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Abstract

Purpose: Inhibition of angiogenesis has shown clinical success in patients with cancer. Thus, imaging approaches that allow
for the identification of angiogenic tumors and the detection of response to anti-angiogenic treatment are of high clinical
relevance.

Experimental Design: We established an in vivo magnetic resonance imaging (MRI) approach that allows us to
simultaneously image tumor microvessel density and tumor vessel size in a NSCLC model in mice.

Results: Using microvessel density imaging we demonstrated an increase in microvessel density within 8 days after tumor
implantation, while tumor vessel size decreased indicating a switch from macro- to microvessels during tumor growth.
Moreover, we could monitor in vivo inhibition of angiogenesis induced by the angiogenesis inhibitor PTK787, resulting in a
decrease of microvessel density and a slight increase in tumor vessel size.

Conclusions: We present an in vivo imaging approach that allows us to monitor both tumor microvessel density and tumor
vessel size in the tumor. Moreover, this approach enables us to assess, early-on, treatment effects on tumor microvessel
density as well as on tumor vessel size. Thus, this imaging-based strategy of validating anti-angiogenic treatment effects has
high potential in applications to preclinical and clinical trials.
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Introduction

In the past years preclinical and clinical studies have

demonstrated the essential role of angiogenesis for initiation of

tumor growth [1,2]. Treatment strategies inhibiting angiogenic

processes mainly targeting the vascular endothelial growth factor

(VEGF) and its receptor (VEGFR) have been implicated in clinical

trials. Thus, non-invasive methods to visualize and to monitor

tumor angiogenesis, and its inhibition, respectively, are of high

clinical relevance.

Currently, dynamic contrast enhanced magnetic resonance

imaging (DCE-MRI) is in clinical use for the assessment of anti-

angiogenic treatment effects [3,4]. DCE-MRI represents an

indirect measure of angiogenesis since it mainly reflects leakage

of the vascular bed by measuring the transfer of contrast agent into

the interstitial space. Due to high VEGF levels within tumors

vascular leakage is increased in tumor microvessels. Thus, DCE

imaging is proposed to be an accurate marker to detect therapeutic

VEGF inhibition. Gadolinium-based contrast agents are mostly

used for DCE-MRI.

Dennie et al proposed the use of the ratio of gradient echo and

spin echo relaxation rate changes (DR*2/DR2) after injection of a

high molecular weight contrast agent to measure average

microvessel density within a voxel [5]. These authors found a

good correlation between the MRI derived in vivo data and

histology. Based on these findings Jensen and Chandra proposed

to map the ratio of Q =DR2/(DR*2)2/3 and demonstrated that Q

is dependent on water diffusion but independent of the

concentration of the contrast agent [6]. Because of the

heterogeneity of diffusion within tumors and changes of diffusion

during tumor growth [7] we sought to establish a multi-echo spin

echo sequence that takes the tumor diffusion into account for the

determination of tumor microvessel density and tumor vessel size.

In this study, we present an in vivo MRI approach that allows

for simultaneous assessment of tumor microvessel density and

vessel size by the use of a superparamagnetic iron oxyde (SPIO) at
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a very high spatial resolution. We validated the accuracy of this

approach by monitoring tumor angiogenesis and detecting

response to the VEGFR/PDGFR tyrosine kinase inhibitor

vatalanib in a NSCLC xenograft model in mice.

Materials and Methods

Cell Culture
We used the NSCLC cell line H1975 [8]. Cells were maintained

in RPMI 1640 supplemented with 10% heat inactivated fetal

bovine serum (FBS, Roche Diagnostics, Mannheim, Germany),

1% penicillin and 1% streptomycin (P/S, Life Technologies) at

37uC in a 5% CO2/95% air atmosphere.

Xenograft model
All animal procedures were in accordance with the German

Laws for Animal Protection and were approved by the local

animal committee and the local authorities (LANUV, Recklin-

ghausen, reference number: 8.87-50.10.31.08.331).

Tumors were generated by s. c. injecting 56106 H1975 tumor

cells into nu/nu athymic male mice as described recently [8]

(Janvier, Europe). In the first set, we longitudinally measured

animals on days 1 (n = 4), 4 (n = 6, 2 sacrificed for immunohis-

tochemistry), 8 (n = 6, 2 sacrificed for immunohistochemistry), 14

(n = 6, 2 sacrificed for immunohistochemistry), 21 (n = 6, 2

sacrificed for immunohistochemistry) after tumor cell injections.

In the second set, animals were randomized into two groups,

vehicle treated (control) and vatalanalib (PTK787) treated. Vehicle

and PTK787 animals were studied on day 8 (start of treatment) 14,

and 21 after tumor cell implantation (vehicle n = 6, PTK787 n = 6;

2 sacrificed for immunohistochemistry on day 21). Mice were

treated daily by oral gavage of 75 mg/kg PTK787. PTK787 was

dissolved at 1% DMSO and 0.5% Tween 80 in distilled water. All

controls were dosed with the same volume of vehicle (1% DMSO

and 0.5% Tween 80).

Immunohistochemistry
After the last MRI measurements, animals were sacrificed and

s.c. tumors were extracted. Tumors were embedded in tissue

freezing medium (Jung, Nussloch, Germany) and cut in 10-mm

frozen sections. Hematoxylin Eosin staining on the tissue was

performed according to standard protocols. Microvessel density

was assessed with CD31 staining (1:50 dilution, Mat.-No. 550274,

BD PharmingenTM). CD31 positive endothelial cells or cell cluster

were counted. In order to determine the mean number of

microvessel density within the tumor, the number of CD31

positive cells was determined by 3 different areas with maximal,

moderate, and minimal endothelial density. The mean number of

microvessels was determined as (F1+F2+F3)/3.

Magnetic Resonance Imaging (MRI)
All experiments were performed on an experimental animal

scanner at 7T (Bruker BioSpec; Bruker) equipped with a gradient

set of 400 mT/m. Radio frequency (RF) irradiation and signal

detection was achieved with custom-built coils: a 8-cm-diameter

Helmholtz coil arrangement for RF excitation, and a 16 mm

diameter surface coil for signal detection.

To determine DR2 and DR2* maps multi slice multi spin echo

(MSME) and multi gradient echo (MGE) pulse sequences,

respectively, were performed before and after injection of iron

oxide nanoparticles (EndoremH, Guerbet Inc.) at a dose of 30 mg

Fe/kg. The postcontrast image acquisition was delayed by 2 min

to ensure a steady-state distribution of contrast agent in the

vascular network.

MSME and MGE MR images were obtained with the same

Field of View (FOV) (16 mm616 mm), and matrix size (64664),

and a slice thickness of 0.3 mm (Matrix size 25062506300 mm2).

MSME was acquired with TR = 5000 ms and TE = (10.9,

21.8,…,109)ms. MGE was acquired with TR = 1400 ms and

TE = (4, 8,…,32) ms with a 60u hermite pulse.

To map the apparent diffusion coefficient (ADC) of water, two

diffusion-weighted images with b = 300, b = 800 s/mm2, in both, x

and z directions of the gradient system were acquired, together with

a reference image (b<0 s/mm2) at the following parameters: voxel

size = 0.560.2560.3 mm3, zero-filled to 0.2560.2560.3 mm3,

matrix 64664. The total scan time was 49 min and 16 seconds.

We started the measurement with the ADC map. Then, we

acquired the MSME and MGE pre CA-injection datasets. The post

injection scan time was 16 min and 38 sec. The signal intensity after

contrast agent injection was stable within half an hour.

Data analysis
The co-registration of the images was performed using FSL

software (FLIRT, Oxford, UK). IDL was used for image

processing (Interactive data language, ITT, VIS). We used a

volume of interest (VOI) of the entire tumor to assess the global

values of the ADC, MDI and VSI. The in-house developed

software VINCI was used for volume of interest (VOI) analysis of

MR images [9].

The ADC map was calculated from the diffusion-weighted

images with a mono-exponential fit of the signal intensity of the

three different b values (b0, 300, 800 s/mm2).

The DR*2 maps were determined with the second echo

(TE = 8 ms) by

DR�2~
2

3
dvj0~

ln (
GEpre

GEpost

)

TE
ð1Þ

[10,11] and a modified calculation for multi-spin echo

sequences with the third echo (TE = 32.7 ms)

DR2~0:694dv2=3j0#2=3ADC1=3R{2=3~

ln (
SEpre

SEpost

)

TE
ð2Þ

[12] (j0 = Blood Volume fraction; dv= 2pcDXB0 = frequency

shift, # = number of 180u pulses; R = Vessel Size Index (VSI)

DX= changes in the susceptibility, B0 = magnitude of the

magnetic field, c= gyromagnetic ratio). The prefactor 0.694 had

been calculated in [12].

Based on equation (2) we calculated the microvessel density

index (MDI) from

MDI~j0=(2pR2)~1:327#2 Q3

ADC
~1:327#2

(
DR2

(DR2 � )2=3
)3

ADC
ð3Þ

As such, measurement values are independent of the local

contrast agent concentration. The process is schematically

depicted in Fig. 1.

The combination of equation (1) and (2) leads to the term of the

VSI
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VSI~R~0:425#(
ADC

dv
)1=2(DR2=DR�2)3=2;

dv~2pDXB0 with DX~1|10-3:

(DX~susceptibility change)

ð4Þ

[13].

Statistical analysis
Statistical tests were performed using SPSS software (release

18.0 SPSS, Inc., Chicago. IL.USA). To assess statistical signifi-

cance we used the Spearman correlation and the t-test. Statistical

significance was set at p,0.05. Values are indicated as mean and

standard deviations.

Results

Model
Equation (2) considers the number of 180u-pulses (#) within the

MSME sequence. The calculation of the VSI map and the MDI

map are based on equation (2). To our knowledge, we take for the

first time the number of 180u-pulses into account by calculating

VSI and MDI maps.

Comparison of the image derived MDI values with
histology

In order to validate our image-derived data for microvessel density

we compared the MDI values to the in vitro microvessel density. The

in vitro microvessel density index was immunohistochemically

assessed by CD31 positive microvessels at different time points

directly after the MRI measurements. Here, we found a significant

correlation between the in vivo derived MDI values and the

microvessel density index of CD31 positive cells (r = 0.8, p = 0.0006;

Spearman correlation) (Fig. 2). Furthermore, tumor areas with high VSI

values showed also large vessel size in histology (Fig. 2A).

Monitoring tumor microvessel density and vessel size
We analyzed the growth of tumor microvessels as detected by

the MDI map from day 1 to day 4, 8, 14, and 21. Already one day

following s.c. inocculation of the tumor xenograft we observed

high intra- and subcutaneous MDI values around the tumor. On

day 4 we found an increasing number of tumor microvessels

within the tumor (MDI value: 198628). The maximum was

reached 8 days after tumor cell inocculation (MDI value: 297673).

The MDI values then slightly decreased at day 14 (247694) and

day 21 (230672). We did not find significant changes between day

1 and 4, day 4 and 8, day 8 and 14, day 14 and 2. Of note, at later

time points we found a rather homogeneous distribution of the

microvessels within the center as well as in the outer rim of the

tumor (Fig. 3). This was accompanied with a homogeneous, rather

low ADC value on days 14 and 21 (Fig. 3).

Using maps of the vessel size index (VSI) we estimated the vessel

diameter over time. Interestingly, we found inverse behavior of the

vessel size and vessel density changes: an increase in MDI from day 4

to day 14 was accompanied by a decrease in VSI, indicating a switch

from larger to smaller vessel sizes (VSI, day 4: 68.7640.8; day 14:

50.761.8). Tumor vessels with larger diameter were found in the

outer rim of the tumor with their diameter still increasing during the

following days (Fig. 3).

Figure 1. Schematic of data calculation for the microvessel density index (MDI) and the vessel size index (VSI).
doi:10.1371/journal.pone.0019592.g001
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ADC values showed a decrease within the first 8 days reflecting

a decline in extracellular diffusion, most probably due to an

increase in tumor cell density.

Response to PTK787 treatment
We determined the potential of our protocol to assess response

to anti-angiogenic treatment. Tumors were grown for 8 days and

MDI, ADC and VSI were measured. We then started PTK787

treatment and monitored response to treatment after 6 and 13

days by calculating percentage changes in MDI, VSI and ADC.

Already after 6 days of oral PTK787 treatment, we found a

significant decline in the MDI values in comparison to the vehicle

group (p = 0.021) (see Table 1 and Fig. 4). This was confirmed

after 13 days of treatment (p = 0.005). In contrast, the VSI

decreased in the control group over time whereas in the treated

tumors the VSI remained nearly stable at day 6 and even

increased till day 13. This indicates a switch from macro- to micro-

vessels in the vehicle group. On the other hand, PTK787

treatment induces the inverse effect resulting in a shift from

micro- to macrovessels.

In parallel we observed a decrease in the ADC value after 6

days of PTK787 treatment whereas there was nearly no change in

the ADC in the vehicle treated tumors. The ADC value then

increased till day 13 during PTK787 treatment (Tab. 1 and Fig. 4).

Discussion

In this study we demonstrate the feasibility to non-invasively

determine microvessel density in an experimental NSCLC model

by the use of the MRI derived MDI map. Moreover, we propose a

Figure 2. Comparison of the image derived values of MDI and VSI to CD31 positive endothelial cell staining. (A) a vehicle treated (upper
row) tumor presenting a high microvessel density index (MDI (1/mm2)) in MRI and a low vessel index (VSI (mm)). The PTK787-treated tumor (lower row)
presents low MDI values with high VSI values. (B) correlation between CD31 positive vessels per area unit and the imaged derived MDI values (n = 10).
doi:10.1371/journal.pone.0019592.g002
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protocol permitting simultaneous monitoring of tumor vessel size

(VSI) and tumor microvessel density (MDI). We show that the

values obtained by the MDI map reflect the microvessel density as

assessed by immunohistochemical CD31 staining. Most impor-

tantly, the MDI allows to monitor PTK787 induced reduction in

microvessel density as early as 6 days after start of treatment.

Finally, repetitive MR imaging reveals a shift of vessel diameter

toward larger lumen in PTK787 treated tumors in vivo.

Currently, there are numerous anti-angiogenic agents in clinical

trials ([14]; http://www.cancer.gov/clinicaltrials). Likewise, new

imaging modalities are required that allow to monitor tumor

microvessel density growth and the detection of anti-angiogenic

treatment effects. As reported previously, MR imaging offers the

detection of capillaries with a diameter of 10 to 30 mm, reflecting

the range of the diameter of tumor microvessels [6,10]. Jensen [15]

first proposed the Q-map for the assessment of microvessel density

in vivo. Based on this approach, Wu et al found reasonable Q-map

values within the healthy mouse brain when comparing the results

with histological analysis [16]. However, as indicated by Jensen in

2006 [15], the diffusion within the tissue affects the calculation of

microvessel density (cf. Eq. 3). This is particularly true for tumor

tissue since the diffusion within the tumor is highly variable.

Therefore, we established a new protocol for vessel density

imaging that includes the ADC map, to take the function of the

diffusion heterogeneity within the tumor into consideration for the

determination of the MDI. Herewith, we received a clear

improvement of the vessel density values, as demonstrated with

the significant correlation to the microvessel density assessed by

immunohistochemistry. Of note, the same calculation without the

ADC map showed no correlation to immunohistochemically

assessed by microvessel density (data not shown).

The theoretical description of Kiselev et al [11] has been made

for a single echo experiment. Nevertheless, multi echo experiments

were used to calculate the Q-maps or the VSI [17]. The gradients

for the 180 degree pulses induce diffusion weighting. By using

multi spin echo sequences this diffusion weighting is usually not

considered. Therefore, the calculation of delta R2 via the fitting on

multi echo sequences leads to incorrect results for the VSI and

MDI. Thus, we applied the correction factor as suggested by

Figure 3. Longitudinal investigation of vascular dynamics during tumor growth. Simultaneous in vivo monitoring of tumor depiction with
T2-weighted imaging, microvessel density (MDI), vessel size (VSI) and apparent diffusion coefficient (ADC) during tumor growth on day 1, day 4, day
8, day 14, and day 21 (D1, D4, D8, D14, D21).
doi:10.1371/journal.pone.0019592.g003

Table 1. Percent changes (relative to day 0) in T2, MDI, VSI
and ADC values after 6 days and 13 days of PTK787/vehicle
treatment.

PTK787 treated Vehicle treated

day 6 day 13 day 6 day 13

Mean SD mean SD mean SD mean SD

T2 24.79 3.85 20.93 16.85 25.69 5.08 222.55 16.85

MDI 2225.10 169.88 2199.52104.80 41.30 2.17 23.82 23.22

VSI 215.85 64.90 31.63 26.60 2194.2045.30 253.10 87.90

ADC 214.61 18.32 11.71 11.45 0.22 26.72 2.84 18.97

doi:10.1371/journal.pone.0019592.t001
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Kiselev [12] to take the diffusion weighting into account. As the

correction factor is considered in the formula (3) and (4) both the

second and the third echo can be used. However, by using further

180u-pulses we found an increase of the obtained MDI that did not

reflect the results from the immunohistochemistry. Thus, we

conclude that it is important to use a spin echo sequences with the

appropriate echo time to calculate the MDI and VSI.

We have presented a new strategy for the simultaneous

estimation of the vessel size index (VSI) and the microvessel density

index (MDI) by the use of a multi spin echo sequence. With this tool,

we could demonstrate in vivo that in untreated tumors the decrease

in the mean tumor vessel size is paralleled by an increase in

microvessel density. These findings are in line with a study by Drevs

et al. [18] who observed a shift of vessel diameter toward larger

lumen in PTK787 treated tumors in comparison to the vehicle

group in vitro. This observation is reasonable since it reflects the

sprouting of smaller tumor microvessels from pre-existing larger

vessels during tumor growth that is inhibited by PTK787.

After 6 days of PTK787 treatment, we found a decrease in the

ADC value. It is well known that inhibition of VEGF/VEGFR2

results in a reduction in vascular permeability [19]. We hypothesize

that the PTK787 induced decline in vessel permeability reduces

interstitial edema and, thus, intra-tumoral diffusion that is reflected

by the observed decrease in ADC map. Moreover, after 13 days of

treatment there was again a slight increase in the ADC value most

probably due to necrotic tumor transformation [20,21,22,23].

Finally, we have demonstrated that the MDI method permits

the characterization of microvessel density in vivo in longitudinal

studies. Further, the MDI detected the PTK787 treatment

induced reduction of microvessel density as early as 6 days of

treatment. This is of high clinical interest since it allows for

monitoring effects of anti-angiogenic treatments based on the

growth and sprouting of tumor microvessels. Of note, the iron

oxide nanoparticle EndoremR is a true intravascular contrast

agent with a long plasma half-life (T1/2.2.5 h) [24], already

approved for human use. Severe side effects have been reported

for the gadolinium based contrast agents [25]. Thus, Endorem

represents a highly promising contrast agent for clinical studies.

Moreover, using Gd-complexes the changes of the signal induced

by the susceptibility is weak. Since Endorem is a paramagnetic CA

the changes of the local susceptibility in the steady state is much

higher than induced by gadolinium complexes.

In summary, we present an in vivo imaging approach for

simultaneous monitoring of tumor microvessel density (MDI) and

tumor vessel size (VSI). This approach enables the early

assessment of treatment effects on microvessel density as well as

on tumor vessel size. Thus, this imaging method bears high

potential for monitoring anti-angiogenic treatment effects in

preclinical and clinical trials.
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