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American hantaviruses cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses
nonlytically infect endothelial cells and cause dramatic changes in barrier functions of the endothelium without disrupting the
endothelium. Instead hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier
functions of capillaries. The endothelium of arteries, veins, and lymphatic vessels is unique and central to the function of vast
pulmonary capillary beds, which regulate pulmonary fluid accumulation. The endothelium maintains vascular barrier functions
through a complex series of redundant receptors and signaling pathways that serve to both permit fluid and immune cell efflux
into tissues and restrict tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to alter capillary
permeability but also defines potential therapeutic targets for regulating acute pulmonary edema and HPS disease. Here we discuss
interactions of HPS causing hantaviruses with the endothelium, potential endothelial cell-directed permeability mechanisms, and
therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease.

1. Introduction

Hantaviruses predominantly infect microvascular endothe-
lial cells (ECs), which line vessels and nonlytically cause two
vascular diseases: hemorrhagic fever with renal syndrome
(HFRS) and hantavirus pulmonary syndrome (HPS) [1–
14]. The mechanisms by which hantaviruses cause capillary
leak syndromes and disrupt fluid barrier integrity of the
endothelium are beginning to be disclosed and appear to
involve dysregulating EC functions that normally limit fluid
leakage from the vasculature [6, 15–21].

Capillaries, veins, and lymphatic vessels are lined by
a single layer of ECs which collectively form one of the
largest tissues of the body [22, 23]. The endothelium forms a
primary fluid barrier within vessels but serves as more than
just a conduit for blood to reach and return from organs [22,
24]. The endothelium selectively restricts blood and plasma
from entering tissues, regulates immune cell infiltration, and
responds to damage by limiting leakage, repairing vessels,
and directing angiogenesis [22]. Consequently, capillary

barrier integrity is redundantly regulated by an array of
EC-specific effectors that coordinately balance vascular fluid
containment with tissue-specific needs and respond to a
host of systemic and locally generated factors that alter
inter-endothelial cell adherence junctions [22, 25–37]. ECs
respond to activated platelets and immune cells, clotting
cascades, chemokines and cytokines, growth factors, nitric
oxide, and hypoxic conditions [22, 27, 29, 38–41]. However,
ECs also secrete cytokines, complement and growth factors
that positively or negatively impact the adherence and acti-
vation of platelets and immune cells, regulate responses to
hypoxia, and diminish or enhance extravasation of fluid into
tissues [22, 24, 26, 27, 30, 40–45]. Each of these EC responses
is controlled by a diverse mesh of intertwined sensors and
signals aimed at returning the endothelium to a resting state,
countering permeabilizing effectors, repairing vessel damage,
and restoring fluid and oxygenation levels within tissues
[22, 25, 39, 41, 46–51].

The endothelium of capillaries, veins, and lymphatic
vessels are unique and central to discrete functions of vast
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renal and pulmonary capillary beds [42, 52–54]. Nonlytic
viral infection of ECs may disengage one or more fluid
barrier regulatory mechanisms, thereby increasing vascular
leakage or fluid clearance and as a consequence result in
tissue edema [55–60]. Although the edematous accumula-
tion of interstitial fluids can result from increased endothelial
permeability, a decrease in lymphatic vessel clearance of
tissue fluids is also a cause of edema and regulated by
unique lymphatic endothelial cells (LECs) [42, 53, 54, 61].
Vascular permeability induced by nonlytic viruses is likely
to be multifactorial in nature, resulting from virally altered
EC responses, immune cell and platelet functions, hypoxia,
or a collaboration of dysregulated interactions that impact
normal fluid barrier function [15–18, 20, 27, 62–64]. Failure
of the endothelium to regulate fluid accumulation in tissues
has pathologic consequences and during HPS results in
localized vascular permeability and acute pulmonary edema
that contribute to cardiopulmonary insufficiency [4–6, 9].
Here we focus on the mechanisms by which HPS causing
hantavirus infection of ECs induces vascular permeability
and acute edema and discuss potential therapeutic mecha-
nisms that may stabilize the endothelium.

2. Hantavirus Infection and HPS Disease

Hantaviruses are enveloped, tripartite, negative-sense RNA
viruses and form their own genus within the Bunyaviridae
family [14, 65]. Hantaviruses are the only members of the
Bunyaviridae that are transmitted to humans by mammalian
hosts, and hantaviruses contain highly divergent RNA and
protein sequences, which are likely the result of coadaptation
with their hosts [13, 14, 66–68]. Single genes have been
exchanged between closely related HPS causing hantaviruses
[69]; however, gene reassortment has not permitted the
discovery of pathogenic determinants and reverse genetics
approaches have thus far proven elusive.

The hantavirus genome consists of three segments
denoted S, M, and L based on the length of their RNA
segments, respectively [14]. The L segment encodes the
250 kDa RNA-dependent RNA polymerase [14, 67, 70]. The
S segment encodes a 48 kDa nucleocapsid (N) protein which
is the most abundant hantavirus antigen present in infected
cells [14, 70, 71]. The M segment encodes two viral surface
glycoproteins Gn (64 kDa) and Gc (54 kDa) that are cotrans-
lationally cleaved and targeted to the ER/cis-Golgi [14, 72].
Hantaviruses bud internally into the lumen of the cis-Golgi
and exit cells via a secretory mechanism consistent with aber-
rant vesicular trafficking [14]. Hantaviruses are both released
from ECs and remain cell associated through interactions
with cell surface receptors [15, 62, 73]. GnGc heterodimers
on the virion surface are presumed to bind cellular receptors
and mediate viral entry into cells [14, 15, 20, 72–79].

Hantaviruses are one of only a few viruses that primarily
infect the EC lining of the vasculature [8, 9, 12, 80, 81].
Hantaviruses replicate to low titers, with initial viral progeny
emerging from infected ECs 18–24 hours postinfection (hpi),
and ∼5 × 106 maximal titers days after infection [14].
Infection of ECs is nonlytic and the permeability of infected

EC monolayers is not increased by infection alone [14, 16,
82]. Prototypic HFRS (Hantaan virus-HTNV), HPS (SNV,
ANDV, NY-1V) [3, 5, 10, 83, 84], and nonpathogenic (Tula
virus-TULV and Prospect Hill virus-PHV) [85–87] han-
taviruses all infect human ECs regardless of their ability to
cause disease, suggesting that EC entry alone is not a cause of
pathogenesis [12, 16, 81]. At least two requirements for han-
taviruses to be pathogenic have been determined thus far, the
ability of hantaviruses to regulate early interferon responses
and the use of specific integrins by pathogenic (ANDV, SNV,
NY-1V, PUUV, SEOV, HTNV) but not nonpathogenic (PHV,
TULV) hantaviruses [20, 76, 77, 79, 88–91].

2.1. Endothelial Cell Attachment and Entry. The cellular
entry of pathogenic hantaviruses is dependent on the pres-
ence of αvβ3 integrins on human ECs, while nonpathogenic
hantaviruses PHV and TULV use α5β1 integrins [76, 77].
Cells expressing recombinant αvβ3 or αIIbβ3 facilitate infec-
tion by SNV, NY-1V, ANDV, and HTNV, and infection is
blocked by antibodies to β3 integrins and by the β3 integrin
ligand vitronectin [62, 76]. NY-1V and ANDV bind β3

integrins in an RGD-independent fashion via interactions
with plexin-semaphorin-integrin (PSI) domains present at
the apex of bent, inactive, αvβ3 integrin conformers [20, 79,
92–95]. Hantavirus binding to β3 maintains the integrin in a
resting state and inhibits EC migration on the high-affinity
αvβ3 integrin ligand vitronectin [20, 62]. Infected ECs
contain cell associated hantaviruses on their surface at late
times post infection [15, 62, 73]. Cell associated pathogenic
hantaviruses further direct the binding of quiescent platelets
to the EC surface [15]. This interaction may mask hantavirus
infected cells or contribute to thrombocytopenia, which
is a prominent feature of hantavirus patients. Curiously,
αvβ3 integrins present on ECs normally regulate vascular
permeability, and inhibiting β3 integrin functions alone
causes vascular permeability disorders [41, 95–100]. Links
between hantavirus dysregulation of αvβ3 functions and their
role in EC permeability are discussed in detail below.

2.2. HPS Disease. At least 17 hantaviruses cause HPS,
also termed hantavirus cardiopulmonary syndrome (HCPS),
with prototype HPS viruses, Sin Nombre (SNV) in North
America and Andes (ANDV) in South America [4–9, 101–
104]. ANDV, SNV, and many closely related hantaviruses
cause HPS resulting in acute pulmonary edema, cardiopul-
monary insufficiency, and∼35–40% mortality rates [4–9, 13,
101–103, 105–109]. One to two weeks after infection, there is
a rapid onset of pulmonary edema and hypoxia that occurs
6–12 hours after cough and rapidly progresses in severity
[4–6]. Bilateral pulmonary infiltrates may be interstitial or
alveolar with liters of pleural effusions observed during SNV
infection [4–6, 8, 9].

Hantavirus antigen is found predominately in vast
pulmonary capillary EC beds but is present in ECs within
lymph nodes and throughout the body [8, 9, 80]. However,
cytopathic effects are not evident following hantavirus
infection of ECs in vitro or in vivo [9, 16, 82]. Histologically,
the heart, kidneys, brain, and adrenals are grossly normal
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with pulmonary alveoli filled with acellular proteinaceous
fluid, yet the alveolar epithelium remains intact [4–6, 8, 9].
The most striking HPS findings are edematous lungs with
up to 8 liters of pleural edema [5, 6, 8, 9]. Pulmonary
edema fluid contains few leukocytes, is largely serous in
nature, and is consistent with the nearly complete loss of an
alveolar capillary fluid barrier [4–6, 9]. The lack of disrupted
endothelium during HPS is similar to edematous pulmonary
responses observed in patients with high altitude-induced
pulmonary edema [40, 60, 110–112]. The rapid onset
of edematous symptoms during hantavirus infection [6]
further suggests the importance of targeting vessel stability
in regulating highly lethal hantavirus disease.

3. Vascular and Lymphatic Endothelium:
Control of Vascular Fluid Barrier Functions

The endothelium lines a series of discrete vessel types that
conduct fluids to and from tissues, directs the transfer
of nutrients, wastes and oxygen and coordinates tissue
responses to changing conditions and pathogens [22, 24, 27,
54, 59, 113–119]. Vascular ECs serve mainly as a conduit in
the lining of high pressure arteries but take on a variety of
fluid and cellular barrier functions in low pressure veins and
capillaries that innervate organs and tissues [54]. Lymphatic
vessels have a primary role in draining fluid, proteins, and
immune cells from tissues and returning these components
to the venous circulation [42, 52–54, 114]. Depending on
their location, lymphatic vessels serve discrete fluid barrier
and regulatory functions, keeping pulmonary alveolar spaces
dry and clearing fluid influx from the lungs [54, 61, 120].
These diverse EC settings require discrete EC functions to
effect exchange within large capillary beds of the kidney, liver,
and lung [27, 54].

The EC lining is responsible for controlling vessel damage
through a complex mechanism of negative regulation, rapid
response and proliferation [22, 24, 40, 53, 120, 121]. Unless
activated, the endothelium normally prevents immune cells
and platelets from adhering to its surface [22, 122]. Endothe-
lial quiescence is maintained by several mediators, while
vascular injury activates clotting factors, platelets, and ECs
resulting in the recruitment of platelets to the endothelium
[22]. ECs also have angiogenic roles migrating and prolifer-
ating to fill in endothelial cell gaps or to rebuild damaged
vessels [29, 123]. EC migration and vessel remodeling
requires changes in cell adherence within the endothelium,
and carefully orchestrated receptor signaling responses are
required to accomplish this without causing edema.

The endothelial fluid barrier is primarily derived from
unique adherens junctions (AJs) composed of an EC-specific
vascular-endothelial cadherin (VE-cadherin) [25, 30, 45,
96, 117, 119, 124]. EC barrier functions are increased by
the presence of cell surface VE-cadherin and reduced by
the dissociation and internalization of VE-cadherin [25,
30, 117]. Phosphorylated VE-cadherin is internalized by
its interaction with intracellular actin complexes and this
process is regulated by a variety of cellular receptors and
intracellular signaling pathways [25, 124, 125]. VE-cadherin

phosphorylation is downregulated by an EC-specific phos-
phatase (VE-phosphatase) [124, 125] and several pathways
that either directly or indirectly induce AJ assembly and EC
integrity by returning VE-cadherin to an unphosphorylated
resting state [25, 117, 125]. Chemokines, cytokines, and
growth factors indirectly act on EC adherens junctions to
increase vascular permeability and thus have the potential to
contribute to pathogenic vascular leakage [27, 29, 96].

4. Unique Receptors Regulate EC Permeability

The endothelium contains many unique receptors that
regulate AJ assembly and positively or negatively impact
AJ stability and vascular integrity [33, 96, 126–129]. Vas-
cular endothelial growth factor (VEGF) binds to EC-
specific VEGFR2 receptors and activates a Src-Rac-Pak-VE-
cadherin pathway resulting in AJ disassembly and vascular
permeability [25, 30, 117]. Specialized ECs contain unique
VEGFR1/2/3 that respond to novel forms of VEGF (VEGF A-
E) and control AJ disassembly [61, 96, 130]. LECs uniquely
express VEGFR3 on their surfaces and respond to VEGF-C/D
but also coexpress VEGF-A responsive VEGFR2 receptors
and are further regulated by the formation of VEGFR 2/3
heterodimers [39, 42, 53, 131].

VEGF was originally discovered as a potent vascular
permeability factor that induces acute edema [29, 132].
VEGF reportedly acts within 0.5 mm of its release [133],
and circulating soluble VEGFRs prevent VEGF from sys-
temically permeabilizing vessels [39, 132]. VEGF is induced
by hypoxia, and reduced oxygen levels at high altitudes
cause high-altitude-induced pulmonary edema (HAPE) [35,
40, 113]. This results from activating the hypoxia-induced
transcription factor-1α (HIF-1α), which senses oxygen levels
and transcriptionally induces VEGF [59, 128, 134, 135].
VEGF further upregulates HIF-1α, forming an autocrine
loop, which amplifies hypoxia-mediated VEGF responses
and causes HAPE [59, 113, 136, 137]. Although this
response fosters increased gas exchange, in continued low-
oxygen environments these cellular responses, instead cause
pulmonary edema and in HAPE, respiratory distress [40,
110, 113, 128].

As part of the normal process of vascular repair
and angiogenesis, ECs migrate in response to VEGF-A
stimulation in the presence of extracellular matrix [41,
95, 138]. Permeabilizing VEGFR2 responses are normally
controlled by specific cell surface integrins that modulate
VEGFR2 complex formation, signaling and permeability
responses [96, 97, 116, 139, 140]. Ectodomains of αvβ3 and
VEGFR2 form complexes that direct EC migration, a process
that requires AJ disassembly, yet need to limit VEGF-A-
induced permeability [96, 139]. Knocking out β3 integrins
or antagonizing αvβ3 results in enhanced VEGF-A directed
permeability of capillaries in vivo and in vitro [97, 141, 142].
αvβ3 antagonists are reported to promote the rapid recycling
of internalized VEGFR2 to the cell surface, amplifying EC
responses to VEGF [96, 97, 143].

β3 integrin functions are further regulated by interactions
with cell surface syndecan-1 and additional interactions of
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neuropilin-1 (Nrp-1) with VEGFR2 [127, 142, 144–147].
Nrp-1 is a VEGF-A coreceptor that forms an ectodomain
complex with VEGFR2 that regulates the permeabilizing
effects of VEGF [127, 142, 144, 145], and Nrp-1 bind-
ing to VEGFR2 is further regulated by the binding of
semaphorin3A (sema3A) [145–147]. Endothelial round-
about receptors, Robo1 and Robo4, also impact VEGFR2-
directed permeability through discrete signaling pathways
[36, 48, 148–150]. Slit-2 binding to Robo1 and Robo4,
respectively, have positive or negative effects on VEGF-A
directed EC permeability [151, 152]. However, Robo 1/4
are differentially expressed in discrete EC beds suggesting
the localized permeability effects of slit-2 [148, 152]. These
findings indicate that many EC responses control capillary
leakage through interconnected mechanisms and suggest
that altering any number of orchestrated EC barrier func-
tions can result in edema.

5. Hantavirus-Endothelial Cell Interactions

5.1. Hantavirus Binding to Inactive αvβ3 Integrins Regulates
EC Functions and Permeability. Pathogenic hantaviruses
bind to inactive, basal conformations of αvβ3 integrin recep-
tors on ECs, while nonpathogenic hantaviruses interact with
discrete integrins [76, 77, 79]. Receptor binding directs
viral entry, but at late times postinfection cell associ-
ated hantaviruses also negatively impact αvβ3 integrin func-
tions [15–18, 20, 62]. Days after infection, cell-associated
pathogenic hantaviruses block αvβ3 integrin directed EC
migration and direct the binding of quiescent platelets to
the EC surface [15, 62]. Similar to antagonizing or knocking
out αvβ3 integrins [96, 97], pathogenic hantavirus infection
of human ECs sensitizes monolayers to the permeabilizing
effects of VEGF [16, 17]. SNV-, ANDV-, and HTNV-
infected ECs, but not nonpathogenic PHV or TULV infected
ECs, are hyperresponsive to the permeabilizing effects of
VEGF [16], and VEGFR2 is hyperphosphorylated following
pathogenic hantavirus infection [15, 17, 18]. Additionally,
enhanced permeability of infected ECs only occurs days
after infection when cell-associated hantaviruses coat the cell
surface and inactivate αvβ3 integrins [15–17, 20, 73]. These
findings, in the context of hypoxic HPS patients, suggest that
hantavirus binding to inactive αvβ3 integrins contributes to
capillary permeability in HPS. These results further suggest
a mechanism for hantavirus-enhanced EC permeability that
stems from disrupting normal αvβ3-VEGFR2 interactions
and enhanced VEGFR2-Src-VE-cadherin signaling responses
that dissociate VE-cadherin from AJs [15–17, 20, 25, 96].

One paper suggests that ANDV-infected ECs transiently
induce VEGF secretion, VE-cadherin degradation, and
increased EC monolayer permeability [21]. However, several
studies indicate that monolayers of hantavirus-infected ECs
are not permeabilized by infection alone [16, 17, 82] and
instead indicate that pathogenic hantavirus infected ECs
are hyperpermeabilized by VEGF [16]. Collectively, these
findings demonstrate that cell surface hantaviruses alter
normal EC functions that control VEGF-directed vascular
permeability [15–18, 62, 153].

5.2. Potential Role of LECs in Hantavirus Edema. Pulmonary
lymphatic vessels are responsible for clearing fluid from
alveoli and providing a semidry state that permits gas
exchange [52, 54]. Failure of lymphatic vessels to clear
fluids results in lymphedema and suggests an additional
mechanism for hantavirus-infected LECs to contribute to
acute pulmonary edema during HPS [42, 53, 54, 154].
Analysis of pathology samples from HPS patients indicates
that hantavirus antigen is present in LECs of patient lymph
nodes [8, 9, 80]. Although less is known about LECs, as
described above, LECs express unique cell surface receptors
and their integrity is regulated by both VEGF-A and VEGF-
C [42, 53, 54, 61]. Interestingly, LEC VEGFR3 receptors
respond to VEGF-C and are associated with reduced tissue
edema [42, 61], while inhibiting VEGFR3 signaling results
in lymphedema [42, 131]. Although a recent publication
indicates that ANDV infects LECs and alters LEC barrier
functions [155], the role of lymphatic vessels and LEC
responses remains to be investigated in HPS patients.

5.3. Hantavirus-Endothelial Edemagenic Mechanisms. Prom-
inent pulmonary and renal dysfunction are components of
both HPS and HFRS diseases and likely stem from hantavirus
infection of ECs, which line vast alveolar and renal capillary
beds [4–6, 8, 9, 156, 157]. HPS patients are often young
adults that arrive at hospitals in acute respiratory distress
[4]. Acute pulmonary edema is a hallmark of HPS, with
bilateral fluid infiltrates accumulating at up to a liter per hour
resulting in pulmonary insufficiency and patient hypoxia
during a critical phase of the disease [4, 6, 8, 9]. The cause
of acute edema following hantavirus infection is likely to
be multifactorial [6, 15–18, 64, 153, 155, 158] but revolves
around the ability of the hantaviruses to infect ECs within
alveolar capillary beds that normally regulate edema and gas
exchange within the lung.

Clues to the mechanism of hantavirus-induced edema
come from disparate findings on the role of hypoxia in
acute pulmonary edema and the role of αvβ3 and VEGFR2
EC responses, which are uniquely altered by pathogenic
hantaviruses [6, 15, 16, 20, 155]. Hypoxia is a prominent
component of HPS patients and directs VEGF secretion from
endothelial, epithelial, and immune cells [5, 6, 8, 9]. Consis-
tent with the enhanced permeability of hantavirus-infected
ECs in response to VEGF [16], HPS may be the result
of hypoxia-induced VEGF that leads to acute pulmonary
edema and may be exacerbated by reduced lymphatic vessel
fluid clearance [155]. In fact, HPS patient VEGF levels were
markedly elevated in pulmonary edema fluid and PBMCs in
acute early phases of HPS [159]. Although a demonstrated
role for hypoxia in hantavirus-induced permeability has
yet to be conclusively defined, the ability of extracorporeal
membrane oxygenation (ECMO) to reduce HPS patient
mortality [4, 6] strongly suggests a role for hypoxia and
VEGF in the acute pulmonary edema of HPS patients.

6. Animal HPS Model

Only ANDV infection of Syrian hamsters (Mesocricetus aura-
tus) serves as a model of hantavirus pathogenesis that mimics
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human HPS in onset symptoms and lethal acute respiratory
disease [19, 160, 161]. Inoculation of Syrian hamsters with
ANDV, but not SNV or other HPS causing hantaviruses,
induces pathology approximating human disease. ANDV
causes a fatal infection of Syrian hamsters with an LD50

of 8 plaque-forming units. The disease is characterized
by large pleural effusions, congested lungs, and interstitial
pneumonitis in the absence of disrupted endothelium [19,
160, 161]. The onset of pulmonary edema coincides with
a rapid increase in viremia on day 6, and large inclusion
bodies and vacuoles in ultrastructural studies of infected
pulmonary ECs [160, 161]. Viral antigen was localized to
capillary ECs, alveolar macrophages, and splenic follicular
marginal zones populated by dendritic cells. Interestingly,
depletion of CD4 and CD8 T-cells had no effect on the
onset, course, symptoms, or outcome of ANDV infection
and indicates the absence of T-cell responses [19]. Consistent
with the potential involvement of β3 integrins and VEGF
in this process, ANDV binds to conserved residues within
PSI domains of both human and hamster β3 integrins
[20, 79]. Thus the mechanism of pathogenesis caused by
ANDV is consistent with hypoxia-VEGF- directed acute
pulmonary edema that occurs in the absence of T-cell-
mediated pathology [19]. These findings differ from a report
associating T-cell responses with HPS disease, although the
same data support a lack of T-cell involvement, since half of
HPS patients had no elevated T-cell responses regardless of
disease severity [64]. Observed T-cell responses may instead
correlate with viral clearance [63, 162]. The mechanism of
pathogenesis may be further elucidated by studies in Syrian
hamsters and thus provides a model of ANDV pathogenesis
that permits the evaluation of therapeutics that target barrier
functions of the endothelium.

7. Targeted Therapeutic Approaches for
Stabilizing the Endothelium

Currently, there are no effective therapeutics for hantavirus
infections or disease. Antiviral effects of interferon or the
nucleoside analog ribavirin are only effective prophylactically
or at very early times postinfection [14, 163]. They appear to
target early viral replication but neither is effective 1-2 weeks
postinfection after the onset of HPS symptoms [4–6, 163].
An alternative approach against viruses with a long disease
onset may be to therapeutically target the acute pathologic
response instead of viral replication. Since hantaviruses
infect and alter fluid barrier functions of the endothelium,
targeting EC responses that transiently stabilize the vascula-
ture has the potential to reduce the severity and mortality of
HPS [50, 129, 164]. This approach also has the advantage of
being implemented at the onset of symptoms where antiviral
approaches appear to be ineffective [163].

Intracellular signaling pathways coordinately regulate
the adherence of ECs to the extracellular matrix, anchor
receptors to cytoskeletal elements, and induce growth factor
directed migration, proliferation and permeability responses
[18, 35, 41, 43, 50, 96, 116, 165, 166]. The complexity of
VEGF induced permeability is further demonstrated by the

reported ability of rapamycin, an inhibitor of mammalian
target of rapamycin (mTOR) signaling responses, to block
VEGF-induced microvascular permeability [167–171]. This
multifactorial coordination indicates why so many factors
are capable of permeabilizing or stabilizing the endothelium
and rationalizes their potential roles in pathogen-induced
capillary leakage.

Antibody to VEGFR2 reportedly suppresses VEGF-
induced pulmonary edema and suggests the potential of
therapeutically antagonizing VEGFR2-Src-VE-cadherin sig-
naling pathways as a means of reducing acute pulmonary
edema during HPS [18, 25, 39, 50, 172–176]. Several well-
studied VEGFR2 and Src inhibitors are in human clinical
trials or are used therapeutically to treat human cancers
and have the potential to reduce the severity of viral
permeability-based diseases [18, 42, 50, 173, 174, 177–179].
In vitro, angiopoietin-1 (Ang-1), sphingosine-1-phosphate
(S1P), pazopanib, and dasatinib inhibited EC permeability
directed by pathogenic hantaviruses [16, 18]. Ang-1 is an EC-
specific growth factor that transdominantly blocks VEGFR2-
directed permeability in vitro and in vivo by binding to Tie-2
receptors [180–183]. S1P is a platelet derived lipid mediator,
which enhances vascular barrier functions by binding to
Edg-1 receptors on the endothelium [47, 172, 173, 179,
184], while pazopanib and dasatinib are drugs that inhibit
VEGFR2-Src signaling [174, 185]. Pazopanib, dasatinib, and
the S1P analog FTY720 are already in clinical trials or
used clinically for other purposes [34, 186]. Targeting EC
responses provides a potential means of stabilizing HPS
patient vessels and reducing edema. The use of S1P receptor
agonists has also been shown to regulate the pathogenesis
of influenza virus infection by acting on ECs and reducing
immune cell recruitment and entry into the lung [172].
These findings suggest the targeting of EC functions as a
means of increasing capillary barrier functions and regulat-
ing immune responses that contribute to viral pathogenesis.

The regulation of additional EC receptors that stabilize
interendothelial cell AJs and fluid barrier functions of
the endothelium may be considered as therapeutic targets.
The Robo4 receptor has been shown to inhibit VEGFR2
responses, stabilize vessels and block vascular permeability
[48, 148, 152]. This new potential target is highly expressed
by lung microvascular ECs and is currently being evaluated
as a therapeutic for a variety of vascular disorders [149, 152].
However, Robo4 directed stability of interendothelial cell
junctions may also be applicable to reducing HPS severity.

Several additional EC receptors that bind to VEGFR2
ectodomains positively or negatively regulate αvβ3-VEGFR2
functions and may provide additional therapeutic targets
for regulating vascular permeability. Potential responses
which need to be investigated as therapeutic targets include:
NRP1, Syndecan1 (sdc1), and the insulin-like growth factor1
receptor (IGF1R), which are recruited to αvβ3 ectodomain
complexes [49, 141, 142, 144, 175, 187, 188]: Surfen, a
heparan sulfate containing protein that reportedly blocks
EC permeability [189], and Fibulin-5, a matrix protein that
reportedly promotes EC adherence by binding αvβ3 and is
associated with emphysema [190–192]. However, inhibiting
β3 receptors that are present on both platelets and ECs may
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exacerbate permeability and thus the choice of therapeutic
targets is likely to be critical to increasing fluid barrier
functions of the endothelium. Targeting the VEGFR2 axis
that regulates EC permeability may be a central mechanism
for stabilizing the endothelium and reducing the severity of
HPS [127, 145, 175, 193].

These findings suggest a plethora of targets that may
regulate virally induced vascular permeability and which are
already clinically approved for other indications. Moreover,
targeting these responses may be broadly applicable to reduc-
ing the severity of HFRS and a wide range of viral infections
that impact the endothelium and cause edematous diseases.

8. Future Directions and Conclusions

The endothelium plays a fundamental role in vascular dis-
ease, and stabilizing the vasculature needs to be evaluated as
a means for reducing the severity and mortality of viral vas-
cular diseases. This is especially important for viral infections
that cause disease 1-2 weeks after infection, at time points
when antiviral approaches are no longer viable. The ability of
hantaviruses to infect LECs and alter normal fluid clearance
from tissues needs to be investigated and provides a unique
target and mechanism for reducing edema that has yet to be
considered in HPS disease. The ability of the endothelium
to regulate platelet functions, complement activation, and
immune responses should also be considered as central
targets for reducing the severity of viral hemorrhagic and
edematous diseases.
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