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Cancers utilize multiple mechanisms to overcome immune
responses. Emerging evidence suggest that immunotherapy
of cancer should focus on inducing and re-programming cells
of the innate and adaptive immune systems rather than
focusing solely on T cells. Recently, we have shown that such a
multifaceted approach can improve immunotherapy of breast
cancer.

Major barriers/challenges to the advancement of cancer immuno-
therapy include: (1) immunological tolerance due to the fact that
cancer cells originate from normal tissue to which cells of the
adaptive immune system were tolerized; (2) tumor escape as a
result of epigenetic changes in the tumor cells induced by immune
responses, e.g., antigen loss, MHC class I loss or “missing”
unknown, yet critical, target antigens; (3) tumor-induced immune
suppression mediated by an increased population of myeloid-
derived suppressor cells (MDSC) in cancer patients.1-4 In fact,
cancer cells utilize multiple strategies to survive in such an
immunologically hostile environment, however many strategies
used in cancer immunotherapy have been narrowly focused on a
specific type of immune cell, particularly CD8+ T cells. Innate
immune cells such as NK cells or NKT cells are usually considered
as a secondary source of immunotherapy when tumor cells escape
from adaptive immune responses by losing their target antigen
or MHC class I molecule. In addition, patients who participate
in immunotherapy clinical trials have received chemotherapy
and radiation therapy. Such conventional therapies affect their
immune system. Therefore, an effective cancer immunotherapy is
expected to overcome the above mentioned barriers, and to be
designed based on an understanding of the role of conventional
therapies in boosting or compromising the immune responses.

Despite recent advances in adoptive cellular therapy (ACT) of
melanoma, no success has been achieved in ACT of breast cancer.

This is in part due to low immunogenicity of breast cancer
expressing self antigens compared with melanoma that expresses
a variety of highly immunogenic antigens as suitable targets
for immunotherapy,5 as well as increased MDSC in breast cancer
patients.3,4 Using autologous T cells that are weakly and
inefficiently reactive against the self antigens expressed by breast
tumors would not generate objective responses. Therefore, re-
programming of tumor-reactive immune cells toward the most
effective phenotypes may be the only way to cure breast cancer
and/or prevent recurrences immunologically. In addition, most
ACT protocols have focused on T cells and ignored a critical role
of the innate immune cells including NKT cells and NK cells in
anti-tumor protection. Given the critical cross talk between cells
of the innate and adaptive immune systems, a combined approach
utilizing NKT cells, NK cells and T cells could result in highly
effective anti-tumor immune responses.6,7 Our recent findings
suggest that such a multifaceted strategy can overcome MDSC
mediated immune suppression as well as tumor escape in the
FVBN202 mouse model of spontaneous mammary carcinoma.8

Others have demonstrated that NKT cells play a key role in
overcoming MDSC by converting them into antigen-presenting
cells (APC), thereby rescuing T cells from suppression and
improving their effector function.9,10 It has been reported that T
central memory (TCM) phenotypes are more effective than T
effector (TE) phenotypes in generating long-lasting protection
against tumor cells.11,12 The presence of NKT memory cells has
also been suggested to be protective against tumor cells.13

Therefore, the most effective ACT strategy would be to re-
program cells of both innate and adaptive immune systems and
differentiate the T cells toward memory phenotypes, while at the
same time overcoming tumor-induced immune suppression.

We have recently developed an antigen-free protocol by means
of pharmacological agents, bryostatin 1 (B) and ionomycin (I),
and combined common gamma chain (c-c) cytokines for
re-programming tumor-reactive cells of the innate (NKT cells
and NK cells) and adaptive (CD4+ and CD8+ T cells) immune
systems which displayed resistance to MDSC. Broystatin 1 is
a naturally occurring antineoplastic drug which is also a potent
modulator of protein kinase C (PKC). Short-term effects of
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bryostatin 1 include activation of classical and novel PKCs,
whereas prolonged stimulation leads to lowered PKC activation. It
was reported long ago and repeatedly that bryostatin + ionomycin
(B/I) selectively stimulate tumor-sensitized T cells in vitro; when
lymphocytes from sarcoma-bearing mice were activated with B/I
and expanded in IL-2, tumor-specific T cell frequency increased
by orders of magnitude compared with the starting population.14

In fact, B/I selectively activated CD62Llow (sensitized) T cells
from mice bearing 4T1 mammary carcinomas.15 Emerging
interests in bryostatin 1 as an immune modulator have resulted
in a better understanding of its role in the modulation of antigen
presentation. For instance, it was reported that bryostatin 1 acts
as TLR-4 ligand and activates dendritic cells (DCs),16 and
upregulates expression of IFNc receptor in monocytes17 as well as
induction of IFNc and T-bet transcripts.18 These data suggest
that B/I could be a potent modulator of the immune cells.

The common c-c cytokines IL-2, IL-7 and IL-15 play a key
role in homeostasis of the immune cells. An understanding of the
distinct properties of these cytokines will lead to the development
of an effective formulation or combination for the expansion of
tumor-reactive immune cells ex vivo during a pharmacological re-
programming. In addition to being a T cell growth factor, IL-2
also supports differentiation of CD8+ T cells toward effector and
effector/memory phenotypes (TE and TEM) by downregulation of
lymph node homing receptors CD62L and CCR7. This results in
the trafficking of the IL-2-expanded T cells to the tumor site.
Therefore, such cells may induce early anti-tumor responses but
may not lead to a long-term memory response. IL-7 is crucial for
the survival and homeostatic expansion of naive and memory
CD8+ T cells; it is secreted by stromal cells, epithelial cells and
fibroblasts but is not produced by lymphocytes. The IL-7 R is
expressed by T cells, pre-B cells and DCs. The receptor comprises
two polypeptides, an affinity binding receptor IL-7 Ra or CD127
and a signaling c-chain receptor CD132. Because of an important
role of IL-7 in all stages of T cell development and maintenance,
it has been used in clinical trials in an attempt to increase the
replenishment of T cells. Injection of IL-7 resulted in the
expansion of both CD4+ and CD8+ T cells as well as a relative
reduction of CD4+ Tregs.19 IL-15 is produced by monocytes,
DCs and epithelial cells. IL-15 R is expressed by T cells and NK
cells, and consists of three polypeptide subunits: an IL-15 Ra
chain, which determines its binding to IL-15, and shared IL-2 β
(CD122) and c (CD132) chains.

About 20% of the human CD8+ T cell pool in peripheral blood
has low expression of CD127. Although CD127 is a specific
receptor for IL-7, its expression on T cells also determines respon-
siveness of T cells to common gamma chain cytokines other than
IL-7. For example, IL-15 decreases activation induced cell death
(AICD) in CD8+CD127+ T cells but not in CD8+CD127− T cells
while inducing comparable proliferation of the two subsets.20 Such
a differential effect was in part mediated by IL-15-induced
expression of anti-apoptotic Bcl-2 as well as inhibition of the pro-
apoptotic Bim in CD8+CD127+ T cells but not in CD8+CD127−

T cells. Although IL-15 can induce expression of Bcl-2 in naive
and memory T cells, its best defined role is supporting memory
T cells. It has been shown that naïve T cells and TCM cells are

CD8+CD127+ while TE and TEM cells are mostly CD8+CD127−.21

Culture of antigen-experienced T cells with IL-15 ex vivo restores
their ability to respond to the antigen.21

Due to the variable expression of the common c-c receptors at
different stages of immune cell homeostasis, a sequential use of
the cytokines should be considered during the expansion and re-
programming of tumor-sensitized immune cells.

The role of NKT cells in tumor immunity has not been studied
extensively. NKT cells are classified into three types which
include: (1) type I or classical or invariant NKT cells (iNKT cells);
(2) type II or non-classical or non-invariant NKT cells. Type I
and II NKT cells recognize glycolipid antigens associated with
MHC class I-like molecules CD1d; (3) NKT-like cells or CD1d-
independent NKT cells.22 Type I NKT cells express an invariant
Va24Ja18 chain paired with a Vβ11 in humans or an invariant
Va14Ja18 chain paired with a Vβ8.2, Vβ2, or Vβ7 in mice. In
contrast, TcR Vβ regions used by type II NKT cells are highly
diverse. Type I NKT cells produce IFNc whereas type II NKT
cells produce IL-13 that facilitates production of TGFβ by
myeloid cells.23 Recent studies have shown that iNKT cells con-
ferred protection against lymphoma, whereas type II NKT cells
facilitated immune suppression.24 For instance, increased iNKT
cells at the tumor site of patients with colorectal cancer were
found to be associated with a favorable prognosis.25 iNKT cells have
been shown to act as adjuvants for anti-tumor T cell vaccines.26,27

The precise mechanism responsible for such an adjuvant effect is
not fully understood. A recent report suggested that iNKT cells
were shown to increase expression of CD70 on DCs, following
immunization with the glycolipid, a-galactosylceramide (a-GalCer),
in mice, thereby supporting CD8+ T cell responses through
engagement with the CD27 receptor.7 Most iNKT cells in mice
are double negative (CD4−CD8−) and express CD28 as well as
CD154 upon activation.6,7 Ligation of these costimulatory
molecules increases secretion of IFNc by iNKT cells.

It was reported that MDSC loaded with a-GalCer on their
CD1d showed enhanced immunostimulatory function through
interaction with activated iNKT cells. Activated iNKT cells in
turn converted MDSC into antigen-presenting cells (APCs),
and supported antigen-specific proliferation of IFNc producing
CD8+ T cells.9 In humans, activated iNKT cells have also been
shown to direct monocytes to differentiate into immature DCs
through the engagement of CD1d on monocytes.28 These reports
underscore a critical role of the activated iNKT cells in inter-
actions with MDSC and tumor-reactive T cells. Very recently we
made a similar observation in the FVBN202 transgenic mouse
model of breast carcinoma, where anti-tumor efficacy of HER-2/
neu-specific T cells, in vitro and in vivo, was influenced by the
presence or absence of activated NKT cells.8

Based on these findings we propose a model to explain a cross
talk between NKT cells and MDSC as well as with T cells during
an effective anti-tumor immune response (Fig. 1). According to
this model, double negative (CD4−CD8−) CD25+ invariant NKT
(iNKT) cells interact with CD1d on MDSC, resulting in the
conversion of MDSC into DC by increasing the expression of
CD80/86, CD70 and ICAM-1. Engagement of CD80 and CD70
on newly converted DCs with CD28 and CD27 on T cells
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suppression. CD25+ iNKT cells can also respond to tumor cells
and MDSC in a CD1d-dependent manner. Extensive production
of tumor-specific IFNc by the expanded cells may also overcome
tumor relapse that we found to be due to low levels of IFNc
production. This hypothetical model has been supported by our
recent publication8 showing that tumor-specific IFNc production
was significantly increased by NKT cells when MDSC were
present. In addition, the presence of NKT cells was required in
order to overcome MDSC-mediated T cell suppression.

The source of tumor-reactive immune cells that are used for
ex vivo re-programming is critical. We showed that radiation
therapy compromised phenotypic distribution of T cells such

that re-programming of these cells did not yield TCM pheno-
types and failed to protect animals against the tumor cells.8

Altogether, recent evidence demonstrates a shift from adaptive
T cell responses to a multifaceted cellular immunity by means
of immune cell expansion using c-c cytokines utilizing cells
harvested prior to radiation therapy for the treatment of human
carcinomas.
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Figure 1. Mechanisms by which CD25+ iNKT cells interact with MDSC and rescue T cells from suppression. Tumor-derived soluble factors increase MDSC
(A) which in turn suppress anti-tumor T cell responses (B). Activated CD25+ NKT cells interact with CD1d on tumor cells and MDSC and demonstrate
enhanced anti-tumor responses (C). This will result in MDSCs increasing expression of CD80/86, CD70, ICAM-1 thus effectively converting to a DC
phenotype, which then interacts with CD28 and CD27 on activated T cells, thereby enhancing T cell anti-tumor responses.
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