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Most models of central pattern generators (CPGs) involve two distinct nuclei mutually inhibiting one another via synapses.
Here, we present a single-nucleus model of biologically realistic Hodgkin-Huxley neurons with random gap junction coupling.
Despite no explicit division of neurons into two groups, we observe a spontaneous division of neurons into two distinct firing
groups. In addition, we also demonstrate this phenomenon in a simplified version of the model, highlighting the importance of
afterhyperpolarization currents (IAHP) to CPGs utilizing gap junction coupling. The properties of these CPGs also appear sensitive
to gap junction conductance, probability of gap junction coupling between cells, topology of gap junction coupling, and, to a lesser
extent, input current into our simulated nucleus.

1. Introduction

Central pattern generators (CPGs) correspond to neural
regions that spontaneously generate oscillatory behavior in
the absence of patterned input. In both invertebrates and ver-
tebrates, they appear to play a critical role in the formation
of repeated oscillatory behaviors, including activities such
as walking, swimming, heartbeating, and breathing [1–4].
Because of their roles in cardiac and respiratory function,
CPGs may be considered vital for basic survival across much
of the animal kingdom.

Originally, the oscillatory behaviors seen in locomotion
were presumed to be generated through reflexes alone. An
ever-growing body of evidence, however, suggests that both
locomotor [2, 5] and respiratory oscillatory activities [6, 7]
are generated centrally in spinal cord and brainstem regions,
respectively, since these behaviors occur in the absence of
descending cortical drive and sensory input. Modulation of
CPG activity, however, is necessary for adapting locomotor
and breathing patterns to ever-changing environmental
conditions. Because of this, both the locomotor [8] and the
respiratory [9, 10] systems exhibit a great deal of plasticity

in the face of changing conditions and, therefore, should be
viewed as dynamic rhythm generating devices.

Traditionally, reciprocal synaptic inhibition between two
neuronal populations (or two groups of neuronal popu-
lations, or even two individual neurons [11]) is seen as
the standard method of generating CPG behavior in both
biological and computational systems. Originally proposed
by Brown [12], this style of CPG appears in biological
models of lamprey [13] and stick insect locomotion [14]. It
also appears in simulated salamander [15] and mammalian
locomotion models [16] as well as in leech heart [17] and as
a component in more complex models of respiratory activity
[18]. This form of CPG is often referred to as the half-center
model and is a prominent model for robotic locomotion
controllers [19, 20].

While half-center CPGs typically focus on synaptic inhi-
bition, recent work indicates that gap junction coupling may
also play a role in locomotor patterns [21] and respiratory
patterns in both amphibians [22] and mammals [23–26].
Gap junctions are a prominent mechanism for neuronal syn-
chrony in the brainstem, cerebellum, and neocortex as well as
among motoneurons, glia, and retinal cells [27–29], though

mailto:irene.solomon@stonybrook.edu


2 Computational Intelligence and Neuroscience

they can also produce complex asynchronous patterns [30].
Gap junction proteins and functional gap junction coupling
have also been demonstrated in numerous neurons associ-
ated with central respiratory control, including hypoglossal
and phrenic motoneurons [25, 31] and the pre-Bötzinger
complex [23, 32]. A combination of gap junctions and
synaptic inhibition may also be responsible for synchrony in
some neuronal populations [33], and even if gap junctions
are not responsible for generating a mutually inhibitory
connection, inhibitory currents coupled by gap junctions
could easily play such a role.

Although hard-wired reciprocal synaptic inhibition may
be easy to identify physiologically, we propose that this same
style of inhibition can spontaneously form in a single pool
of gap-junction-coupled neurons, mutually inhibiting one
another via their slow afterhyperpolarization (sAHP). The
slow sAHP following the action potential can be modified
directly through calcium-gated potassium channels (called
either IAHP or ISK), which are found in many neurons
including motoneurons [34, 35] and are known to play an
important role in burst frequency modulation. Since neurons
would dynamically assign themselves to one of the two “half-
centers,” changes to gap junctions, IAHP, or inputs alone
could modify how individual neurons align their firing. This
would produce a highly dynamic modifiable half-center CPG
capable of adapting to the rapid demands of locomotion or
respiration.

Here, we present two biologically realistic models of
gap-junction-coupled neurons that exhibit multiple output
rhythms typical of half-center CPGs. Unlike standard half-
center CPG models, however, we have one pool of ubiquitous
neurons with random gap junction coupling that are still able
to output two or more distinct phase-shifted rhythms.

2. Models

The full model is the hypoglossal motoneuron model
developed by Purvis and Butera [36] and modified with gap
junction coupling from Perez Velazquez and Carlen [37].
Despite the model’s seeming specificity, many of the ion
channels contained in this model also feature prominently
in a variety of other neurons and motoneurons [35].

The reduced model is a combination of the simple
spiking Izhikevich [38] INa + IK model, which contains only a
sodium, potassium, and leak current, with ICa, [Ca2+]i, ISK,
and gap junction coupling. The model itself for neuron i,
where i = [1, 2, . . . ,N], is as follows:

C
dVi

dt
= Iinput,i(t)− g leak(Vi − Eleak)

− gNaminf (Vi)(Vi − ENa)− gKni(Vi − EK)
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−
N∑

j=1

ggap,i, j

(
Vi −Vj

)
,

minf (V) = 1
1 + e(−26.5−V)/(14.5/ ln(5/3))

,

dni
dt

= ninf (Vi)− ni
τn(Vi)

,

ninf (V) = 1
1 + e(−20−V)/5

, τn(V) = 3,

dpi
dt

= pinf (Vi)− pi
τp(Vi)

,

pinf (V) = 1
1 + e(−40−V)/5

, τp(V) = 6
1 + e(55+V)/2

+ 0.5,

dzi
dt
= zinf (Vi)− zi

τz(Vi)
,

zinf

([
Ca2+

]
i

)
= 1

1 +
(

0.003/
[

Ca2+
]
i

)5 , τz(V) = 10,

d
[

Ca2+
]
i,i

dt
= −0.0005 ICa − 0.04

[
Ca2+

]
i,i

,

ICa = gCapi(Vi − ECa).

(1)

With the following parameters:

g leak = 0.38μS, gNa = 1.283μS, gK = 1.8μS,

gCa = 0.08μS, gAHP = 0.5μS,

ggap,i, j =
{
ggap if neurons i and j share a gap junction,

0μS if neurons i and j are not connected,

Eleak = −80 mV, ENa = 60 mV,

EK = −80 mV, ECa = 80 mV,

N = 100, dt = 0.02 ms, C = 0.04 nF.
(2)

Changes to default parameters in specific simulations will be
given in the description of each simulation run.

3. Simulations and Analysis

Simulations were performed using the Python programming
language (http://www.python.org/) accompanied by the Sci-
entific Tools for Python package (http://www.scipy.org/).
Speed-critical code was written in C++ and plugged into
Python using the C-Extensions for Python library (http://
www.cython.org/). Plotting was done via the matplotlib
library (http://www.matplotlib.sourceforge.net).

Numerical integration of both the full and reduced
motoneuron models was done via Euler’s method. Both
models were also tested over a variety of dt settings, and
against RK4, the most common Runge-Kutta method [39],
to ensure sufficient numerical accuracy by Euler’s method.

Simulated neurons were deemed part of a singular cohe-
sive firing group based on clustering via the Expectation-
Maximization algorithm [40], with the number of clusters
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determined by the following method: first, the voltage of
all neurons was summed together at every point in time.
Next, this summed signal was smoothed via six passes of a
4 ms square wave moving average filter. Finally, this signal
was normalized, local maxima were determined by observing
when the derivative passed through zero, and an extremely
low threshold of 6% of the total signal was used to discard
spurious local optima that sometimes appeared when only a
few neurons were active. Because firing neurons have signif-
icant depolarizations both before and after firing, analysis of
summed voltage traces proved superior in identifying firing
groups in comparison to the popular information theoretic
“jump” method [41]. In addition, no groups were deemed
to exist if the average of all voltage traces failed to reach
a maximum value of 3 mV (out of a possible ∼21 mV),
implying that fewer than 15% of all spikes were well aligned
in the largest group.

For the full model, all simulations were all performed
with a 500 ms duration square wave input current of 0.5 ±
0.35 nA, where the variation corresponds to white noise
changing at every time step. Since increasing or decreasing
white noise amplitude did not noticeably produce distinct
changes in the model, other levels of white noise were not
further considered. The current was applied to each neuron
beginning at 100 ± 10 ms into the simulation and ending
at 600 ± 5 ms. Variation in input current start and end
times simulates the varied delays in stimulation produced by
axonal variation of input drive. Gap junctions were opened
at 300 ms for the demonstration of behavior in the full
model, at 125 ms when reducing SK conductance in the full
model, and at 200 ms when examining plane topology in the
full model. Gap junctions were closed for all full models at
700 ms. Gap junction connections were made at random,
with each cell having a probability of 25% of connecting
to any other cell in the full model without plane topology,
and 50% of connecting to any cell within a radius of 5
in the model with topology. Neighboring cells in the plane
topology were all evenly spaced in a square lattice, with
nondiagonal neighbors at a distance of 1. The precise gap
junction connectivity generated to demonstrate the behavior
in the full model was reused in the simulations with SK
conductance in the full-model, so that results could be
directly compared. In the full-model simulation with SK
conduction reduction, maximal conductance began at 0.3 μS.
Starting at 300 ms, the conductance dropped in a linear value
until hitting 0.0 μS at 500 ms, where it remained at zero for
the duration of the simulation. All full simulations lasted
700 ms, had a gap junction conductance setting of 0.0005 μS,
and consisted of 100 neurons.

For the reduced model, simulations were performed
using a constant square wave impulse, beginning at 100 ±
200 ms, where negative start times imply a start time of
zero and ending at 1400 ms. Input current for reduced
SK conductance simulations was set to 0.08 nA and for
plane topology simulations was set to 0.1 nA. Gap junction
conductance ggap in plane topology simulations was set to
0.003 μS. Gap junctions in all reduced simulations remained
open for the complete duration of the simulation. Gap
junction connectivity in all figures illustrating multiple runs

with varying parameters was performed using the same
set of gap junction connections to ensure that results are
not a byproduct of different gap junction connectivity.
The reduced model gap junction conductance versus input
current experiments and the connectivity in the reduced
model gap junction conductance versus input current sim-
ulations also used the same gap junction connections to
ensure comparability between generated results. The total
simulation time for all reduced model runs was 1500 ms.

In our theoretical treatment of gap junction connection
probability and connectivity radius, the cutoffs for each
firing group were chosen based on the final column of
Figure 7(a). An average total gap junction current below
0.09 nA produced ungrouped firing, between 0.09 nA and
0.1 nA produced three groups, between 0.1 nA and 0.3 nA
produced two groups, and above 0.3 nA produced one group.
The constant g, the conductance of each gap junction, was
set to 0.003 μS, to match the conductance settings in the
accompanying simulations. The voltage differential constant
dV , which is arbitrarily defined, was set to 0.3 V so that∑Ni

j=1 gdV = 1/NT , where the total number of neurons in the
simulation equals NT . This ensures the maximum for average
total gap junction current under an infinitely large radius
and all-to-all connectivity yields 1.0 nA of average total gap
junction current.

4. Results

4.1. Half-Center-Like Behavior. In the full model, following
the opening of gap junctions, two distinct phase-shifted
signals reminiscent of a traditional half-center CPG could be
generated in a single nucleus with ubiquitous connectivity.
An example of this behavior is shown in Figure 1, where
opening the gap junctions shifted a fairly asynchronous
firing pattern amongst the 100 neurons into two distinct
neuronal firing groups. To highlight this division into two
firing groups, the neurons were color coded according to
their group affiliation (Figure 1(b)), and a raster plot of their
spiking behavior was generated (Figure 1(c)). In general,
one group was often better aligned than the other, and
upon further investigation, the randomness and ubiquity of
connectivity actually fostered conditions encouraging one
slightly larger group to act as a “driver” for the smaller
“follower” group. On average, connectivity between and
within the firing groups is given in Table 1, with the
probability of two neurons being gap junction coupled
set to C, and the number of neurons in firing group
i being Si.

While this implies that both groups are sending roughly
an equal amount of conductance between one another, as
would be expected by bidirectional gap junction coupling,
it masks a more important property. Since each group has
a very different degree of interconnectedness, the amount
of incoming drive in relation to internal drive is markedly
different (see Table 2).

As S1 � 1 and S2 � 1, the ratio of internal connections
in group 1 is identical to the ratio of connections in
group 2 received from group 1. Regardless the size of
each spontaneously formed group, the larger group always
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Figure 1: Example of half-center-like behavior in the full model.
(a) Plot of voltage traces showing 40 of the 100 neurons. (b)
Each voltage trace shown in (a) has been colored based on its
neuron group affiliation. (c) A raster plot showing spikes for all 100
neurons, also colored based on neuron group affiliation. Vertical
line corresponds to the opening of gap junctions.

receives more internal than external stimulation and extends
more excitability to drive the smaller group. Thus, based
on probability alone, a similar topology is consistently
observed regardless of network size. This does not exclude
the possibility of having two equally sized groups, which
would be expected to have more balanced dynamics.

While the main focus of the current investigation is on
half-center like CPGs, it should be noted that generating
more than two groups is entirely feasible. In the reduced
model, for example, not only one or two centers could be
generated, but also occasionally three centers were observed
(Figure 2).

Furthermore, even without altering patterns of connec-
tivity, modifying conductance through gap junctions and/or
input current into the system had the potential to shift
the firing patterns between 1, 2, and 3 independent groups
(Figure 3). In this case, gap junction conductance was seen
to exert a greater influence than that of input current in
determining the number of firing groups (Figure 3), with
higher gap junction conductance being associated with fewer
groups and lower gap junction conductance being associated
with more groups. While input current was capable of
producing a shift between different firing behaviors, changes

Table 1: Total connections.

From group 1 From group 2

Connections to group 1 C(S1
2 − S1)/2 CS1S2/2

Connections to group 2 CS1S2/2 C(S2
2 − S2)/2

Table 2: Percent connections.

From group 1 From group 2

% Connections to
group 1

(S1 − 1)/(S1 + S2 − 1) (S2)/(S1 + S2 − 1)

% Connections to
group 2

(S1)/(S1 + S2 − 1) (S2 − 1)/(S1 + S2 − 1)

in input current were less predictive of a trend in the number
of firing groups.

4.2. Behavior Requirements. We hypothesized that IAHP is a
prime candidate for the necessary reciprocal inhibition
between firing groups. Unlike other currents, IAHP is solely
gated by intracellular calcium. This delays the onset of the
current until shortly after the spike ends and maintains the
level of inhibition high until intracellular calcium is pumped
out. Thus, the IAHP is long lasting and easily modified by
altering intracellular calcium influx. This would also serve
to inhibit neighboring electrically coupled cells firing shortly
after a spike but have less of an effect on neighboring cells
firing concurrently. Without IAHP, the afterhyperpolarization
and relative refractory period of the neuron are very brief.
While it may be hypothetically plausible to use the relative
refractory period generated by IK or other comparatively
brief negative currents for reciprocal inhibition, this is not
observed in our models.

To explore the necessity and sufficiency of IAHP on
this behavior in our models, we first examine our reduced
model. This model itself takes a simple spiking model
(INa + IK) and extends it with the minimal requirements for
a functional IAHP channel: voltage-gated calcium currents
(ICa), intracellular calcium concentration ([Ca2+]i), and the
AHP current (IAHP). The fact that this behavior is observed
in the reduced model is a demonstration that, with the right
parameters, the addition of a functional IAHP current to a
model is sufficient to produce more than one half-center
like firing groups. However, since proper parameter setting is
required, it is not sufficient alone to merely add a functional
IAHP current and expect half-center like CPG behavior.

Based on our models, when IAHP is gradually removed,
the behavior ceases. In the full model, at sufficiently low
IAHP, the two firing groups merge into one (Figure 4). Greater
detail is shown based on simulations from the reduced
model, where changes to IAHP were compared with the pri-
mary determinant of group size: gap junction conductance
(Figure 5). In both the full and reduced models, multiple
firing groups could not be maintained in the absence of IAHP.
Trivially, without the existence of gap junctions, neurons
would be completely uncoupled and, thus, incapable of
synchronizing.
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Figure 2: Examples of firing behaviors observed in the reduced model. One, two, and three firing groups through summation of all 100
neuronal voltage traces over time (upper panel) and raster plots of all spikes colored by group affiliation (lower panel).
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groups.

4.3. Topology. Up until now, all of our models have used
random connectivity without any concern for spatial place-
ment of the cells. Since slice preparations are commonly used
to study CPGs of the spinal cord [42], and the slice itself
often has a thickness (350–600 μm) within the range of the
dendritic span of motoneurons (250–700 μm) [43], where
gap junctions primarily form between dendrites and/or
somas, we opted to orient neurons along a two-dimensional
plane as a first approximation to this layout to begin to
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Figure 4: Effects of reduction and removal of IAHP (full model).
Simulation demonstrating that when gAHP is reduced linearly, the
two firing groups merge into one group before gAHP reaches zero.
This behavior can be observed in both (a) the voltage traces (shown
for 40 of the 100 neurons) and (b) a raster plot of spikes for all 100
neurons. Both are color coded based on their firing group affiliation
prior to the merging of the firing groups.

explore the effects of spatial connectivity on half-center like
CPG group formation. While one might predict that neurons
in each firing group would clump together into two massive
nuclei, this is not the case. Instead, neuronal groups tended
to form a mottled appearance, with clumps from each group
equally interspersed (Figure 6). This configuration would
ensure that each neuron would be exposed to some members
of each firing group, thus loosely preserving connectivity
reminiscent of a topology-free model. Figure 6 also reveals
that one neuron spent five firing cycles with the firing group
color coded in red before joining the firing group color coded
in blue. This suggests that unlike in a traditional half-center
CPG where group allegiance is a hard-set property of each
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neuron, in some rare instances, a neuron may straddle the
fence and move between two groups.

Finally, using the reduced model, we explored the
parameter space to further examine the exact role that
topology plays (Figure 7(a)). We found that the pronounced
inverse relationship between connectivity probability and
connectivity radius is best explained by overall gap junction
current. We reasoned that by imposing a radius of connec-
tivity, the number of available neurons to form gap junctions
would be decreased, and the net current entering all gap
junctions for each individual cell would be decreased. If
we assume that every pair of cells has an identical voltage
differential dV , probability C of connecting to other neurons
within a radius R, and a gap junction conductance g, and
also assume a plane of neurons of infinite size and some
total current “window” where two firing groups can exist,
we can generate a theoretical prediction of when two firing
groups will form (Figure 7(b)). If we represent the number
of neurons within a radius R of neuron i to be Ni neurons,
and the total number of neurons to be NT , then the equation
for average total conductance is as follows:

〈
Igap,total

〉
=
∑NT

i=1 Igap,i,total

NT
=
∑NT

i=1

(
C
∑Ni

j=1 gdV
)

NT
. (3)

5. Discussion

In this study, we have elucidated the properties of a novel
type of CPG that oftentimes bear resemblance to the
traditional half-center CPG depicted in the literature. Unlike
most traditional models of CPGs, we have presented a more
dynamic entity that allocates group membership on the fly
and can modify its firing properties through a variety of
different biological parameters. This property itself has a
number of benefits and drawbacks.

It cannot be stressed enough that the dynamic nature
of these CPGs would be especially beneficial for either
the generation or modification of locomotor or respiratory
central patterns. In contrast to our model, most models
of CPGs incorporate static group affiliation, which alone
may not be able to produce the sorts of dynamically
changing locomotor and respiratory patterns seen in nature.
In both locomotion and respiration, adaptation of rhythms
to both external environmental changes and descending
cortical commands may be more difficult in a simpler
CPG, which may lack the requisite complexity required
to describe the wealth of patterns that humans and other
mammals are capable of exhibiting in these two activities.
Moreover, CPGs formed through gap junctions can alter
group affiliation without relying explicitly on changes in
gap junction coupling. With this in mind, some of the
rarer behaviors seen in the current model, including the
more exotic three firing group behavior, might be easy for
a biological system to generate and maintain as long as the
initial state of the system is within the vicinity of the correct
set of parameters. Evolutionarily speaking, it would also be
easier to create a CPG that itself had no explicit wiring, but
could rely on random connectivity to self-organize.

Though this novel CPG has many admirable traits,
some inherent properties of these systems may make them
harder to tune or more difficult to find biologically. The
volatile nature of a system that drastically changes behavior
with small changes in parameters could open such neural
systems up to a plethora of neurological disorders. While
we offer no strong hypotheses regarding known disorders
that might stem from such a disruption, known disorders
with errant or absent patterns certainly come to mind:
spastic gait, persistent muscle spasms, and the sudden loss
of breathing implicated in SIDS. Furthermore, because such
systems can exist in a singular nucleus with otherwise
ubiquitous physiological properties, the only way to identify
such systems experimentally would be to observe them while
active, rather than through simple histology alone.

5.1. Fast Pattern Generation. At first, the speed of oscil-
lations in our proposed CPG may appear surprisingly
fast, commonly ranging between 10 and 30 Hz. However,
these speeds are not uncommon for many smaller animals
in locomotion, respiration, and associated behaviors. For
example, depending on its speed, the American Cockroach
(Periplaneta americana) commonly has a stride frequency
between 20 and 25 Hz, which at the highest speeds is often
quadrupedal or bipedal, and only a few Hz below wing beat
frequency [44]. In addition, the wing beat frequency of the



Computational Intelligence and Neuroscience 7

(a) (b)

Figure 6: Mottled topology (full model). Demonstrations of a simulation run with a planar topology and a connectivity radius of 5. In (a),
each neuron is plotted in its correct topological orientation and colored based on its group alignment. In (b), a raster plot confirms that these
neurons are indeed split into two firing groups. The one grey/green neuron began as a member of the red firing group, but later transitioned
to the blue group after several cycles of firing.

ruby-throated hummingbird (Archilochus colubris) nearly
doubles this at 53± 3 Hz. [45]. At slightly lower frequencies,
but still within this range, are whisking behaviors in rats (at
6–12 Hz) [46] and mice (at 19± 7 Hz) [47] as well as sniffing
behaviors in rats (at ∼8 Hz) [48] and mice (at ∼12 Hz) [49],
both of which are commonly associated with respiratory
events. Finally, hypoglossal motoneurons, the motoneuron
corresponding to our full model, have been observed with
steady-state frequencies as low as 9.7 ± 3 Hz and as high
as 70+ Hz [50]. While all the aforementioned frequencies
are within one standard deviation of the lowest frequencies
observed in hypoglossal motoneurons, slow motoneurons in
the cockroach (Blaberus discoidalis) leg can fire even slower,
at 2–5 Hz [51]. Given the broad range of behaviors that fall
within the firing frequencies observed in both the model
and biological neurons, we believe that our proposed CPG
represents a reasonable approach for modeling a variety of
locomotor and respiratory behaviors.

5.2. CPG or Downstream Modifier? While we have focused
on pattern generation, our proposed CPG could also just
act as easily as a pattern modification nucleus. Rather than
using multiple firing groups to drive two separate sets of
muscles, for example, it could be used to take a singular signal
and double or triple its period. Considering the ability to
rapidly swap between one and two firing groups, this could
be especially useful in locomotor transitions, such as moving
from walking to running, or in cortical processes used to keep
track of time.

5.3. Limitations. As is the case with all modeling, a reason-
able computational model does not necessarily imply the
existence of a biological correlate. In addition, we are limited
to the sets of parameters explicitly examined, and, therefore,
we cannot rule out that additional exotic effects may not
exist for this style of CPG. While we have tried to keep

biological plausibility in the forefront, the lack of plasticity
in our models could, in theory, lead us to miss key properties
of these systems.

5.4. Inhibitory Synapses. While the current models stress a
role for IAHP and gap junctions, similar outcomes in terms
of emergent topology should be obtainable via synaptic
connections. Recall that the most important property in
our plane topology networks was total current flowing
between cells. Thus, a benefit of inhibitory synapses would
be that inhibition comes from neuronal firing rather than
electrophysiological afterhyperpolarization. This would take
the focus away from ion channels controlling the sAHP and
instead focus on mechanisms of firing. Subsequently, this
may still include channels associated with IAHP, as they are
strongly associated with modifications to firing frequency
[35], but other currents, such as the hyperpolarization-
activated current (Ih), may end up playing a more substantive
role under inhibitory synapses, as observed by Marder and
Bucher [2].

While synaptic connectivity may favor distally located
cells in a CPG, gap junction coupling would certainly empha-
size less broadly spaced neurons. This would make gap-
junction-based CPGs more amenable to our CPG model,
where connectivity is more dense and arbitrary, than spaced
and planned out meticulously. The latter of which would
likely be more favorable to an inhibitory synaptic design, as
axons have reasonably high target specificity. Thus, synaptic-
based versus gap-junction-based CPGs may favor different
styles of design.

5.5. Emergent Connectivity. It is easy to get into the habit
of viewing the brain as a large hard-wired microchip;
however, such analogies neglect the lively self-organized
properties of the brain that could lead to unique emergent
behaviors, like those demonstrated by our proposed CPG.
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Figure 7: Connectivity topology versus radius (reduced and theory). (a) Multiple simulations are performed varying both the probability of
forming a gap junction with a neighbor within a given radius and the radius itself. The results from this series of simulations resembles (b)
a plot based on the average of the total hypothetical conductance received by each neuron.

While highly deterministic behaviors can arise from arbitrary
connectivity, “dynamic” should not necessarily be conflated
with “chaotic.” Even in the most volatile systems, the laws
of probability can impose order and, in some cases, may
yield a more stable design paradigm than the one that is
seemingly more orderly. Our simulations with random gap
junction coupling clearly illustrate this by demonstrating
that regardless of the size of each group, the connectivity
always scales to ensure that one group acts as the leader and
the other follows in suit. Such design principles are simple to
implement, even if they are not obvious at first.

5.6. Connectivity versus Radius: Simulation and Theory.
Our theoretical predictions reasonably capture the various
regions in parameter space where zero, one, two, and three
firing groups typically appear (Figures 7(a) and 7(b)). Cer-
tainly the predictions do not perfectly match with the simula-
tions, but the dynamic nature of these models makes absolute
knowledge of when a certain number of firing groups appear
difficult to define. Moreover, because the cutoff conductances
need to be specified in our theoretical predictions for when
each set of firing groups would appear, it cannot be seen as
a predictive theory so much as an explanatory one. If one
knew roughly under what total conductances certain firing
groups would form, then that alone would be sufficient to
detail a great deal of how many firing groups would be likely
to appear in other simulation runs with different parameters.

5.7. The Benefits of Full and Reduced Models. By using both
full and reduced style models, we have been able to gain the
benefits of both. With the full model, we have a demon-
stration of our style of CPG in a model that has, otherwise,
been deemed accurate to the biology. Clearly, the plethora

of channels in a realistic neuron does not disrupt the ability
to form multiple neuronal groups. Simultaneously, with our
reduced model, we have stripped down the neuron to just
the bare essentials to demonstrate the minimum required to
achieve the desired behavior. Additionally, we gain the speed
benefits traditionally associated with reduced models, which
permits sufficient simulation runs for the many parameter
versus parameter plots generated as part of this study.

6. Conclusions

The formation and modulation of centrally generated signals
for essential behaviors remains an exciting and open field.
Simply knowing where CPGs might lie in the brain may
not be enough to fully understand exactly how they create
their signals. Likewise, there may exist useful methods for
pattern generation not used in nature that may still be useful
for robotics and artificial prostheses. Thus, it is of great
importance to explore the theoretical possibilities, so that
we can provide biological experimentalists and roboticists
ample paradigms from which to choose. While we have
demonstrated a novel type of CPG, relying less on deliberate
connections and containing no synapses at all, there may still
exist other unique methods for generating these signals that
are not yet addressed by the CPG literature or the current
study. Thus, it is important to keep an open mind about the
possibilities of how a CPG might form.
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