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Background: Despite the new next-generation sequencing (NGS) molecular approaches
implemented the genetic testing in clinical diagnosis, copy number variation (CNV)
detection from NGS data remains difficult mainly in the absence of bioinformatics
personnel (not always available among laboratory resources) and when using very small
gene panels that do not meet commercial software criteria. Furthermore, not all large
deletions/duplications can be detected with the Multiplex Ligation-dependent Probe
Amplification (MLPA) technique due to both the limitations of the methodology and no
kits available for the most of genes.

Aim: We propose our experience regarding the identification of a novel large deletion in
the context of a rare skeletal disease, multiple osteochondromas (MO), using and
validating a user-friendly approach based on NGS coverage data, which does not
require any dedicated software or specialized personnel.

Methods: The pipeline uses a simple algorithm comparing the normalized coverage of
each amplicon with the mean normalized coverage of the same amplicon in a group of
“wild-type” samples representing the baseline. It has been validated on 11 samples,
previously analyzed by MLPA, and then applied on 20 patients with MO but negative for
the presence of pathogenic variants in EXT1 or EXT2 genes. Sensitivity, specificity, and
accuracy were evaluated.

Results: All the 11 known CNVs (exon and multi-exon deletions) have been detected with a
sensitivity of 97.5%. A novel EXT2 partial exonic deletion c. (744-122)-?_804+?del —out of
the MLPA target regions— has been identified. The variant was confirmed by real-time
quantitative Polymerase Chain Reaction (qPCR).

Conclusion: In addition to enhancing the variant detection rate in MO molecular
diagnosis, this easy-to-use approach for CNV detection can be easily extended to
many other diagnostic fields—especially in resource-limited settings or very small gene
panels. Notably, it also allows partial-exon deletion detection.
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INTRODUCTION

The advent of new technologies in recent years, particularly in
the field of next-generation sequencing (NGS), has improved and
increased the possibility of identifying single-nucleotide variants
and small deletions/insertions responsible for numerous
pathologies (1), including hereditary skeletal diseases. At the
same time, the role of copy number variations (CNVs) as a
causative genetic factor for many disorders (2) makes their
detection essential for complete diagnostic approaches.

Currently, the gold standard for CNV detection is the
Multiplex Ligation-dependent Probe Amplification (MLPA),
which has, however, some limitations related both to the
technique (i.e., CNVs in genetic regions not covered by the
probes remain undetected) and to a non-exhaustive availability
of kits, which leaves some genes unanalyzable. To overcome
these limitations, many NGS-related tools have been developed
(3, 4) to identify CNV variants, thus making molecular screening
more complete and cost- and time-saving. Various software have
been developed for this purpose, although having some critical
issues; most of them are oriented toward wide genomic regions
analyses (i.e., whole-genome, whole-exome, and large NGS
panels), showing a lower performance on data deriving from
smaller NGS panels, which, in turn, are the most used and allow
more precise identification of CNVs at a single or few exons level
(4). In addition, they require additional costs and/or specialized
bioinformatics personnel, not always available within laboratory
resources. It must also be considered that, in the case of very
small NGS panels, the design cannot be optimized for
CNV detection.

In this study, we propose an “easy-to-use approach” to detect
heterozygous single- and multi-exon CNVs from NGS data, not
requiring specialized bioinformatic skills or the purchase of
specific software. We reported our experience in the multiple
osteochondromas (MO) disease whose diagnosis is based on the
use of an Ion Torrent S5 NGS assay using a very small (two-gene,
12.78-kb) gene panel. Although being a rare genetic disorder
with an estimated prevalence of 1:50,000 (5), MO is among the
most common inherited musculoskeletal diseases (6). It is a
dominant autosomal hereditary condition caused by
heterozygous mutations in exostosin-1 (EXT1) or exostosin-2
(EXT2); EXT causative variants have been reported in 70%–94%
of patients with MO (7). The majority (80%) of mutations are
nonsense, frameshift, or splice-site mutations, resulting in the
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truncation of the EXT1 or EXT2 protein (8); other detected
causative variants are missense mutations, resulting in loss of
EXT activity (9), and large deletions —exon or multi-exons—
accounting for up to 8% of the cases (10–13). According to the
EXT1/EXT2 mutation database (https://databases.lovd.nl/
shared/genes/EXT1, https://databases.lovd.nl/shared/genes/
EXT2), EXT1 is characterized by a prevalence of multi-exon
deletions (37%), whereas EXT2 has most single-exon deletions
(45%) (Supplementary Figure 1). Despite this, 10%–15% of
patients remain undiagnosed, suggesting the possible presence of
other MO-causative genes or not detected EXT variants.

Here, we describe an “easy-to-use” algorithm validated and
optimized to detect CNVs using NGS data from a very small
(12.78-kb) targeted gene panel. The pipeline permitted to
identify a novel MO-related large deletion involving a portion
of intron 4 and exon 5 of EXT2, not previously detected by
MLPA technique, thus providing a new diagnostic tool to
improve MO diagnosis.
MATERIALS AND METHODS

Patients
This project was approved by the CE-AVEC (Comitato Etico di
Area Vasta Emilia Centro della Regione Emilia-Romagna) ethics
committee (20-12-2017/No. 0012819). All research was
performed in accordance with the relevant guidelines/
regulations. A total of 155 patients with MO were enrolled in
the study. All patients were clinically and genetically diagnosed at
the Center of Rare Skeletal Disease of the Istituto Ortopedico
Rizzoli (IOR, Bologna, Italy). DNA was extracted from
peripheral blood through an automated NXP Biomek platform
(Beckman Coulter Life Science). All patients underwent
molecular evaluation for the presence of pathogenic variants in
the EXT1 and EXT2 genes following the diagnostic protocol
described in our previous studies (11, 14) using Denaturing
High-Performance Liquid Chromatography (DHPLC) and
Sanger sequencing to detect the point mutations, and MLPA to
detect big deletions/insertions. Considering all 155 patients, 11
(Samples 1–11) were characterized by the presence of large
deletions in the EXT genes detected by MLPA, 124 (Samples
12-135) carried a pathogenic EXT point mutation detected by
DHPLC, and 20 (Samples 136–155) were negative on EXT
molecular screening Table 1. As detailed in Table 2, the 11
CNV-positive control samples are characterized by single-exon
or multi-exon deletions in EXT1 or EXT2. As control samples to
evaluate the pathogenicity of the new variant identified in the
study, we also enrolled two relatives of Sample 146 (Relative 1
and Relative 2), both clinically affected by MO.

NGS Analysis
All 155 patients with MO were re-evaluated by NGS using the
Ion Torrent PGM platform (Thermo Fisher Scientific, Waltham,
MA, USA). An EXT1-EXT2 custom panel was designed using the
Ion AmpliSeq Custom Designer (https://www.ampliseq.com).
The panel is composed of two primer pools covering all UTRs
TABLE 1 | Dataset description: genetic and NGS qualitative metrics results.

Samples Count

Total 155
Genetic results by DHPLC/MLPA molecular screening
EXT Point variants (by DHPLC/Sanger sequencing) 124
EXT CNV variants (by MLPA) 11
No EXT variants 20

NGS data quality
“Mean depth” > 100× and uniformity > 90% 152
“Mean depth” < 100× 2
Uniformity < 90% 1
June 2022 | Volume 13 | Article 874126
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(Untranslated regions) and coding regions of EXT1 and EXT2
genes (12.78 kb), also including at least 50-bp flanking intronic
regions. The amplicon range is 125–275 bp, and the expected
coverage is 99.37%. All amplicons and their target regions are
detailed in Supplementary Table 1.

Each sample was processed using the Ion AmpliSeq Library
Kit 2.0 (Thermo Fisher Scientific); the Ion Chef platform
(Thermo Fisher Scientific) was used to automate the template
preparation and to load the Ion 314/316 Chip Kit v2 BC. The
sequencing reaction was then performed on the Ion Torrent
PGM platform. NGS data were analyzed using the Torrent Suite
Software (Thermo Fisher Scientific) and the SEQNext
application (JSI medical systems GmbH, Germany).

Baseline Creation
The group of 124 samples carrying pathogenic EXT point
mutations was used to create the baseline needed to define the
mean sequencing depth (normalized to the total number of
reads) of each amplicon in the “wild-type” (i.e., CNV-free)
samples. To be included in the baseline, samples were selected
on the basis of NGS data quality, considering mean depth and
uniformity. All samples with a mean coverage of <100× or
uniformity of <90% were excluded to avoid uneven coverage
caused by a poor efficiency of some primers Table 1.

To evaluate the most reliable number of samples to build the
baseline, we created and tested four baselines starting from a
different sample size:

• 10-sample baseline
• 30-sample baseline
• 50-sample baseline
• 100-sample baseline

This evaluation is necessary to assess whether the pipeline
robustness, which depends on the baseline, is related to the use,
and therefore the availability, of a large number of wild-type
(non-CNV–carrying) samples. In this case, the CNV pipeline
could be hardly usable in case of a limited patient flow (e.g., ultra-
rare diseases and non-reference center for rare diseases). In
addition, to estimate whether sample selection affects the
quality of the baseline (depending on samples’ “coverage” or
“uniformity” parameters), for each sample size (10, 30, 50,
and 100), we tested the baseline using five different iterations
Frontiers in Endocrinology | www.frontiersin.org 3
randomly generated; each iteration will consist of a different
selection of samples. Overall, 20 different baselines (five
iterations for four different sample sizes) were created. Each
baseline was then tested on the positive control group to define
its robustness; the most reliable will be used to analyse the 20
“undiagnosed” MO samples.

CNV Detection Algorithm
The algorithm used to detect CNVs using NGS data is based on a
simple comparison between the amplicon depth (normalized to
the total number of reads) of the investigated sample and the
mean depth (normalized) of the same amplicon defined in
the baseline.

For each amplicon, the ratio “depth (normalized)/average
baseline depth (normalized)” was calculated and reported as a
percentage value. As defined by previous studies (15, 16), a
constitutional heterozygous deletion is defined by a value
of <75%. Different thresholds (i.e., 70%, 65%, and 60%) were
tested to increase specificity and assess the detection limit of
the algorithm.

Validation of the CNV Tool
To evaluate the performance of our CNV pipeline, we calculated
the sensitivity, specificity, and accuracy, considering the 11
known CNV-positive samples (Samples 1–11) described in
Table 2. For each NGS amplicon that overlaps the MLPA
target regions (detailed in Supplementary Table 2), we
calculated the ratio “depth (normalized)/average baseline depth
(normalized)”, considering all 20 baselines; we assigned each
amplicon a “correct” or “wrong” value, considering the
concordance with the MLPA results. A “true positive” (TP) or
“true negative” (TN) value were assigned in case of a match with
the MLPA analysis. “False positive” (FP) value was attributed
when the CNV tool called a variant not detected by MLPA,
whereas a “false negative” (FN) value if the tool did not detect a
CNV revealed by MLPA. Sensitivity was calculated as TP/(TP +
FN), specificity as TN/(TN + FP) and accuracy as (TP + TN)/(TP +
TN + FP + FN). To compare the different baselines, sensitivity,
specificity, and accuracy were calculated for each iteration.
Sensitivity, specificity, and accuracy were also calculated
considering a threshold different from <75% for the “deletion”
call (i.e., <70%, <65%, and <60%); these latter values are reported
only as the average of the five iterations in the Results section.
TABLE 2 | Detail of the CNVs described in the study on the basis of the MLPA analysis and the algorithm developed.

ID Gene CNV Description Genome Ref. (MLPA Results) Genome Ref. (CNV Algorithm)

Sample 1 EXT1 Del exon 1 g.119123222-119123291 g.119122772-119123839
Sample 2 EXT1 Del exon 1 g.119123222-119123291 g.119122772-119124113
Sample 3 EXT1 Del exon 1 g.119123222-119123291 g.119122772-119124113
Sample 4 EXT1 Del exon 1 g.119122566-119123291 g.119122108-119124113
Sample 5 EXT1 Del exons 2–4 g.118842473-118849325 g.118842223-118849515
Sample 6 EXT2 Del exon 8 g.44193218-44193291 g.44192994-44193383
Sample 7 EXT1 Del exons 1–8 g.118825129-119123291 g.118825037-119124113
Sample 8 EXT2 Del exon 8 g.44193218-44193291 g.44192994-44193383
Sample 9 EXT1 Del exons 2–11 g.118811842-118849325 g.118811558-118849515
Sample 10 EXT2 Del exon 8 g.44193218-44193291 g.44192994-44193383
Sample 11 EXT2 Del exon 3 g.44130744-44130814 g.44130570-44130960
Sample 146 EXT2 Partial del exon 5 Not detected g.44146239-44146376
June 20
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CNV Analysis
The 20 samples (Samples 136–155) negative to the presence of
EXT variants using the DHPLC-MLPA approach were reanalyzed
by NGS and then evaluated for the presence of CNVs using the
validated pipeline. Real-time qPCR (quantitative Polymerase
Chain Reaction) was performed to validate all “positive” calls
involving amplicons outside the regions covered by the MLPA
probes, as well as in the event of a discordant result with MLPA.
The reaction was realized using RT2 SYBR® Green qPCR
Mastermix (Qiagen, GmbH, Hilden, Germany) and a pair of
primers specifically designed on the region identified as deleted.
Primer sequences and thermocycler conditions are available under
request. The pathogenicity of the variant was investigated by
evaluating its presence in two affected relatives.
RESULTS

NGS Analysis
All samples selected for the study were analyzed using the EXT1/
EXT2 targeted NGS panel. For each sample, the mean depth, the
uniformity of coverage, the on-target percentage, and the
number of mapped reads are detailed in Supplementary
Table 3. All pathogenic mutations previously detected have
been confirmed, as well as the absence of MO-causative
variants (i.e., point mutations and small indels) in the 20
patients with genetically “undiagnosed”MO (Samples 136–155).

Applying the selection criteria (i.e., “mean coverage” of >100×
and “uniformity” of >90%), 121 out of 124 CNV-free samples
(Samples 12–135) were eligible to create the baseline. Sample 31
was discarded since having a uniformity value of 54.15%,
whereas Sample 90 and Sample 128 were excluded due to the
low coverage (37.48× and 8.39×, respectively); the remaining
samples were characterized by a mean depth of 620× (range:
175.8–1,538×) and a mean uniformity of 92.89 (range: 91.1%–
95.6%). Through random selection, 20 groups of samples (five
different selections of 10, 30, 50, and 100 sample size) were
generated (detailed in Supplementary Table 4) and then used to
create 20 different baselines.

Validation of the CNV Pipeline
Method validation was performed with 11 CNV-positive control
samples. Considering only the amplicons overlapping the MLPA
target regions, sensitivity, specificity, and accuracy were calculated on
a total of 429 individual genetic regions (11 samples, 39 amplicons
per sample) (data derived from Supplementary Table 2). Two
amplicons (AMPL7153865992 and AMPL7156300405) were
characterized by a systematic error; notably, they are in the EXT1-
UTR region, outside the relevant diagnostic area.

The positive control samples were evaluated using all the 20
created baselines to evaluate the most effective ones. All results
are detailed in Supplementary Table 5 as follows: all 'depth
(normalized)/average depth (normalized)' ratios of <75% are
reported, whereas values of >75% are reported only in case of
discrepancy between MLPA and NGS-based CNV pipeline.

With all the baselines, the CNV pipeline detected the 11
known CNVs even if AMPL7153088419 always failed to detect
Frontiers in Endocrinology | www.frontiersin.org 4
the deletion in Sample 9, attesting the sensitivity of the algorithm
to 97.5% (as detailed in Supplementary Table 6); despite this, all
other 14 amplicons that cover the MLPA target regions (known
to be deleted in Sample 9) confirm the results (see
Supplementary Table 5), thus making the only detected false
positive not relevant to the final result. Considering the
specificity, we detected a number of false positives ranging
from 14 to 20, depending on the baseline; the numbers of
“false positives”, “false negatives”, “true negatives”, and “true
positives” related to each baseline are detailed in Supplementary
Table 6, providing a mean specificity and average total accuracy,
respectively, of 95.84% (95.37%–96.40%) and 95.99% (95.57%–
96.50%) using the 10-sample baseline, 95.63% (94.86%–96.40%)
and 95.80% (95.10%–96.50%) using the 30-sample baseline,
95.84% (95.12%–96.14%) and 95.99% (95.34%–96.27%) using
the 50-sample baseline, and 95.94% (95.37%–96.14%) and
96.08% (95.57%–96.27%) using the 100-sample baseline.
According to our results, we did not find any significant
differences using baselines built on different sample sizes, as
well as considering different samples selections, thus making the
use of 10 samples—randomly selected—sufficient. To increase
specificity, thus reducing the number of “false positive” calls that
require confirmation in case of negative results, we repeated the
analyses considering three different thresholds for the “deletion”
call (<70%, <65%, and <60%). Results obtained are represented
in Figure 1 and described in Supplementary Table 7,
considering, for each baseline, the average values obtained by
the five different iterations. Although the increase of specificity as
the threshold decreases is expected (up to 99.23% for the 60%
threshold), a reduction of sensitivity is evident, as follows: 92%–
97.50% (depending on the baseline) for the <70% threshold,
85%–92.50% in the case of the <65% threshold, and 77.50%–80%
for the <60% threshold. Despite the choice to consider the
“deletion” threshold at <75%, it should be emphasized that
even with the “lower sensitivity” threshold (<60%), all 11
deletions continue to be detected, although not in their
entire length.

By evaluating all the results, and not just those corresponding
to the MLPA target regions, the deletions described by this tool
comprise an actually larger gene region, as detailed in Table 2
and shown in Supplementary Table 5. Considering the 11
samples, the smallest deletions detected by the CNV pipeline
are covered by two contiguous amplicons: (AMPL7156321442 +
AMPL7156321443) for Sample 11 and (AMPL7155115758 +
AMPL7155115759) for Samples 6, 8, and 10.

CNV Analysis
The algorithm was then applied to the 20 samples (Samples
136–155) negative for the presence of EXT small mutations
(using both the DHPLC/Sanger sequencing and NGS diagnostic
approach) and large deletions/duplications (assessed by MLPA).
The NGS CNV tool detected a potential heterozygous deletion in
Sample 146 mapping outside the MLPA target regions and
partially including the intron 4 and the exon 5 of the EXT2
gene; the deletion has been identified at the amplicon
AMPL7156123427, which was characterized by a 'depth
(norm.):/ average depth (norm.)' ratio ranging from 42.9% to
June 2022 | Volume 13 | Article 874126
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45%, depending on the baseline. The novel EXT2 large deletion—
never detected before—is NG_007560.1:g.44146239_44146376
del, NM_207122.1:c.(744-122)-?_804+?del (Figure 2). To
validate the detection, potential CNV underwent real-time
qPCR; as represented in Figure 3, the deletion has been
confirmed. To further investigate the pathogenicity of the
variant, its investigation was extended by real-time qPCR,
analyzing two relatives of Sample 146, both affected by MO;
the presence of the novel deletion was confirmed (results
described in Figure 3) in both cases. All other potential CNVs
identified were excluded by MLPA or real-time qPCR analyses.
DISCUSSION

Because NGS is increasingly being used in molecular diagnosis,
any gene can be virtually captured and analyzed not only
qualitatively but also quantitatively. In the presence of a
reliable assay to detect quantitative variants (i.e., CNVs), it is
possible to complement or replace traditional methods (i.e.,
Frontiers in Endocrinology | www.frontiersin.org 5
MLPA), overcoming their technical limitations, reducing costs,
and improving diagnosis.

Several bioinformatic tools have been developed to detect
CNVs from NGS data (3, 4, 17, 18); unfortunately, most are
suitable only for whole-genome or whole-exome sequencing data
(4), thus not applicable to targeted gene panel that, however,
represent the common practice in most diagnostic labs. To
facilitate CNVs detection from targeted gene panel, we propose
an “easy-to-use” pipeline based on the average amplicon
coverage normalization to detect exon, multi-exon, and partial-
exon deletions in MO diagnosis, working on NGS data obtained
from a two-gene target panel (12.78 kb in size).

The pipeline was validated by analyzing a retrospective cohort
of 11 CNV-positive control samples, showing a sensitivity of
97.5% when considering amplicons separately (one amplicon
showed a “false negative” result in a deleted region covered by 17
amplicons) and a sensitivity of 100% if we consider that,
however, all 11 deletions have been detected. Furthermore, by
analyzing a cohort of 20 patients with genetically “undiagnosed”
MO, we identified an additional CNV not previously detected by
FIGURE 2 | Novel partial exon 5 deletion detected in EXT2 gene. The deleted amplicon (AMPL7156123427), the contiguous not-deleted amplicon (AMPL7156321488),
and the MLPA probe targeting exon 5 have been reported.
FIGURE 1 | Sensitivity, specificity, and accuracy calculated according to different baseline sample sizes (10, 30, 50, and 100 samples), and different CNV detection
thresholds (<75%, <70%, <65%, and <60%). The adequate threshold value is highlighted by the dashed line. S, samples.
June 2022 | Volume 13 | Article 874126
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MLPA since located in a region not covered by the probes of the
commercial kit; the deleted region includes partial regions of
both intron 4 and exon 5 of EXT2. The new variant
[NM_207122.1: c.(744-122)-?_804+?del] was confirmed by
real-time qPCR and also found in two MO-affected relatives.

Overall, the tool was able to detect different deletion sizes
occurring at both multi-exonic and exonic level, up to the
identification of the novel partial exonic deletion. Unlike the most
used CNV tools, our algorithm allowed to identify deletion up to a
single NGS amplicon, as is the case of the novel detected variant. As
it represents the most challenging aspect (19, 20), the ability to
detect small CNVs in target panel-based data makes the CNV
algorithm reliable in the diagnostic routine. This is true also
considering the high sensitivity, specificity, and accuracy of the
method. Regarding this, considering the <75% threshold for a
“deletion” call, the 97.5% of sensitivity obtained is in line with the
91%–100% of sensitivity described in previous studies (3, 4, 20).
Because the sensitivity does not vary according to the number and
type of samples included in the baseline, a 10-sample–randomly
selected baseline appears to be enough, thus making the pipeline
useful even with few samples available as for the ultra-rare diseases.

In addition, considering specificity (about 96%) and accuracy
(about 96%), our results are in line with other CNV detection
tools (4, 16, 18, 20). To use the pipeline in the clinical field,
limiting the number of false positives makes the diagnosis more
efficient as it reduces the need for further validation analyses,
Frontiers in Endocrinology | www.frontiersin.org 6
thus reducing time and costs. Despite the most of false positives
seems to be systematic errors, since observed in the same regions
across multiple samples, an attempt to optimize the tool was
made by repeating the analyses with a gradually reduced
threshold value (initially set to 75%), below which a “deletion”
is called, reaching up to 60%. According to our data, the best
combination of sensibility, specificity, and accuracy was obtained
with a threshold of <75%–70%, below which the sensitivity is not
acceptable for clinical use. It should be considered that this
evaluation is applicable to the deletion types that we need to
detect in the specific clinical context examined (i.e., exon and
partial-exon deletions). In the case of larger deletion (in the order
of the entire gene), it is recommended to further reduce the CNV
detection threshold to minimize the presence of false positives.

Finally, since not limited by the presence of a few MLPA
probes covering a partial gene region, CNV detection from NGS
data permits a more accurate description of the variants allowing
CNV boundaries to be extended to all involved amplicons. The
possibility of creating NGS panels to analyze any gene—except
for some peculiar gene structure—also makes this tool applicable
to all genes for which an MLPA kit is not available, thus
increasing the variant detection rate in clinical diagnosis.

As only limitations, a coverage-based tool requires high-
quality NGS data especially in terms of “uniformity of
coverage”. On the other side, differently by other tools that
require uniform NGS data sets (20), less attention can be paid
A

B

C

FIGURE 3 | Real-time qPCR results of sample 146 and of MO-affected relatives (Relative 1 and Relative 2). (A) The ddCt values relative to sample 146, Relative 1
and Relative 2. (B) Ratio values relating to the samples investigated with respect to the wild-type control. (C) Amplification curves of both the investigated samples
and the wild-type control.
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to depth data; this is due to the normalization of the coverage
depth (both in query and baseline samples), which does not
require similarity of coverage depth across the samples, also
making the baseline usable with any investigated sample. As
observed in the study, the use of different sample selections does
not affect the sensitivity.

In addition to having demonstrated the ability to replace the
conventional methods (MLPA), at least in our experience, it
must be emphasized as the simplicity of the tool does not require
specialized personnel, as well as software purchase, thus making
it usable—after a careful evaluation to optimize the parameters—
in many diagnostic and research contexts.
CONCLUSIONS

The present study described the use of a simple, free, and easy-to-
use method for detecting CNVs from very small NGS panel data,
able to identify up to partial-exon deletion. The high sensitivity,
specificity, and accuracy provide an alternative diagnostic
approach to traditional MLPA, not always usable and with
technical limitations, whose versatility allows its use in many
research and clinical fields, reducing diagnosis time and costs
and improving the variant detection rate.
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