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tabolomics and 16S rRNA gene
sequencing approach exploring the molecular
pathways and potential targets behind the effects
of Radix Scrophulariae†

Fang Lu,‡a Ning Zhang,‡b Donghua Yu,a Hongwei Zhao,c Mu Pang,c Yue Fan*d

and Shumin Liu *a

To assess the impact of the caecal microbiota on faecal metabolic phenotypes in the presence of Radix

Scrophulariae (Chinese name: Xuanshen), an integrated approach involving 16S rRNA gene sequencing

combined with ultrahigh-performance liquid chromatography/time-of-flight mass spectrometry

(UHPLC/TOF-MS)-based faecal metabolomics was applied to Radix Scrophulariae-treated rats.

Interestingly, Radix Scrophulariae led to significant gut microbiota changes at the phylum and genus

levels in treated rats compared to control rats. Additionally, distinct changes in faecal metabolites,

including linoleic acid (LA), guanosine, inosine, hypoxanthine, xanthine, 4-hydroxycinnamic acid, cholic

acid, N-acetyl-D-glucosamine, L-urobilinogen and uridine, were observed in Radix Scrophulariae-treated

rats. Of these, seven metabolites were up-regulated, and the remaining three metabolites were down-

regulated. Moreover, there were substantial associations between altered levels of gut microbiota genera

and discrepant levels of faecal metabolites, particularly for compounds involved in LA and purine

metabolism. These results demonstrated that the gut microbiota is altered in association with faecal

metabolism following treatment with Radix Scrophulariae. Our findings suggest that further application

of this 16S rRNA gene sequencing and UHPLC/TOF-MS-based metabolomics approach will facilitate the

assessment of the pharmacological action of Radix Scrophulariae and thus expand the scope of this herb.
1. Introduction

Radix Scrophulariae, the dried root of Scrophularia ningpoensis
Hemsl., belongs to the Scrophulariaceae family and has been
used in traditional Chinese medicine (TCM) for thousands of
years. In the Pharmacopoeia of the People's Republic of China
(2015 edition), the species' traditional functions include the
treatment of febrile diseases, constipation, hot eyes, phar-
yngalgia, diphtheria, and scrofula. Modern pharmacological
research has shown that Radix Scrophulariae inhibits ventric-
ular remodelling,1–4 hypoxia-induced microglial activation and
neurotoxicity,5 hypertension and attenuating arteriosclerosis,6
e, Heilongjiang University of Chinese

E-mail: keji-liu@163.com; Fax: +86

ersity of Traditional Chinese Medicine,

e, Harbin 150040, PR China

ry, Heilongjiang University of Chinese

tion (ESI) available. See DOI:

buted equally to this work.

7

proliferation, apoptosis induction in cancer cell lines,7 and
antioxidative activity,8 among other actions. TCM has always
been noted for its multi-component and multi-targeted action
mechanisms, and the gut microbiota is one of its targets. Many
TCM substances are likely to exert therapeutic functions by
altering the structure and metabolism of the gut ora. TCM has
a major inuence on the human microbiota and is suggested to
possess broader prospects for gut ora research. Following
prolonged oral drug use, the gut microbiota and metabolites
may be disturbed aer reaching the gastrointestinal tract.9 In
rats, the caecum is the largest section of the gastrointestinal
tract and contains many microbes per gram that support the
digestion of food under appropriate conditions. The caecal
microbiota is essential for the maintenance of normal rat
physiology. However, few studies have investigated variations in
the caecal microbiota and faecal metabolic phenotypes associ-
ated with Radix Scrophulariae. The intestinal ora may not only
affect the pharmacological effects of Radix Scrophulariae but
also be critical for effective clinical application.

Thus, we rst conducted high-throughput 16S rRNA gene
sequencing to investigate changes in the structure and function
of the caecal microbiota in rats aer treatment with Radix
Scrophulariae. In the context of the relationship between the
This journal is © The Royal Society of Chemistry 2019

http://crossmark.crossref.org/dialog/?doi=10.1039/c9ra03912k&domain=pdf&date_stamp=2019-10-16
http://orcid.org/0000-0003-2880-3254


Paper RSC Advances
gut microbiota and host metabolic phenotypes, it is possible to
address the question of how microbial communities affect
metabolic functions using non-targeted metabolomics. Faecal
metabolomics reveal not only the relationship between genes
and phenotypes and permit the monitoring and inference of
gene function but also a symbiotic relationship between the
host and intestinal ora. Therefore, ultrahigh-performance
liquid chromatography/time-of-ight mass spectrometry
coupled with pattern recognition detection methods was per-
formed to investigate potential metabolites and metabolic
pathways involved in Radix Scrophulariae usage. Reports
describing faecal metabolic proles are scarce, and no infor-
mation is available regarding changes in faecal metabolic
phenotypes associated with Radix Scrophulariae. Thus, it is very
important to assess alterations in gut microbiota-related faecal
metabolic phenotypes to further understand the pharmacolog-
ical effect of Radix Scrophulariae.

In this study, normal rats were treated with Radix Scrophu-
lariae to explore the role of the gut microbiota and the under-
lying metabolic mechanisms associated with Radix
Scrophulariae use. Both 16S rRNA gene sequencing and
UHPLC/TOF-MS-based faecal metabolomics10 were applied to
analyse the gut microbiota and faecal metabolic phenotype
changes in Radix Scrophulariae-treated rats.
2. Materials and methods
2.1. Reagents and biochemicals

HPLC-grade acetonitrile was purchased from Fisher Scientic
(Pittsburgh, PA). Puried water (18.2 MU) was prepared using
a Milli-Q water purication system (Millipore, USA). Formic
acid, ammonium formate and leucine-enkephalin were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Agarose
(75510-019) and a Quant-iTPicoGreen dsDNA Assay Kit were
purchased from Invitrogen (Shanghai, China). Ethidium
bromide stock solution (EX328-5 mL) was purchased from
Biological Engineering Co., Ltd. (Shanghai). A DNA Isolation Kit
(12888) was obtained from MoBioPowerSoil®. A DNA Gel
Extraction kit was obtained from AxygenAxy Prep. A DNA LT
Sample Prep Kit (FC-121-4001 or FC-121-4002) was obtained
from TruSeq Nano. A Quant-iTPicoGreen dsDNA Assay Kit
(P7589) was purchased from Invitrogen. An Agilent High
Sensitivity DNA Kit (5067-4626) was purchased from Agilent. A
MiSeq Reagent Kit v2 (600-cycles-PE) (MS-102-3003) was
acquired from Illumina.
2.2. Plant material and extract preparation

The natural medicinal materials in the root of Scrophularia
ningpoensis Hemsl. Radix Scrophulariae were acquired from the
Heilongjiang Province Drug Company (Harbin, PR China). The
voucher specimen (hlj-20120623012) of the herb was authenti-
cated by Prof. Zhenyue Wang of the Department of Resources
and Development of TCM at Heilongjiang University of Tradi-
tional Chinese Medicine, and it met the standards of the
“Pharmacopoeia of the People's Republic of China (2015
edition)”, page 117.
This journal is © The Royal Society of Chemistry 2019
Two kilograms of dried Radix Scrophulariae roots were
crushed and extracted with petroleum ether (1.2 L � 2) for 12 h
per treatment, and the combined extract solutions were
concentrated in vacuo to give 8.5 g of fatty oil extracts of Radix
Scrophulariae. The drug residue was extracted with 10 and 8
volumes of boiling water under reux condensation for 1.5 h
each. The combined extracts were freeze-dried to yield a residue
of 1.014 kg (50.7%), which constituted the aqueous extract of
Radix Scrophulariae. The ngerprints of this aqueous extract
were determined by performing UHPLC (Fig. 1). A Waters 2695
Acquity™ UHPLC (consisting of a vacuum degasser, auto
sampler, binary pump, PAD-DAD detector and oven) was
equipped with a Spursil™ C18 column (250 mm � 4.6 mm, i.d.
5 mm, Waters Corp., Milford, USA). The mobile phase was
composed of acetonitrile (A) and water (B) with 0.17% acetic
acid. The ow rate was set at 0.8 mLmin�1. The gradient elution
conditions were: 1% A, 0–5 min; 1–2% A, 5–6 min; 2–5% A, 6–
20 min; 5–30% A, 20–40 min; and 30–60% A, 40–55 min. The
detection wavelength was 190–600 nm. The column tempera-
ture was set to 30 �C.

2.3. Rats and treatments

Thirty male Sprague-Dawley rats (healthy male rats), weighing
200 � 20 g, were purchased from the Liaoning Changsheng
Biotechnology Co., Ltd. (PR China) (animal certicate no.: SCXK
[Liao] 2015-0001). Rats were given a standard diet and free
access to water and kept in metabolic cages (one animal per
cage) with constant temperature (21–23 �C) and humidity (40–
50%) in controlled rooms and a 12 h/12 h light/dark cycle. Aer
acclimatization for two weeks, rats were used for experiments.
This study was performed in strict accordance with the recom-
mendations of the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health. The protocol was
approved by the Committee on the Ethics of Animal Experi-
ments of the College of Pharmacy of Heilongjiang University of
Chinese Medicine.

Twenty rats were randomly divided into two groups: a control
group and an aqueous extract of Radix Scrophulariaegroup (n ¼
10 per group). Rats in the Radix Scrophulariae group received
the aqueous Radix Scrophulariae extract (1350 mg of crude drug
per kg, i.g.) once per day for 15 days, and the control group rats
received the same volume of 0.9% saline once daily for 15 days.

2.4. Faecal metabolomics

2.4.1 Faecal sample preparation. Faecal pellets were ob-
tained from each rat in the Radix Scrophulariae and control
groups aer baseline and the 1st, 3rd, 5th, 7th, 9th, 11th, 13th and
15th days post-treatment. Then, 300 mg of freeze-dried faecal
pellets were dissolved in 2.7 mL of chilled methanol and vor-
texed for 3 min followed by ultrasonication for 15 min. The
faecal suspension was centrifuged twice at 15 000g for 15 min at
4 �C. Supernatants were obtained and stored at 4 �C for UHPLC/
TOF-MS analysis.

2.4.2 UHPLC/TOF-MS analysis. A Waters Acquity™ UHPLC
(consisting of a vacuum degasser, autosampler, binary pump,
photodiode array detector, and oven) was equipped with an
RSC Adv., 2019, 9, 33354–33367 | 33355



Fig. 1 Fingerprint chromatograms of the aqueous extract of Radix Scrophulariae, which include (A), angoroside C (B), harpagoside (C) and
cinnamic acid (D).
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ACQUITY UHPLC® BEH C18 column (2.1 mm � 50 mm, i.d. 1.7
mm, Waters Corp). The analytical column was maintained at
a temperature of 40 �C, and the mobile phase consisted of
33356 | RSC Adv., 2019, 9, 33354–33367
acetonitrile (A) and water (B), each containing 0.05% formic
acid. A solvent gradient system was used: 2–100% A for 10 min;
100% A from 10 to 12 min; 100–2% A from 12–13 min; and 2% A
This journal is © The Royal Society of Chemistry 2019
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for 2 min. The ow rate was 0.4 mL min�1, and the injection
volume was 2 mL. The eluent was introduced to the MS directly
without a split.

MS analysis was performed on a TOF analyser in the SYNAPT
HDMS system (Waters Corporation) in positive ion mode
(capillary voltage, 1300 V; sample cone voltage, 60 V; source
temperature, 110 �C; desolvation temperature, 350 �C; des-
olvation gas ow, 750 L h; cone gas ow, 20 L h�1) and negative
ion mode (capillary voltage, 1500 V; sample cone voltage, 70 V;
source temperature, 110 �C; desolvation temperature, 350 �C;
desolvation gas ow, 750 L h; cone gas ow, 20 L h�1). MS data
were collected in full scan mode from m/z 100–1500. All data
were acquired using an independent reference lock mass via the
LockSpray™ interface to ensure accuracy and reproducibility
during MS analysis. Leucine-encephalin was used as the refer-
ence ion for the positive ionmode ([M + H]+¼ 556.2771) and the
negative ionmode ([M�H]�¼ 554.2615) at a concentration of 1
ng mL�1 under a ow rate of 30 mL min�1. The data were
collected in centroid mode, and the Lock Spray frequency was
set at 15 s and averaged over ve scans for correction.

2.4.3 Data processing andmultivariate analysis. The UPLC-
TOF/MS system provides precise molecular mass data for the
mass spectrum peaks corresponding to different ions. These
data are rst used to determine the molecular weight of
metabolites. Aer samples were tested, data were imported into
Progenesis QIV3.0.1 (Waters Corporation, 2015) which was used
to perform alignment and peak picking. Our research team
developed a metabolomic data calibration tool (MDCT) based
on Pooled Quality Control (PQC) strategy for calibration and
integration of metabolomics data. This strategy greatly
improves the quality of PQC by properly pre-processing the
mixed sample quality control. The corrected data set can be
used directly for subsequent statistical analysis.

Conrmation of the compounds was performed by the
parameters, including “Score”, “Fragmentation score” and
“Isotope similarity” given by Progenesis QI. “Score” ranging
from 0 to 100, is used to quantify the reliability of each identity.
According to the score results of the reference standards, the
threshold was set at 35.0. “Fragmentation score” represents the
matching degree between the theoretical fragments and the
measured ones. The fragmentation score of 0 indicates no
match occurs or the compound generates no fragments.
“Isotope similarity” is calculated by comparison of the
measured isotope distribution of a precursor ion with the
theoretical. Databases such as HMDB (http://www.hmdb.ca/)
version 4.0 and MassBank (http://www.massbank.jp/) system
version 2.0 were used for conrmation.11,12 Metabolic pathway
analysis was performed with Metabo-Analyst Pathway Analysis
(http://www.metaboanalyst.ca/Metabo-Analyst/) and Cytoscape
soware (version 3.4.0) based on database sources, including
KEGG (http://www.genome.jp/kegg/), SMPDB (http://
www.smpdb.ca/), Progenesis Metascope, and HMDB, to iden-
tify, analyse and visualize the affected metabolic pathways. A
relative mass error of 5 ppm was used for theoretical fragmen-
tation. The normalized data were exported to Ezinfo 2.0 so-
ware for orthogonal projection to perform principal component
analysis (PCA), orthogonal to the partial least squares-
This journal is © The Royal Society of Chemistry 2019
discriminate analysis (OPLS-DA) and 2D-PCA. PCA and 2D-
PCA was applied to assess whether the Radix Scrophulariae
group and normal controls were separated. OPLS-DA was
employed to characterize metabolic perturbation induced by
Radix Scrophulariae. In the OPLS-DA model, variable impor-
tance (VIP) > 1 and standard S plots were generated to select
potential biomarkers for Radix Scrophulariae treatment.
Student's t-test was used for statistical analysis to evaluate
signicant differences between potential intervention targets.
An analysis of variance (ANOVA) p-value # 0.05 indicated that
the effects of potential biomarkers in different experimental
groups were signicant. A multivariate data matrix consisting
the retention time, m/z, ANOVA (p), compound ID, adducts,
score, fragmentation score, isotope similarity, theoretical
isotope distribution, q value, max fold change and intensity (via
the peak area normalized to protein concentration) for each ion
was analysed using Ezinfo soware (Waters).
2.5. 16S rRNA microbial diversity analysis

2.5.1 Caecal sample preparation. An additional 5 rats,
except for those in the control group (0.9% saline, i.g., n ¼ 5),
were treated with the aqueous extract of Radix Scrophulariae
(1350 mg of crude drug per kg, n ¼ 5) daily for 11 consecutive
days at 1 mL/100 g body weight. The rats were subjected to
intraperitoneal anaesthesia with 1% sodium pentobarbital
(0.15 mL/100 g body weight), and all efforts were made to
minimize suffering. The contents of the caecum were collected
24 h aer the 11th day following administration. A total of 10
content samples were immediately frozen in liquid nitrogen
and stored at �80 �C until further use.

2.5.2 Data analysis. Total microbial genomic DNA samples
were extracted using the DNeasyPowerSoil Kit (QIAGEN, Inc.,
Netherlands), following the manufacturer's instructions, and
stored at �20 �C prior to further analysis. The quantity and
quality of extracted DNAs weremeasured using a NanoDrop ND-
1000 spectrophotometer (Thermo Fisher Scientic, Waltham,
MA, USA) and agarose gel electrophoresis, respectively.

PCR amplication of the bacterial 16S rRNA gene V4 region
was performed using the forward primer, 520F (50-barcode +
AYTGGGYDTAAAGNG-30), and the reverse primer, 802R (50-
TACNVGGGTATCTAATCC-30). Sample-specic 7-bp barcodes
were incorporated into the primers for multiplex sequencing.
The PCR components contained 5 mL of Q5 reaction buffer (5�),
5 mL of Q5 High-Fidelity GC buffer (5�), 0.25 mL of Q5 High-
Fidelity DNA Polymerase (5 U per mL), 2 mL (2.5 mM) of
dNTPs, 1 mL (10 mM) of each forward and reverse primer, 2 mL of
DNA template, and 8.75 mL of ddH2O. Thermal cycling con-
sisted of initial denaturation at 98 �C for 4 min, followed by 25
cycles consisting of denaturation at 98 �C for 30 s, annealing at
50 �C for 30 s, and extension at 72 �C for 30 s, with a nal
extension of 5 min at 72 �C. PCR amplicons were puried with
Agencourt AMPure Beads (Beckman Coulter, Indianapolis, IN)
and quantied using the PicoGreen dsDNA Assay Kit (Invi-
trogen, Carlsbad, CA, USA). Aer the individual quantication
step, amplicons were pooled in equal amounts, and paired-end
2 � 300 bp sequencing was performed using the Illumina
RSC Adv., 2019, 9, 33354–33367 | 33357
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MiSeq platform with MiSeq Reagent Kit v3 at Shanghai Personal
Biotechnology Co., Ltd. (Shanghai, China).

The Quantitative Insights Into Microbial Ecology (QIIME,
v1.8.0) pipeline was employed to process the sequencing data,
as previously described.13 Briey, raw sequencing reads with
exact matches to the barcodes were assigned to respective
samples and identied as valid sequences. The low-quality
sequences were ltered through the following criteria:14,15

sequences that had a length of <150 bp, sequences that had
average Phred scores of <20, sequences that contained ambig-
uous bases, and sequences that contained mononucleotide
repeats of >8 bp. Paired-end reads were assembled using
FLASH.16 Aer chimaera detection, the remaining high-quality
sequences were clustered into operational taxonomic units
(OTUs) at 97% sequence identity by UCLUST.17 A representative
sequence was selected from each OTU using default parame-
ters. OTU taxonomic classication was conducted by BLAST
searching of the representative sequences set against the
Greengenes Database18 using the best hit.18

An OTU table was further generated to record the abundance
of each OTU in each sample and the taxonomy of these OTUs.
OTUs containing less than 0.001% of total sequences across all
samples were discarded. To minimize the difference of
sequencing depth across samples, an averaged, rounded rare-
ed OTU table was generated by averaging 100 evenly resampled
OTU subsets under the 90% of the minimum sequencing depth
for further analysis.

Sequence data analyses were mainly performed using QIIME
and R packages (v3.2.0). OTU-level alpha diversity indices, such
as the Chao1 richness estimator, abundance-based coverage
estimator (ACE) metric, Shannon diversity index, and Simpson
index, were calculated using the OTU table in QIIME. OTU-level
ranked abundance curves were generated to compare the rich-
ness and evenness of OTUs among samples. Beta diversity
analysis was performed to investigate the structural variation of
microbial communities across samples using UniFrac distance
metrics19,20 and visualized via principal coordinate analysis
(PCoA), nonmetric multidimensional scaling (NMDS) and
unweighted pair-group method with arithmetic means
(UPGMA) hierarchical clustering.21

Differences in the UniFrac distances for pairwise compari-
sons among groups were determined using Student's t-test and
the Monte Carlo permutation test with 1000 permutations and
visualized through box-and-whiskers plots. PCA was also con-
ducted based on the genus-level compositional proles.21 The
signicance of the differentiation of microbiota structures
amongst the groups was assessed by permutational multivariate
analysis of variance (PERMANOVA) and analysis of similarities
ANOSIM22,23 evaluations using the R package “vegan”. The
taxonomy compositions and abundances were visualized using
MEGAN24 and GraPhlAn.25 A Venn diagram was generated to
visualize the shared and unique OTUs among samples or
groups using the R package “VennDiagram” based on the
occurrence of OTUs across samples/groups regardless of their
relative abundance.26 Taxa abundances at the phylum, class,
order, family, genus and species levels were statistically
compared among samples or groups by Metastats,27 and
33358 | RSC Adv., 2019, 9, 33354–33367
visualized as violin plots. Linear discriminant analysis effect
size (LEf Se) analysis was performed to detect differentially
abundant taxa across groups using the default parameters.28

Partial least squares discriminant analysis (PLS-DA) was also
introduced as a supervised model to reveal the microbiota
variation among groups using the “plsda” function in the R
package “mixOmics”.29 Random forest analysis was applied to
discriminate the samples from different groups using the R
package “randomForest” with 1000 trees all the default
settings.30 The generalization error was estimated using 10-fold
cross-validation. The expected “baseline” error was also
included, which was obtained by a classier that simply
predicts the most common category label. Co-occurrence anal-
ysis was performed by calculating Spearman's rank correlations
between the predominant taxa. Correlations with |RHO| > 0.6
and p < 0.01 were visualized as a co-occurrence network using
Cytoscape.31 Microbial functions were predicted by phyloge-
netic investigation of communities by reconstruction of unob-
served states (PICRUSt), based on high-quality sequences.32
3. Results
3.1. Faecal metabolic proling of rats treated with Radix
Scrophulariae

3.1.1 Trajectory changes over time in normal rats treated
with Radix Scrophulariae. PCA was rst performed to investi-
gate trajectory changes over time in normal rats treated with
Radix Scrophulariae (Fig. 2A). The metabolic phenotype of the
faecal supernatant on the rst day was similar to that on day 0.
Beginning on the third day, the metabolic phenotype of rat
faeces gradually deviated from that of day 0, such that the
greatest distance was observed between the 11th day and day 0.
Interestingly, the distance observed by the 13th day gradually
reached that of day 0, and the metabolic phenotypes on the 15th

day mostly overlapped with those of day 0, which indicated that
the rats given Radix Scrophulariae for 15 days had become
resistant to the herb. Next, 2D-PCA was performed to sharpen
the already established (weak) separation between the groups
identied by PCA to investigate the effects of treating normal
rats with Radix Scrophulariae for eleven days (Fig. 2B and C).
The results indicated that the samples separated into two
blocks, thus improving our efforts to discover potential targets
and suggesting that biochemical agitation was signicant in the
Radix Scrophulariae-treated group.

3.1.2 Multivariate data analysis. S plots is a tool for visu-
alizing the covariance and correlation between metabolites and
model categories. Those ions that deviate from the origin hel-
ped show that the two groups were signicantly clustered. S-
plots correspond to VIP statistics. VIP values represent the
effect of metabolites on clustering. VIP > 1 indicates that these
variables have an above-average effect on clustering. VIP values
> 1 in the S and VIP plots (Fig. 2D–G) were far from the origin,
and p # 0.05 was selected for further chemical structure iden-
tication. Ten potential biomarkers were screened from the
faecal samples, of which seven metabolites were upregulated by
Radix Scrophulariae and three were downregulated by
This journal is © The Royal Society of Chemistry 2019



Fig. 2 (A) PCA plot of the faecal metabolic trajectory of rats at different time points before and after the administration of Radix Scrophulariae. A
2D-PCA plot based on data from the control and Radix Scrophulariae groups at day 11 in positive (B) and negative (C) ionmode. S and VIP plots of
faecal samples from the control and Radix Scrophulariae groups in both positive (D and F) and negative (E and G) ion modes. K represents the
control group; g represents the Radix Scrophulariae group. The points in Fig. 2A represent control and Radix Scrophulariae group samples. Q
and g in Fig. 2B represent the Radix Scrophulariae group, and k in Fig. 2B represents the control group.

This journal is © The Royal Society of Chemistry 2019 RSC Adv., 2019, 9, 33354–33367 | 33359
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comparing the peak areas of these potential biomarkers (Fig. 3A
and B and Table S1†).

Ten metabolites were used as potential biomarkers for
control rats. The pathways were enriched and analysed using
MetaPA recognition to ensure that metabolic pathways were
associated with metabolites. The critical value for each meta-
bolic pathway was set to 0.05. If the value was greater than 0.05,
then the pathway was chosen as a key metabolic pathway (Fig. 4
and Table S2†). Further analysis of pathways and networks
inuenced by Radix Scrophulariae was performed using
MetaboAnalyst and Cytoscape soware (Fig. 4B), which revealed
that the potential intervention targets in the faecal samples
were primarily responsible for LA and purine metabolism.
Among them, the potential biomarker involved in LA metabo-
lism was LA, and the markers involved in purine metabolism
were guanosine, inosine, hypoxanthine and xanthine.
3.2. Gut microbiota changes in rats treated with Radix
Scrophulariae

3.2.1 Bacterial community structure. Based on 97% species
similarity, 1598 OTUs were present in the control group at the
phylum level, 1598 at the class level, 1597 at the order level, 1206
Fig. 3 Ion intensity of potential biomarkers in different faecal sample gro
each group). *Altered trend compared to the control group, p < 0.05; *

33360 | RSC Adv., 2019, 9, 33354–33367
at the family level, 597 at the genus level and 78 at the species
level (Fig. 5A). In the Radix Scrophulariae group, there were
1487 OTUs at the phylum level, 1487 at the class level, 1486 at
the order level, 1120 at the family level, 542 at the genus level,
and 62 at the species level (Fig. 5A). At the phylum level, the
caecal bacteria in the control group belonged to 1598 OTUs, of
which 1357 overlapped with the Radix Scrophulariae group, 241
were unique to the control group, and 130 were in the Radix
Scrophulariae group (Fig. 5B). The Radix Scrophulariae group
contained a fewer total OTUs than the control group, indicating
that Radix Scrophulariae reduces the number of OTUs in the
caecal microbiota of healthy rats.

3.2.2 Taxonomic analysis of caecal ora. At the phylum
level, the caecal bacteria in the control and Radix Scrophulariae
groups belonged to 13 phyla, of which Radix Scrophulariae
reduced Bacteroidetes by 60% (from 20 to 12%) and increased
Firmicutes from 68 to 81%. Radix Scrophulariae decreased the
remaining phyla from 12 to 9%; of these, Radix Scrophulariae
increased Actinobacteria by 67% (from 1 to 3%) and Proteo-
bacteria by 20% (from 5 to 6%) (Fig. 5C).

At the genus level, the Prevotella levels decreased the most,
followed by Ruminococcus. The remaining nine groups showed
ups (A and B). Data represent the mean � SE of each group (n ¼ 10 in
*altered trend compared to the control group, p < 0.01.

This journal is © The Royal Society of Chemistry 2019



Fig. 4 Pathway analysis of metabolites regulating metabolism and metabolic pathway analysis of potential intervention targets of Radix Scro-
phulariae. Elliptical nodes represent pathways, rectangle nodes represent metabolites (red: upregulation, green: downregulation), and diamond
nodes represent Radix Scrophulariae. Black edges represent the relationships between the metabolites and pathways, and red edges represent
possible relationships between Radix Scrophulariae and metabolites.
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minor decreases: Corynebacterium, Dehalobacterium, Bre-
vundimonas, Rhodococcus, Enhydrobacter, Neisseria, Fla-
vobacterium, Acinetobacter and Anaerobiospirillum. The most
interesting Radix Scrophulariae groups demonstrating signi-
cant increases were Butyricimonas, Rothia, Lactococcus, Geo-
bacillus, Burkholderia, Odoribacter, Zea and
Sediminibacterium (Table S3†).
This journal is © The Royal Society of Chemistry 2019
3.3. Correlation between gut microbiota and faecal
metabolic phenotypes

To explore the functional relationship between altered gut
microbiota and disturbed faecal metabolites, we formulated
three correlation matrices based on Pearson's correlation coef-
cients. A clear correlation (r > 0.5 or r < �0.5, p < 0.05) was
observed between the gut microbiota and faecal metabolic
RSC Adv., 2019, 9, 33354–33367 | 33361



Fig. 5 OTUs of all levels (A and B) are represented by a Venn diagram of the OTUs at the phylum level and a bar chart of the taxon abundance at
the phylum level (C). Each ellipse represents a group, and overlapping regions of the ellipses indicate that OTUs are shared by groups. The
number in each block indicates the number of OTUs contained in each group or the number of uniqueOTUs. k represents the control group, and
SQ represents the Radix Scrophulariae group.
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phenotypes (Fig. 6A). In particular, correlations were found
between gut microbiota-related faecal metabolites and specic
gut bacteria (rrr > 0.8): the main pathways were purine and LA
33362 | RSC Adv., 2019, 9, 33354–33367
metabolism (Fig. 6B and C). The metabolites involved in purine
metabolism were guanosine, hypoxanthine, xanthine and ino-
sine. LA was primarily involved in LA metabolism. Guanosine
This journal is © The Royal Society of Chemistry 2019



Fig. 6 (A) Correlation of specific gut bacteria and gut microbiota-related faecal metabolites. (B) Metabolic pathway analysis of metabolites and
genera in the Radix Scrophulariae-treated group. Diamond nodes represent metabolites, ellipse nodes represent pathways and round rectangles
represent genera (red: upregulation, green: downregulation). Red edges represent positive correlations between metabolites and genera, while
green edges represent negative correlations between metabolites and genera. (C) Correlation between gut microbiota genera, perturbed
metabolites and the most relevant metabolic pathways. Pink rectangle nodes represent metabolites. The levels of potential biomarkers in the
Radix Scrophulariae group compared to the control group were labelled with (Y) for downregulation and ([) for upregulation.
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displayed strong negative correlations with Burkholderia and
Anaerobiospirillum. Hypoxanthine displayed strong positive
correlations with Rhodococcus and Lactococcus but negative
This journal is © The Royal Society of Chemistry 2019
correlations with Odoribacter and Facklamia. Xanthine dis-
played a strong positive correlation with Neisseria and a nega-
tive correlation with Lactobacillus. However, Neisseria,
RSC Adv., 2019, 9, 33354–33367 | 33363
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Corynebacterium, Ruminococcus, Enhydrobacter, Lactoba-
cillus, Lactococcus, Acinetobacter and Sediminibacterium
exhibited signicantly positive correlations with inosine. LA
displayed strong negative correlations with Lactobacillus and
Lactococcus and positive correlations with Brevundimonas,
Dehalobacterium, Enhydrobacter, Acinetobacter and Anaero-
biospirillum. In summary, Radix Scrophulariae altered the
structure and composition of the gut microbiota and substan-
tially altered the faecal metabolic phenotype.

4. Discussion

An integrated 16S rRNA gene sequencing and UHPLC/TOF-MS-
based metabolomics approach10 was performed to explore the
impact of Radix Scrophulariae on the gut microbiota and faecal
metabolic phenotype. The results demonstrated signicant
differences in abundance among phyla and genera in the gut
microbial community; meanwhile, the host metabolic prole
also changed following Radix Scrophulariae treatment.
Furthermore, the altered gut microbiota revealed signicant
correlations with faecal metabolites, suggesting that Radix
Scrophulariae not only alters the gut microbiota but also affects
the host faecal metabolic phenotypes. These ndings may
provide new insight into the novel pharmacological actions of
Radix Scrophulariae and facilitate a greater understanding of
the role of the gut microbiota and how it is modulated by this
herb.

The results of this study revealed that the performances of
both Bacteroidetes (12%) and Firmicutes (81%) were consistent
with the theory that more than 90% of these phyla are present in
the distal caecal ora.33 Moreover, variations in genera,
including signicantly attenuated levels of Butyricimonas,
Rothia, Facklamia, Lactococcus, Geobacillus, Burkholderia,
Odoribacter, Zea and Sediminibacterium, were observed in the
Radix Scrophulariae-treated rats, and other genera were signif-
icantly reduced. To the best of our knowledge, however, these
genera have not been reported in association with either human
or animal models. Therefore, further studies are warranted to
explore the roles of these bacteria in the pharmacological action
of Radix Scrophulariae.

Recently, the metabolomics of faecal samples indicated
a correlation between changes in metabolic phenotypes and the
gut microbiota. The present study revealed that the faecal
metabolic prole of Radix Scrophulariae rats was signicantly
different from that of normal controls. Additionally, a total of
ten faecal metabolites, primarily involved in LAmetabolism and
purine metabolism, were identied as biomarkers of the phar-
macological activity of Radix Scrophulariae.

In this study, LA levels and the number of Lactobacillus
species present in the rat gut were upregulated by Radix Scro-
phulariae. Lactobacillus has previously been reported to convert
LA into conjugated LA (CLA),34 an isomer of LA that has many
benecial effects on diseases, such as cancer, atherosclerosis,
hypertension and diabetes.35 Lactobacillus demonstrates
a variety of healthcare-related functions, including improved
intestinal ora levels, reduced cancer risk,36 promotion of
digestion, antiaging properties and disease prevention.37 Radix
33364 | RSC Adv., 2019, 9, 33354–33367
Scrophulariae likewise exerts anti-atherosclerosis,38 anticancer,7

and antioxidant8 effects and protects the cardiovascular
system,2–4,6 indicating that Radix Scrophulariae may induce the
combined effects of CLA and Lactobacillus to regulate intestinal
microecology.

Guanosine, hypoxanthine, xanthine and inosine levels in the
faecal supernatant were elevated by Radix Scrophulariae.
Guanosine plays a neuroprotective role in the central nervous
system by inhibiting glutamate neurotransmission.39 Equal
numbers of neurons are present in the gut and the brain, and
the neurotransmitters and metabolic pathways used by these
two groups are nearly identical. Communication between the
two centres is frequent, with a greater incidence of communi-
cation between neurons of the intestine to the brain than in the
reverse direction. A “bacterial-gut-brain axis” has been observed
between the intestine and brain that is responsible for this
interaction.40 Radix Scrophulariae is useful for the treatment of
Alzheimer's disease41 due to the involvement of the intestinal
ora. Inosine is degraded to hypoxanthine by the purine
nucleoside phosphorylase, oxidized to xanthine and eventually
converted to uric acid, which is then excreted.42 The phenyl-
propanoid glycoside acteoside of Scrophularia ningpoensis has
hypouricemic effects,43 possibly due to the Radix Scrophularia-
mediated promotion of uric acid excretion through increased
levels of inosine, hypoxanthine and xanthine.

The study of metabolic pathways and biaomarkers is crucial
to elucidate the pathological mechanism44–50 and might provide
insight into the characteristics for pharmacological effects.51–58

Gut microbiota is a functioning organ that can became signals
for biological communication.59–62 Here, we observed a signi-
cant correlation between gut microbiota genera and faecal
metabolites via Pearson's correlation analysis. Of particular
interest, LA metabolism changes displayed strong positive
correlations with Brevundimonas, Dehalobacterium, Enhy-
drobacter, Acinetobacter and Anaerobiospirillum species and
negative correlations with Lactobacillus and Lactococcus. The
purine metabolism of hypoxanthine displayed positive correla-
tions with Rhodococcus and Lactococcus and negative correla-
tions with Odoribacter and Facklamia species. Xanthine
metabolism displayed a strong positive correlation with Neis-
seria species and a negative correlation with Lactobacillus
species. Interestingly, Neisseria, Corynebacterium, Rumino-
coccus, Enhydrobacter, Lactobacillus, Lactococcus, Acineto-
bacter and Sediminibacterium exhibited signicant positive
correlations with inosine, while the purine metabolism of
guanosine displayed strong negative correlations with Bur-
kholderia and Anaerobiospirillum species. These ndings
suggest that the increased purine and LA metabolism are
closely related to gut microbiota functions. Therefore, our
results further conrmed that variations in the gut microbiota
and faecal metabolic phenotypes are associated with the phar-
macological activity of Radix Scrophulariae.

5. Conclusions

UHPLC/TOF-MS and 16S rRNA gene sequencing-based metab-
olomics were combined to assess the effects of Radix
This journal is © The Royal Society of Chemistry 2019
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Scrophulariae on the gut microbiota and faecal metabolic
phenotype. Our results showed that Radix Scrophulariae
signicantly altered not only the gut microbiota composition
but also the faecal metabolic phenotype. In addition, correla-
tion analysis revealed that certain altered gut microbiota genera
were strongly correlated with altered faecal metabolites. Overall,
these ndings indicate that Radix Scrophulariae not only alters
the gut microbiota at the abundance level but also alters host
metabolic homeostasis. Therefore, regulated gut microbiota-
related metabolites may be potential biomarkers for probing
the functional effects of Radix Scrophulariae.
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