewanella sp.
Desulfosporosinus auripigmenti

(anaerobic)
As [257,258]

Otavite CdCO3
Neurospora crassa

(fungus) Cd [259]

Plumbonacrite (Pb10(CO3)6O(OH)6) Paecilomyces javanicus Pb [259]

Pyrite FeS2
Chrysomallon squamiferum
(thermophilic gastropod) Fe [260]

Pyromorphite Pb5(PO4)3Cl Paecilomyces javanicus Pb [261]

Realgar AsS

As-reducing bacterium closely related to
Caloramator and

Thermobrachium. (Anaerobic,
moderately thermophilic)

As [262]

Sphalerite/Wurtzite (Zn0.88Fe0.12)S Alvinella pompejana
(thermophilic worm) Zn, Fe [78]

Tellurium-based biominerals Te(0) Sulfurospirillum barnesii
(anaerobic) Te [211]

The ability of organisms to engage in biomineralization seems to be associated with
a variety of evolutionary advantages. Biomineralization is regarded as an advantageous
approach for organisms to become biologically “stealthy” and protect themselves from
external damages of diverse origins [79]. Beyond serving as a passive shield or shelter,
biomineralized structures provide organisms with the mechanical advantage of a strong
lever arm. Darwin’s theory of evolution suggests that the underlying mechanisms behind
this change, “the drivers of early biomineralization” [80,263], evolved through the selection of
the most effective biomineralogical adaptations for their survival in the harsh conditions of
the then natural environment. In spite of the suggestion by John Evans that there are over
62 different biominerals on Earth [149], we suggest that this number, taking into account
extremophiles (see Table 2), should be significantly higher. In fact, we should probably
not attempt to quantify individual pathways for biomineralization, for—as this review
has demonstrated—various extreme water chemistries have provided many uncountable
environments for biomineralization to evolve.

Highly specialized biomineralizing organisms are currently being considered by a
range of researchers to have potential economic use for the biological fabrication of metal
nanoparticles, as well as a variety of other nanoorganized composite materials. Moreover,
the potential to harness extremophiles’ capabilities to produce various novel materials such
as biominerals and concretes holds widespread promise in industrial settings.
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Microorganisms have adapted to resist the ecotoxicological impact of diverse metal
ions [264]. It can be expected that each microorganism has its own survival limit falling into
extreme conditions with a high, sometimes close to supersaturated, concentration of metal
ions. Microorganisms resist, however possible, a stress factor such as a sharp increase in
the concentration of ions of the corresponding metal. It should be borne in mind that many
microorganisms possess a high level of tolerance to toxic heavy metals, which is much
higher than their concentrations in the environment (for details, see Oggerin et al. [265]).
Furthermore, there are hundreds of species of fungi identified, which survived during years
of copper mining in the extremely acidic and metal-rich region of Rio Tinto in Spain [265].

However, despite the apparent evolutionary advantages addressed in this work,
forced biomineralization can still be lethal for microorganisms due to the disruption of
cellular membranes [265]) or due to the formation of such mineral phases that may hinder
nutrient exchange between the surrounding environment and the cells [133]. In such
cases, biominerals have also been observed on the dead cells and disrupted cell walls
as encrustations [133]. It has been hypothesized “that the mineral acts as a buffering
“rucksack” that eventually kills the bacterium but helps the metabolism of parent and
progeny” [76].

We can speak about possible negative aspects with respect to ecology, mostly in cases of
metal contamination from human activity. Mining and processing of metal ores can produce
areas of high metal concentration in which forced biomineralization is advantageous for
life to survive, leading to changes in the local ecology. The increase of heavy metal ions
in such locations imposes selection pressures on pre-existing microbiota. Consequently,
environmental metal contamination can change the diversity of microbial communities
via the domination of metal-resistant species (for example, see [266,267]). As an intriguing
example, metal resistance co-occurring with antibiotic resistance has been reported in
bacteria isolated from metal-contaminated soils, waters, and sewage [1,75,133,266,268–288].
The ecological impacts of these essentially manmade organisms are yet to be understood,
although the harm possibly caused by forced biomineralizing organisms might plausibly
be overshadowed by the metal-concentrated environments they inhabit.

Concerns about the effects of forced biomineralizers may extend to the medical realm
as well. For example, simultaneous antibiotic resistance and metal resistance have been
observed in oral bacteria isolated from infected teeth that had metal dental restorations.
The common use of metals in medical implants throughout the human body introduces the
potential for considerably elevated metal concentrations to occur with reported negative
effects of certain metal implants ranging from systemic illness to local reactions to the
carcinogenicity of uncertain etiology (in cases of certain implants). Pathogenic forced
biomineralizers in the human body could conceivably cause harm, perhaps drug-resistant
infections or even inflammation (and possibly cancer) induced by metal nanoparticles. An
improved understanding of metal resistance in medical contexts might therefore help to
advance the safety of implanted technology.

13. Outlook

Biomineralization can be broadly defined as the formation of minerals by life. Much of
the scientific focus on biomineralization has centered on a range of siliciclastic and calcium
carbonate (CaCO3) skeletons evolving during the Cambrian explosion (ca. 541 Ma) and
afterward. However, life’s evolutionary progress in developing biologically mediated
mineral production is broadly understood to have predated evidence for the emergence
of calcium carbonate mineralization. Life is understood to have evolved the capability to
manipulate metals and metalloids to produce a variety of metallic minerals. Polysaccharide
templates are widely found to be a common tool used by life for bringing about the
precipitation of metallic biominerals. This review discusses a large and interdisciplinary
body of work addressing the wide range of metal biomineralization pathways found on
Earth, particularly those observed in modern extreme metal-rich aqueous environments.
Many examples today are found in the wastewater of mines.
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As discussed in this review, a range of interdisciplinary work has shed light on the
tendency for extremophiles living in aqueous environments with elevated metal concen-
trations to concentrate metals into crystals. The metal biomineralization pathways used
by metal-tolerant organisms are widely understood to help organisms avoid poisoning
as a means of enduring high metal concentrations. Moreover, beyond the context of
forced metal biomineralization in heavily metal-contaminated environments, mechanisms
allowing metal biomineralization in a range of environments are understood to offer evolu-
tionary advantages beyond regulation of metal concentrations, including functionalities as
broad-reaching as indurated structures for predation protection against a wide variety of
assaults from the environment, and functionality as compass needles. Additional focus
on classifying the fossil record of metallic biominerals is relevant to the study of life’s
origin–in particular, the currently popular idea that metal-rich hydrothermal environments–
including black smokers on Earth–are broadly considered as potentially favorable spots for
life to originate.

Without a doubt, scientific interest in the genes related to biomineralization (including
forced biomineralization) remains in-trend due to their principal regulatory role in the
biosynthesis of macromolecules (i.e., polypeptides and proteins) with high templating
activity in the formation of biominerals. The genomics of biomineralization has advanced
rapidly and is a topic of active work, however mostly in such directions as calcification,
biosilicification, and the formation of biomagnetic structures. Thus, genomic architec-
tures within diverse genetic toolkits have been intensively studied in calcifying organisms
(i.e., bacteria], corals, sea urchins, hemichordates, mollusks [289], biosilicifiers (i.e., di-
atoms [290], sponges [18,291–293], and especially magnetotactic microorganisms) to carry
out the understanding of biomineralization. However, we cannot exclude the occurrence
of so-called “gene-independent biomineralization” [294] in the case of forced biomineral-
ization. For example, such phenomena have been reported for some viruses, which are
found in a mineralized state inside archaea cells in hot springs.

Genetically-encoded forced biomineralization seems to be an intriguing direction
due to the existence of the open question concerning the possible relationship between
well-studied metal resistant genes in bacteria [295] and their possible role in the formation
of corresponding mineral phases. Furthermore, the development of computationally
predicted gene regulatory networks [289] for forced biomineralization seems to be necessary
for the near future.

Although the principles that describe metal formation in organisms are outside the
scope of this review, we take the liberty to recommend readers to obtain corresponding
details from other recently published review papers, where such phenomena as metal-
biomolecule affinities [296–301], metal-ion binding sites based on amino acid sequences,
and cellular dynamics of metal ion-exchange have been excellently represented. More-
over, recent advances in the understanding of mechanisms of metal formation in diverse
biological systems are to be found in numerous overviews on metallomics.

In addition to the widely considered biological implications of metal biomineralization
pathways, we have discussed a range of literature addressing biomimetic approaches to the
use of forced metal biomineralization in the fabrication and remediation of metals in a wide
range of economically relevant contexts. Many applications of forced biomineralization
harness the ability of organisms to chelate metals–and, accordingly, to lower concentrations
of metals in their environments. The ability of forced biomineralizers to remove metals
from solution holds wide promise for a range of uses in medical ecology and society. As
we have discussed in this review, the use of forced biomineralizers in the remediation of
mine waste pools is receiving wide attention–potentially offering hope for reduced environ-
mental impacts and economic costs of mineral extraction. Furthermore, being considered
are bioinspired approaches to medical chelation therapy, using the tools developed by
metallophiles. Moreover, patents are already underway to potentially revolutionize how
arsenic can be removed from drinking water.
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Knowledge of extreme biomineralization and forced biomineralization is a driving
force toward recent progress in extreme biomimetics, and organisms that undergo forced
metal biomineralization offer many potential avenues for applications in biomaterial-
inspired chemistry.
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F.; et al. Extreme biomimetics: Carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide (IV) and
its electrochemical applications. Nano Res. 2018, 11, 4199–4214. [CrossRef]
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