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Most detection methods of coronavirus disease 2019 (COVID-19) use classic image classification models, which have problems of
low recognition accuracy and inaccurate capture of modal features when detecting chest X-rays of COVID-19.'is study proposes
a COVID-19 detection method based on image modal feature fusion. 'is method first performs small-sample enhancement
processing on chest X-rays, such as rotation, translation, and random transformation. Five classic pretraining models are used
when extracting modal features. A global average pooling layer reduces training parameters and prevents overfitting.'emodel is
trained and fine-tuned, the machine learning evaluation standard is used to evaluate the model, and the receiver operating
characteristic (ROC) curve is drawn. Experiments show that compared with the classic model, the classification method in this
study can more effectively detect COVID-19 image modal information, and it achieves the expected effect of accurately
detecting cases.

1. Introduction

In December 2019, the first case of the novel coronavirus
pneumonia (COVID-19) was confirmed in Wuhan, China.
In just two months, the number of confirmed cases rose to
nearly 1000, with more than 5000 suspected cases. By
September 2020, the novel coronavirus pneumonia epidemic
had spread across the world, and the number of confirmed
cases increased daily.

In the early stages of the epidemic, people knew very
little about the novel coronavirus. According to the “Novel
Coronavirus Diagnosis and Treatment Plan for Pneumonia
infected by Bat disease (Trial Version 5),” released by the
China National Health Commission on February 4, 2020,
and the explanation by Dr. Nanshan Zhong of the COVID-
19 epidemic, the novel coronavirus and SARS bat-like
coronavirus (Bat-SL-CoVZC45) have over 85% homologies,
belonging to the same family but not being the same kind [1].
On February 9, 2020, the team of academician Zhong
Nanshan published a paper on the analysis of the clinical
characteristics of the novel coronavirus pneumonia in China

[2]. 'e study of 1099 positive patients and analysis of
clinical samples revealed a number of clinical features of the
novel coronavirus pneumonia infection, emphasizing the
main symptoms and radiological characteristics of the pa-
tient. In the diagnosis and treatment plan of the “Novel
Coronavirus Infection Pneumonia Diagnosis and Treatment
Plan (Trial Version 7),” issued by the National Health
Commission [3], in addition to an incubation period of 1–14
days of isolation, observation based on epidemiological
investigations, according to the clinical manifestations of
pneumonia symptoms, characteristics of disease signs,
laboratory nasopharyngeal swabs, nucleic acid test results of
negative/positive, and effective oxygen therapy combined
with antiviral and antimicrobial therapy, the most important
diagnostic criterion is chest imaging.

For the initial research on COVID-19, Shan et al. pro-
posed an automatic segmentation and quantification system
based on deep learning, using image segmentation theory to
study the chest computer tomography (CT) infection area
and the overall structure of the lungs, and man-machine
loop optimization to annotate each case [4].Wang et al. from
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the Cancer Hospital of Tianjin Medical University used deep
learning to extract COVID-19 image features, established a
learning model to analyse positive cases and provided a
theoretical basis for the timely and accurate diagnosis of
COVID-19 [5]. Experts from the Affiliated Hospital of
Huazhong University of Science and Technology used three-
dimensional CT to detect the novel coronavirus pneumonia
and a three-dimensional neural network based on weakly
supervised deep learning to classify positive and negative
cases to quickly identify COVID-19 cases [6]. Researchers
such as Asmaa and Mohammed from Arthurs University
and Birmingham City University, aiming at the high
availability of COVID-19 annotated image datasets, used
convolutional neural networks (CNNs) to identify and
classify novel coronavirus pneumonia images and a class
decomposition mechanism to study its class boundary to
deal with irregularities in the dataset, with good results [7].
Li used deep CNNs to study positive cases of chest CT image
data of patients with novel coronavirus pneumonia [8].
Rehman et al. used pretrained knowledge and transfer
learning to distinguish COVID-19 disease from viral
pneumonia, bacterial pneumonia, and healthy people, so as
to develop an effective diagnostic method [9].

With the development of the epidemic, machine
learning technology and deep learning technology have been
applied in the detection of COVID-19 patients. Wang et al.
applied an Inception network to CTto detect COVID-19 [5].
Asif et al. used a transfer learning inception V3 model to
detect COVID-19 chest X-ray images, proving that the
transfer learning method is robust and easy to expand for
COVID-19 detection [10]. Song et al. used an improved
version of the ResNet50 pretrained network to accurately
classify healthy people, COVID-19, and bacterial pneumonia
[11]. Loey et al. used the GooLeNet pretraining model to
classify COVID-19, bacterial pneumonia, viral pneumonia,
and normal people, with an 80.6% accuracy rate [12].
Rahimzadeh and Attar used Xception and ResNet50V2 to
develop a tandem CNN to classify chest X-ray images of
COVID-19 with a correct rate of 99.56% [13]. Hassanien
et al. combined a multilevel threshold with a support vector
machine (SVM) system to classify X-ray images of COVID-
19-infected persons with high accuracy [14]. Alqudah et al.
used machine learning techniques such as SVM, CNN, and
random forest (RF) to classify COVID-19 X-ray images, with
high accuracy [15]. Osi proved that RF predicts COVID-19
results better than linear discriminant analysis (LDA) and
SVM [16]. Kumar et al. proposed a classification model
based on deep transfer learning, integrating DenseNet121
and SquezeNet 1.0 (DeQueezeNet) to extract the importance
of various impact features from COVID-19 X-ray images
and effectively classify COVID-19 cases [17]. Abbas et al.
verified and adjusted a deep CNN called decomposition,
transmission, and synthesis (DeTrac) to classify COVID-19
chest X-ray images. DeTraC is a class decomposition
mechanism for studying image datasets, whose boundary
can handle any irregularities [7]. Apostolopoulos et al. used
five CNN variants to multiclassify COVID-19 images with
93.48% accuracy [18]. Horry et al. used VGG16 and VGG19
models to detect COVID-19, with recall and precision rates

both equal to 80% [19]. Sethy and Behera introduced a deep
learning method that uses chest X-ray images to classify
patients infected with COVID-19 [20]. 'e program uses
nine pretrained models for feature extraction and SVMs for
classification. 'e prediction accuracy of ResNet50-plus
SVM was better than that of other models, with F1-scores of
95.38% and 95.52%, respectively.

2. Materials and Methods

'e detection of COVID-19 in this article requires several
stages, as shown in Figure 1. 'e original X-ray image is
preprocessed, including size adjustment, rotation, position
translation, cross-cutting transformation, scaling, and flip
processing. 'e dataset is then divided into training and
validation (test) sets. 'e preprocessed data are used to
extract the modal feature information of the X-ray images
through pretraining models by transfer learning, and this is
input to the fully connected (FC) layer and trained after
fusion. 'e first two layers of the FC layer contain 512
hidden units, followed by the ReLU activation function, and
the last layer contains a hidden unit, followed by the sigmoid
activation function, which is used to detect COVID-19. 'e
performance of the system is evaluated by indices such as
accuracy, recall rate, precision, and F1-score.

2.1. Dataset. Chest imaging is commonly used in medicine,
and it plays an important role in the detection of COVID-19.
'rough the diagnosis of chest imaging, medical staff can
more accurately grasp the imaging modal characteristics of
COVID-19 cases, such as multiple small patchy shadows and
interstitial changes in the early stage, which are obvious
outside the lungs. It then develops intomultiple ground glass
and infiltration shadows in both lungs. In severe cases, lung
consolidation and pleural effusion are rare. It has important
guiding value for accurately judging the condition and its
development, formulating treatment plans, and evaluating
prognoses. 'ere are many COVID-19 datasets, but the
number of samples is small. 'e experiment collected 4099
COVID-19 chest X-rays on Kaggle, consisting of 3278 in a
training set and 821 in a validation (test) set. Figure 2 shows
several chest X-ray images in the dataset, where (a) is from a
COVID-19 patient and (b) is from a healthy person.

Table 1 shows that the training set of the COVID-19
dataset is 3278 X-ray images, and the test set only has 821
X-ray images. 'e data distribution is relatively unbalanced.
If the training validation set is divided by a ratio of 0.3,
serious overfitting will occur. 'erefore, a division ratio of
0.2 is most appropriate. In the experiment, the label of a
normal person is set to 0 and the label of a COVID-19
patient is 1. Table 1 shows the distribution of the COVID-19
dataset.

2.2. Transfer Learning. Transfer learning improves learning
by transferring knowledge from related tasks that have been
learned, i.e., transferring learned and trained parameters to a
new model to help with its training [21]. 'e architecture of
deep learning models is complex and data dependent,
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requiring much data to train them. Much COVID-19 data
are published online, but the number of samples is small,
making it difficult to train a deep learning model from start
to finish. Transfer learning can facilitate the training of such
a small sample dataset to achieve the research purpose.

Apostolopoulos et al. adopted transfer learning to detect
the performance of different models in a small sample of
pneumonia image datasets [18]. Rafi [22] used chest X-ray
images to identify patients with COVID-19, using transfer
learning methods to train DenseNet121 and ResNet152
series models. Taresh et al. discussed the effectiveness of
artificial intelligence in the rapid and reliable detection of
COVID-19 based on chest X-ray images and applied transfer
learning technology to detect COVID-19 from chest ra-
diographs [23]. Majeed et al. compared 12 transfer learning
CNNs in the detection of COVID-19 from chest X-rays [24].

'e COVID-19 samples collected for our experiment
were limited. To obtain better experimental results, different
CNN models trained on ImageNet, a database of approxi-
mately 14 million images, were used to train the COVID-19
dataset.

2.3. Convolutional Neural Network Model. Xception [25] is
an improvement of Inception V3, replacing its convolution
operation with depthwise separable convolution, which
divides traditional convolution into the steps of depthwise
and pointwise convolution.

'e InceptionResNetV2 [26] model is a CNN with top
accuracy on the ILSVRC image classification benchmark. It
is based on Google’s Inception V3 model and draws on the
ideas of ResNet [27], a 152-layer neural network

COVID-19
Dataset

Data
Preprocessing

Train Set

Test Set

Model
Training

Model
Evaluation

VGG19,ResNet152
Xception,DenseNet201

InceptionResnetV2

Accuracy,Precision
Recall,F1-score

Figure 1: 'e overall architecture of the COVID-19 classification framework.

Table 1: Distribution of the COVID-19 dataset.

Category Training set Validation (test) set Total
Normal 889 223 1112
COVID-19 2389 598 2987
Total 3278 821 4099

(a)

(b)

Figure 2: Partial sample of the COVID-19 dataset. (a) A chest X-ray of COVID-19. (b) A chest X-ray of healthy people.
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successfully trained by using the ResNet Unit. 'e error
rate on Top5 is 3.57%. It has fewer parameters than
VGGNet, and the effect is outstanding. It introduces the
idea of residual learning, which effectively solves the
problem of network degradation.

'e VGG [28] family is used in face recognition and
image classification, where VGG19 has better performance.
VGG19 has 19 hidden layers, consisting of 16 convolu-
tional layers and three fully connected layers. 'e input is
set to 224 × 224 RGB images. 'e RGB average of all images
is calculated on the training set image, and the image is
passed as input and enters the VGG19 convolutional
network.

DenseNet [29] builds a connection relationship be-
tween layers, makes full use of features, and further al-
leviates the problem of gradient disappearance. 'e use of
a bottleneck layer, translation layer, and smaller growth
rate makes the network narrower, reduces the parame-
ters, effectively suppresses overfitting, and reduces
calculation.

2.4. Fusion Model. 'e experimental architecture uses
pretrained Xception, ResNet152, DenseNet201, VGG19,
and InceptionResNetV2 CNN to extract the feature in-
formation of COVID-19 X-ray lung images. Each network
has three FC layers, where the last layer is FC for classi-
fication. In this experiment, the FC layer behind each
network is replaced by the global average pooling layer,
which can effectively reduce the training parameters. 'e
dataset contains chest X-ray images of COVID-19 cases
and healthy people. We set the label of COVID-19 images
to 1 and images of healthy people to 0, for training and
evaluating the model.

'e experiment uses these five CNN structures to ex-
tract feature maps. As shown in Figure 3, each model is
followed by a global average pooling layer and a flatten
layer. 'e input feature maps are “flattened”; i.e., the
multidimensional input is one dimensional, and the output
is a one-dimensional feature vector that is passed through
dropout, which is used to avoid overfitting in training. 'e
dropout is set to 0.5 and finally input into the designed FC
layer. 'e FC layer has three layers. 'e first two are dense
layers with 512 hidden units, and the last is a dense layer
with one hidden unit. 'e purpose is to detect COVID-19
patients.

2.5. Evaluation Standard. 'e following indicators are used
tomeasure the performance of the cascademodel system. TP
is a correctly predicted COVID-19 case, FP is misclassified as
a COVID-19 case, TN is a normal person that is correctly
classified, and FN is misclassified as a normal person. 'e
performance of the proposed cascade model system is
measured by accuracy, precision, recall and F1-score. 'e
mathematical expression of the evaluation index parameters
is as follows:

Accuracy �
TP + TN

TN + FP + TP + FN
,

Precision �
TP

FP + TP
,

Recall �
TP

FN + TP
,

F1-score �
2∗ precision∗ recall
precision + recall

.

(1)

3. Results and Discussion

All experiments are carried out on the kaggle server, using
the Tesla P100-PCIE-16GB GPU graphics card and python
language tensorFlow/keras framework.

3.1. Data Preprocessing and Training of Parameter Settings.
We discuss and analyse the experimental results. Before
training the model, we normalized the training and vali-
dation (test) datasets to decimal values between (0, 1) or (1,
1), so as to make training more convenient and faster. Since
the experiment used small samples, the training and vali-
dation datasets were scaled. 'e input size of the VGG19,
DenseNet201, and ResNet152 network models was
224× 224, so the input image size was set to that size.
Similarly, the input size of Xception and InceptionResNetV2
was set to 299× 299. In the experiment, all images were
rotated, zoomed, cut, and reversed in an anticlockwise di-
rection to facilitate training. 'e parameter settings for
preprocessing and training are shown in Table 2.

In the preprocessing stage, all parameters were set the same
to enhance the sample data. In the training phase, we first set
empirical values for somemain parameters, e.g., a learning rate
of 0.01 and batch size of 128, with 10 epochs and 128 nodes in
the first two layers of the FC layer. In the training process, loss
converges according to the learning rate. Loss that does not
converge is probably due to too high learning rate, and slow
convergence usually means the learning rate is set too low. In
this experiment, the learning ability of the model was best with
a learning rate of 0.001. When the accuracy is very low, the
batch size can be reduced while keeping the number of epochs
unchanged, which will improve the accuracy because the larger
the batch size, the faster the processing. In the case of constant
epochs, the batch size needs to be reduced to achieve the same
accuracy. After many adjustments and experiments, the batch
size and number of epochs were set to 16 and 500, respectively
(except for model 2, with 1000 epochs). Underfitting or
overfitting may occur during training, and the number of
nodes in the FC layer and the dropout size can be adjusted
appropriately. 'e number of nodes in the FC layer and the
dropout was set to 512 and 0.5, respectively, but the loss curves
of training and testing showed severe jitter, so momentum was
added to reduce jitter, and this was set to 0.9 for better model
learning.
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'e stochastic gradient descent (SGD) optimizer
minimizes or maximizes the loss function by training and
optimizing model parameters, and the neural network
selects samples randomly instead of rigidly for gradient
calculation when performing gradient descent. SGD
performs parameter updates for each training sample x(i)

and label y(i):

θ � θ − η∗∇θJ θ; x
(i)

; y
(i)

􏼐 􏼑, i � 1, 2, 3, . . . ,Ν. (2)

'e learning rate η determines the size of the steps taken
to reach the (local) minimum, where J(θ) is the objective
function, θ is the model parameter, and∇J(θ; x(i); y(i)) is the
gradient. 'e objective function J(θ) takes parameter θ of
the model by updating the parameters in the opposite di-
rection of the gradient of the objective function.

'e experimental loss function is binary cross entropy,
which is generally used for binary classification, and de-
scribes the difference between the predicted and true values
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Figure 3: Cascade network model diagram.

Table 2: Preprocessing and training phase parameters.

Parameters
Model

ResNet50 ResNet152 Xception Inception
ResNetV2 Model 1 Model 2

Learning rate 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3 1e− 3
Batch 16 16 16 16 16 16
Optimizer SGD SGD SGD SGD SGD SGD

Loss Binary cross
entropy

Binary cross
entropy

Binary cross
entropy Binary cross entropy Binary cross

entropy
Binary cross
entropy

Epochs 500 500 500 500 500 1000
Flipping True True True True True True
Rotation range 40 40 40 40 40 40
Width/height shifting 0.1 0.1 0.1 0.1 0.1 0.1
Shear range 0.1 0.1 0.1 0.1 0.1 0.1
Zoom range 0.2 0.2 0.2 0.2 0.2 0.2
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of the model. 'e larger the value, the less the similarity. 'e
binary cross-entropy loss function formula is as follows:

Hp(q) � −
1
N

􏽘

N

i�1
yilog p yi( 􏼁( 􏼁 + 1 − yi( 􏼁∗ log 1 − p yi( 􏼁( 􏼁,

i � 1, 2, 3, . . . , N,

(3)

where N is the number of categories, y is the label (1 for
COVID-19 and 0 for healthy persons), and p(y) is the
predicted probability of COVID-19 in all N samples. For
each COVID-19 case (y� 1), it adds log(p(y)) to the loss,
which means it is the logarithmic probability of COVID-19.
It adds log (1− p (y)) for each healthy person (y� 0), so it is
the log probability of a healthy person.

3.2. Summary of Pretrained Convolutional Neural Network
Architectures Used in 5is Study. Table 3 shows the CNN
architecture information for this study. It can be seen that
ResNet50 has the smallest number of layers, at 50, andmodel
2, which contains 5 CNN architectures, has the most. 'e
size of Xception is 88MB, which is the smallest of these CNN
structures, and model 2 is the largest. ResNet50 has 23.52M
parameters, which is the smallest. Model 2 has the largest
number of parameters. Table 3 gives the details of the
pretraining architecture used in this study.

4. Results and Discussion

'is article uses ResNet50, ResNet152, Xception, Incep-
tionResNetV2, and cascade models 1 and 2 to distinguish
between COVID-19 and healthy people. 'ese models were
trained and tested under the same conditions (dataset, FC
layer, and parameter settings). 'e performance of the
network models was compared according to the accuracy,
precision, recall, and F1-score of the test set, which,
according to Table 3, were 96%, 96.1%, 96.42%, and 95.5%,
respectively, for model 2. 'ese were higher for other single
models and model 1 because a single deep learning network
will lose some detailed feature information when extracting
COVID-19 lung modal feature information, eventually
leading to poor classification results. However, model 2 uses
several single models to extract the modal features of the
COVID-19 lung image in parallel, which can effectively
retain the detailed feature information of the image, for a
better final classification effect than a single model.

To better understand the model training process, the
experiment extracted the feature maps output from the first
layer and some convolutional layers of Xception, ResNet152,
DenseNet201, VGG19, and InceptionResNetV2. According
to the feature map output from the first layer of each CNN
model, we compared the chest X-rays of COVID-19 patients
and healthy people. We found that the area of interest of the
CNN model was the yellow area, and the model has more
areas of interest on COVID-19 chest X-rays than for healthy
people. Figure 4 shows some of the extracted feature maps.
'e VGG19 first layer output area of interest is mainly white,

the chest X-ray of COVID-19 is slightly whiter, and the chest
X-ray of healthy people is basically not white.

First, the experiment uses ResNet50 to detect COVID-
19. 'e loss and accuracy curves of the model are shown in
Figure 5(a). 'e experimental training accuracy reaches
91.70%, and the validation accuracy reaches 93.17%. It can be
seen from the figure that the training and validation ac-
curacy curves basically overlap, but they can only reach
about 91.70%, and the training loss has become flat, about
0.23. 'e experiment uses RenNet152 to detect COVID-19
patients. 'e training accuracy of the model is 92.83%, and
the validation accuracy is 93.39%. 'e loss and accuracy
curves of the model are shown in Figure 5(b). In analysis (b),
the training and validation accuracy of ResNet152 are higher
than those of ResNet50, and the loss curve effect is also
better. Using Xeption to detect COVID-19 patients, the
model has a training accuracy of 93.63% and a validation
accuracy of 94.39%. 'e loss and accuracy curves of the
model are shown in Figure 5(c). 'e loss and Accuracy
graphs of the Xception model are better than ResNet50 and
ResNet152. It can be said that its training effect is very good
and the loss has been flat. Using InceptionResnetV2 to detect
COVID-19 patients, the model has a training accuracy of
89.27% and a validation accuracy of 90.22%. 'e loss and
accuracy curves of the model are shown in Figure 5(d). 'e
experiment uses Xception, ResNet152, DenseNet201,
VGG19, and InceptionResNetV2 model feature fusion, the
training accuracy reaches 96.58%, and the validation ac-
curacy is 96.00%. Figure 5(f ) is the loss and accuracy curves
of the model architecture. Figure 5(e) uses the Xception,
ResNet50, and Inception V3 cascade mode to detect
COVID-19, training accuracy rate is 95.49%, and validation
accuracy rate is 94.76%, slightly lower than those of the
cascade model using five models.

Table 4 is the evaluation index results of the experimental
validation (test) set. It can be seen that the accuracy, pre-
cision, recall, and F1-score of ResNet50 on the test set are
93.17%, 95%, 94.43%, and 93.83%, respectively. Compared
with ResNet50, the accuracy, precision, recall, and F1-score
of model 2 have increased by 2.83%, 1.1%, 1.99%, and 1.67%,
respectively. 'e accuracy, precision, recall, and F1-score of
ResNet152 on the test set are 93.39%, 95.87%, 94.84%, and
95.11%, respectively. Compared with ResNet152, model 2’s
accuracy, precision, recall, and F1-score increased by 2.61%,
0.23%, 1.58%, and 0.39%, respectively. 'e accuracy, pre-
cision, recall, and F1-score of Xception on the test set are
94.39%, 95.79%, 93.86%, and 94.46%, respectively. Com-
pared with Xception’s accuracy, precision, recall, and F1-
score, those of model 2 increased by 1.61%, 0.31%, 2.56%,
and 1.04%, respectively. 'e accuracy, precision, recall, and
F1-score of InceptionResNetV2 on the test set are 90.22%,
95.06%, 91.02%, and 92.22%, respectively. Compared with
InceptionResNetV2’s accuracy, precision, recall, and F1-
score, those of model 2 increased by 5.78%, 1.04%, 5.4%, and
3.73%, respectively. 'e accuracy, precision, recall, and F1-
score of model 1 on the test set are 94.76%, 95.45%, 96.02%,
and 94.99%, respectively. Compared with model 1’s accu-
racy, precision, recall, and F1-score, those of model 2 in-
creased by 1.24%, 0.65%, 0.4%, and 0.5%, respectively. It can
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Table 3: Summary of the pretrained convolutional neural network architecture used in this study.

Pretrained model Input size Layers Size (MB) Parameters (M)
ResNet50 224× 224 50 98 23.52
ResNet152 224× 224 152 232 60.42
Xception 299× 299 126 88 22.91
InceptionResNetV2 299× 299 572 215 55.87

Model 1
ResNet50 224× 224 50 98 23.52
Xception 299× 299 126 88 22.91

InceptionV3 224× 224 159 92 23.85

Model 2

DesenNet201 224× 224 201 80 20.24
VGG19 224× 224 19 549 143.67
Xception 299× 299 126 88 22.91
ResNet152 224× 224 152 232 60.42

InceptionResNetV2 299× 299 572 215 55.87
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Figure 4: Feature map output by the convolutional layer.
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be noticed that all the indicators of model 2 have been
improved.

'e receiver operating characteristic (ROC) curve is an
evaluation index for binary classification problems, and the
area under the curve (AUC) is a measure of the ability of the
classifier to classify.'e higher the AUC, the better the model’s
performance in distinguishing between positive and negative
classes. Figure 6 shows the ROC curves of six CNN archi-
tectures.'e classifier uses a fully connected layer and an RF. It
can be found that the classification effect of the FC layer is
better than the classification effect of the random forest. When
using fully connected layer classification, the AUC of Incep-
tionResNetV2 is 0.966, the lowest among these models. 'e

highest is model 1 with an AUC of 0.989. Model 2 AUC is
0.987, Xception AUC is 0.984, ResNet152 AUC is 0.981, and
ResNet50 AUC is 0.977, among which model 2 is 0.002 lower
than model 1, but the classification effect is similar.

'e results of the six CNN architectures on the test
dataset show that model 2 has higher accuracy, precision,
recall, and F1-scores than the other algorithms, and the AUC
value differs by only 0.002 from model 1. From these data, it
is concluded that model 2 has a good classification effect on
COVID-19 and healthy people. Compared with other
models, model 2 has better adaptability to the modal
characteristics of COVID-19 lungs and can improve the
accuracy on the test set. 'is is because the ResNet50,
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Figure 5: Accuracy and loss curves of five convolutional neural network structures. (a) ResNet50, (b) ResNet152, (c) Xception, (d)
InceptionResNetV2, (e) ResNet50, Xception, and InceptionV3 cascade structure, and (f) Xception, ResNet152, DenseNet201, VGG19, and
InceptionResNetV2 cascade structure.

Table 4: Convolutional neural network architecture classification evaluation index score.

CNN
Index

Accuracy (%) Precision (%) Recall (%) F1-score (%)
ResNet50 93.17 95.00 94.43 93.82
ResNet152 93.39 95.87 94.84 95.11
Xception 94.39 95.79 93.86 94.46
InceptionResNetV2 90.22 95.06 91.02 92.22
Model 1 94.76 95.45 96.02 94.99
Model 2 96.00 96.10 96.42 95.50
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ResNet152, Xception, and InceptionResNetV2 models lose
some detailed information when extracting features, and this
varies by model according to the network structure. Models
1 and 2 have a cascade architecture, which can integrate the
feature information extracted by a single model, and the final
classification result is good. Model 1 is composed of the
ResNet50, Xception, and Inception v3 models, and model 2
is composed of the Xception, ResNet152, DenseNet201,
VGG19, and InceptionResNetV2 models. So, model 2 can
save more feature information, and the final classification
result is better. As can be seen in Table 3, although the
ResNet50 network has only 50 layers, there are only 23.52M
parameters, so the characteristics of COVID-19 are prone to
be lost, and the test accuracy is not high. 'e Xception
network has 126 layers and only 22.91M parameters. It can
extract deeper features, but it loses much COVID-19 feature
information. 'e ResNet152 network has 152 layers and
60.42M parameters, and the detection effect is not ideal
because the residual network can be no deeper, which will
cause convergence to fail on the COVID-19 dataset. 'e
InceptionResNetV2 network has 55.87M parameters, but
the number of network layers reaches 572, so a large dataset
is required to train the network, and the amount of data in
this experiment is small, causing poor results. Model 2
combines the advantages of the VGG19, DesenNet201,
Xception, ResNet152, and InceptionResNetV2 networks, so

the better the fitting ability on the COVID-19 dataset, the
better the classification effect.

Table 5 shows the calculation time required for training
and testing of all models. It can be seen that model 2 takes
1503.67 s and 138.66 s, respectively, for training and testing,
more than the other models. 'e more complex the network
structure, the longer it takes to extract features, so model 2
takes more time, and it has a higher accuracy rate. It can be
noticed that ResNet50 takes the least training time, 418.91 s,
and the test time of InceptionResNetV2 is the least, at
52.44 s, but their accuracy is very low.

We compare our research with recent work, with results
in Table 6. Sethy and Behera used ResNet50, with SVM
instead of deep learning classifiers for classification, and its
accuracy and F1-score were 95.33% and 95.34%, respectively
[20]. Ismael and Şengür used 6 pretrained CNN models to
extract the depth features of 180 COVID-19 and 200 healthy
X-ray images and classified them with SVM.
ResNet50+SVM achieved an accuracy of 94.7%, highest of all
their results [30]. Sethy and Ismael used the same method to
classify COVID-19 and healthy people, and the accuracy
obtained is very similar to F1-score, but the accuracy is lower
than that of model 2, and the recall of the method proposed
by Ismael (91%) is lower than that of model 2 (96.42%).
Hemdan et al. used seven deep CNN models with different
structures to classify COVID-19 and healthy people [31].
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Figure 6: Receiver operating characteristic curves of six convolutional neural network structures. (a) ResNet50. (b) ResNet152. (c) Xception.
(d) InceptionResNetV2. (e) ResNet50, Xception, and InceptionV3. (f ) Xception, ResNet152, DenseNet201, VGG19, and
InceptionResNetV2.
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VGG19 and DenseNet201 showed similarly good classifi-
cation performance, and accuracy, F1-score, precision, and
recall were 90%, 91.5%, and 90%, respectively, which were
far lower than those of model 2 because the experiment only
used 50 COVID-19 images to verify the performance of the
model. Sahinbas and Catak proposed that the pretrained
VGG16 model has a poor classification effect [32]. 'e
accuracy, F1-score, precision, and recall are all 80%, which
are much lower than the indicators of model 2. Das used the
cascade network of DenseNet201, ResNet50V2, and In-
ception v3 to classify COVID-19 and healthy people, with
only 91.62% accuracy [33]. Kumar et al. proposed a model
structure based on the fusion of DenseNet121 and Sque-
zeNet1.0, called DeQueezeNet [17]. 'e precision and ac-
curacy of the model were 94.52% and 90.48%, respectively.
Jaiswal et al. proposed a transfer learning approach on a
pruned EfficientNet-based model for the detection of
COVID-19 cases [34]. 'e accuracy of the binary classifi-
cation of this method on the X-ray dataset reached 96%,
which is consistent with the accuracy of model 2, but the F1-
score, precision, and recall indicators were all lower.

According to the analysis and discussion of the evalu-
ation criteria of the comparative research algorithm on the
test set in this article, the accuracy, precision, recall, and F1-
score of model 2 are higher than those of comparative re-
search algorithms, showing that model 2 can more effec-
tively distinguish COVID-19 patients from healthy people
and is considered to be a major in-depth architecture. 'is
article also compares and discusses with recent research

results; in the analysis of recent work in Table 6, it can be
observed that the performance of all indicators of model 2 is
better than that of other research methods. Only the
COVIDPEN network of Jaiswal has a classification accuracy
of 96%, which is the same as that of model 2. 'erefore, in
the end, compared with other studies, model 2 showed good
performance. From these aspects, model 2 is seen to show
good performance in distinguishing between COVID-19
patients from healthy people.

5. Conclusions

CT and X-rays are effective tools for diagnosing and eval-
uating COVID-19. We used four CNN models and two
cascaded network models to divide X-ray samples into two
categories: COVID-19 and healthy people. We applied these
model architectures for feature extraction and classified
categories through an FC layer. Experimental results showed
that, under the same conditions, cascade network model 2
was best for classifying COVID-19 and healthy people. It
could significantly improve classification performance, with
accuracy of 96%, F1-score of 95.5%, 96.10% precision,
96.42% recall, and 98.7% AUC. We discussed and compared
our research and recent work.'e results showed that model
2 is better than other models in classifying COVID-19 and
healthy people, can accurately classify them, and can assist
doctors in the rapid detection of COVID-19. We concluded
from these two aspects that model 2 is well distinguished
between COVID-19 patients and healthy people and could

Table 6: Comparative study of the proposed model 2 with existing works with respect to accuracy, precision, recall and F1-score.

Author Type of
images Architecture Classes Accuracy

(%)
F1-score

(%) Precision (%) Recall (%)

Sethy and Behera
[20]

Chest X-
ray ResNet50 + SVM 2 95.33 95.34 — —

Hemdan et al.
[31]

Chest X-
ray

VGG19 2 90.00 90.00 91.50 90.00
DenseNet201 2 90.00 90.00 91.50 90.00

Kumar et al. [17] Chest X-
ray DeQueezeNet 2 94.52 — 90.48 96.15

Jaiswal et al. [34] Chest X-
ray COVIDPEN 2 96.00 94.00 92.00 96.00

Ismael and
Şengür [30]

Chest X-
ray ResNet50 + SVM 2 94.70 94.79 — 91.00

Das [33] Chest X-
ray DenseNet201 +Resnet50V2 + Inceptionv3 2 91.62 — — 95.09

Sahinbas and
Catak [32]

Chest X-
ray VGG16 2 80.00 80.00 80.00 80.00

'is study Chest X-
ray Model 2 2 96.00 95.50 96.10 96.42

Table 5: Comparative computational time of convolutional neural network architectures.

Architectures Training time (s) Testing time (s)
ResNet50 418.91 58.87
ResNet152 472.65 61.05
Xception 440.46 61.60
InceptionResNetV2 560.20 52.44
Model1 725.99 61.48
Model2 1503.67 138.66
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help reduce the workload of doctors in detecting COVID-19
cases.

'e method proposed in this paper can be applied to the
classification of modal characteristics of other lung diseases.
Patients with pulmonary edema and lung tumours have
pulmonary modal characteristics such as ground glass
shadow and infiltration shadow. Early lung disease usually
has infiltration shadow, and then, ground glass shadow
appears. 'ese phenomena can determine the severity of
lung disease. 'e algorithm in this study is more sensitive to
the modal characteristics of the new coronavirus pneu-
monia, which has similar modal characteristics to pulmo-
nary edema and lung tumours, so the algorithm can be
applied to the classification of modal characteristics of lung
diseases. 'e algorithm can also be extended to classify
magnetic resonance imaging (MRI), which is of great value
in the differential diagnosis of liver cancer, and can clearly
show the characteristics of tumour foci. Although the al-
gorithm in this paper cannot identify tumour features, it is
sensitive to obvious modal features and can be applied to
MRI image classification of liver cancer through small-
sample training in the later stage.

'e proposed method has major limitations. 'e ex-
periment only applies to X-ray images, and not CT images,
because X-ray images are RGB and CT images are grayscale.
'is experiment can only be used to classify COVID-19
patients and healthy people, and it cannot classify COVID-
19 and general pneumonia. We will next focus on the
classification of COVID-19, bacterial pneumonia, and viral
pneumonia.
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