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Single image super-resolution is an important computer vision task with applications including remote sensing, med-
ical imaging, and surveillance. Modern work on super-resolution utilizes deep learning to synthesize high resolution
(HR) images from low resolution images (LR). With the increased utilization of digitized whole slide images (WSI)
in pathology workflows, digital pathology has emerged as a promising domain for super-resolution. Despite extensive
existing research into super-resolution, there remain challenges specific to digital pathology. Here, we investigated
image augmentation techniques for hematoxylin and eosin (H&E) WSI super-resolution and model generalizability
across diverse tissue types. In addition, we investigated shortcomings with common quality metrics (peak signal-to-
noise ratio (PSNR), structure similarity index (SSIM)) by conducting a perceptual quality survey for super-resolved
pathology images. High performing deep super-resolution models were used to generate 20X HR images from LR
images (5X or 10X equivalent) for 11 different tissues and 30 human evaluators were asked to score the quality of
the generated versus the ground truth 20X HR images. The scores given by a human rater and the PSNR or the
SSIMwere compared to investigate the correlation betweenmodel training parameters. We found that models trained
on multiple tissues generalized better than those trained on a single tissue type. We also found that PSNR correlated
with perceptual quality (R= 0.26) less accurately than did SSIM (R= 0.64), suggesting that the SSIM quality metric
is insufficient. Themethods proposed in this study can be used to virtuallymagnify H&E images with better perceptual
quality than interpolation methods (i.e., bicubic interpolation) commonly implemented in digital pathology software.
The impact of deep SISRmethods ismore notable when scaling to 4X is needed, such as in the case of super-resolving a
low magnification WSI from 10X to 40X.
Background

Single image super-resolution (SISR) is the task of reconstructing a high
resolution (HR) image from its low resolution (LR) counterpart. Super-
resolution poses a particularly difficult challenge since every LR image
has infinite possible corresponding HR images. Several methods have
been developed for a variety of computer vision applications in which res-
olution of an image must be improved, but image acquisition methods are
unavailable or impractical, and image-processing techniques must
be employed.1,2 Such applications include remote sensing,3,4 medical
imaging,5,6 and surveillance.7 Conventional SISR approaches include
example-based8 and regression-based approaches.9 Recently, deep learning
has been applied to the SISR problem, achieving state-of-the-art perfor-
mance on common super-resolution datasets.1,10,11

Pathologists interpret histopathology slides based on features observed
at different resolutions. In a conventional pathology workflow, histopathol-
ogy slides are examined under optical microscopes and the pathologist can
increase the resolution by using a higher magnification objective. In
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contrast, in a digital pathology workflow, the resolution is constrained by
the magnification of the scanning objective used to digitize the slides typi-
cally with 40X magnification (Hamamatsu). Evaluation and interpretation
of histopathology slides by pathologists might be suboptimal if the desired
resolution of the digital slides is not available. Deep learning-based super-
resolution methods such as generative adversarial networks (GAN) have
the potential to render structures that are present but difficult to see in LR
images interpretable, aiding both human- and machine-based evaluation
of WSI.12,13 For example, leukocyte cytoplasmic granules provide critical
information for cell subtype assessment and are optically present using
40X objectives, but are sometimes hard to clearly visualize andmay require
higher resolution for interpretation.14

Many recent efforts have applied super-resolution techniques to digital
pathology1,11,14–18 for a variety of purposes including increasing scanning
throughput, reducing file storage costs, and improving downstream com-
puter vision tasks. The data strategy for training these models has primarily
focused on using a specific tissue for model development. Mukherjee et al.
developed their SISR methods on renal, pancreatic, or breast cancer tissue
tember 2022
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Table 1
Whole slide image dataset splits and corresponding image patch breakdown.

Tissue type # WSI
train

# WSI
validation

# Tiles in
validation

# WSI
test

# Tiles in
test

Brain 21 6 150 3 130
Ear 21 6 150 3 130
Eye 21 6 150 3 130
Kidney 20 2 150 1 130
Lung 117 33 150 18 130
Lymph node 21 6 150 3 130
Ovary 10 3 150 2 130
Sciatic nerve 42 12 150 7 130
Skin 21 6 150 3 130
Spinal cord 63 18 150 9 130
GI tract 20 2 150 1 130
Testis 10 3 150 2 130
Urinary bladder 20 5 150 4 130

The training tile sets were limited to 15 000 tiles. The validation tile set was limited
to 1950 tiles. The test tile set used to evaluate all models in this study was limited to
1690 tiles.
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in order to improve tumor segmentation results.17 Despite recent advances
in the field, there remain questions surrounding how super-resolution
models can be applied to other contexts. In this regard, it is not clear how
single-tissue models generalize when applied to multiple tissue types.
Notably, comparisons between specialist single-tissue models and general-
ist multi-tissue models have not been conducted. Thus, the generalizability
of SISR models across tissue types warrants further investigation. Further-
more, studies using datasets with hematoxylin and eosin (H&E) WSI of
different tissue types from research animals are uncommon.

In addition, super-resolution approaches are challenged by the variabil-
ity of the color space ofWSI in digital pathology. H&E stains are commonly
used in digital pathology but the color in H&E slides varies due to
inconsistencies in staining protocols and different scanning machines.
While self-supervised stain normalization15 and more general augmenta-
tion techniques have been investigated for super-resolution,19,20 the re-
search on the impact of color augmentation to SISR in WSI is limited. To
make SISRmodels more robust to a variety of scanners and subtle stain var-
iations, we evaluated the impact of color-based augmentation strategies on
super-resolution performance.

Many quality metrics can be applied to super-resolved images as a way
to evaluate SISR model performance. Common metrics for objective image
quality include peak signal-to-noise ratio (PSNR)21 and structural similarity
index (SSIM).22 While PSNR and SSIM continue to be valuable in assessing
SISR model performance in terms of discrete pixel differences between the
ground truth and super-resolved image, they cannot fully capture human
perceptual image quality which is just as important, if not more important,
for pathologists reviewing these fields-of-view in the slide. Importantly, the
correlation between these metrics and perceived image quality in digital
pathology is questionable.1,23,24 Recent efforts have attempted to model
perception scores with deep learning,25,26 but have failed to achieve
human performance. Thus, human scoring is often used as the gold-stan-
dard for evaluating perceptual photorealism.

We sought to optimize deep learning models for single image super-
resolution of H&E images. In this study, we extend existing work11,15,27

employing deep learning approaches to super-resolve H&E images at scal-
ing factors up to 4X. We demonstrate the consequences of employing data
augmentation and adversarial training on deep SR models in order to
perform well in improving PSNR and SSIM of image reconstructions. We
show how training Deep Back-Projection Network (DBPN)10 with a
GAN13 improves perceived image quality. We highlight the disconnect be-
tween human perception of image quality and SSIM scores, and how SSIM
failed as a performance metric for a GAN-based deep super-resolution
model. We perform an initial exploration of single-tissue versus mixed-
tissue training and the impact of this on the eventual goal of producing a
super-resolution method that is applicable across a wide range of histologic
sample types.

Methods

This study consists of 3 parts: (1) improvingmodel performance by aug-
menting default training settings, (2) human rater scoring of super-resolved
images, and (3) comparison of models trained on different tissue datasets.
First, several training techniques were employed with 2 super-resolution
models, Deep Back-Projection Networks For Super-Resolution (DBPN)10

and Lightweight Image Super-Resolution with Information Multi-
distillation Network (IMDN),28 in the kidney dataset for hyperparameter
tuning purposes. Second, high performing models were used to generate
20X,HR images from LR images at lowermagnifications for 11 different tis-
sues and 30 human raters were asked to score the quality of the generated
versus the ground truth 20X images. In addition, the correlation between
the scores fromhuman rater and the PSNRor SSIMwere computed to inves-
tigate the relation between the parameters. Last, to explore the generaliz-
ability of SISR models reconstructing unseen tissue types, DBPN and
IMDN were trained with single tissues (lung, brain, or kidney) and mixed
tissues separately using the optimal hyperparameters. Mixed-tissue and
single-tissue model performances were examined.
2

Whole slide image dataset

This study included a total of 567 WSI of H&E-stained histology
slides of rat tissues which were collected from our in-house archive.
Most scanned slides contained a single tissue type. The entire dataset
consists of 12 tissue types: brain, ear, eye, kidney, lung, lymph node,
ovary, sciatic nerve, skin, spinal cord, testis, and urinary bladder.
Slides that contained tissues from the GI tract (colon, duodenum,
ileum, and stomach) were also included and counted as the 13th tissue
type. The slides were scanned using Hamamatsu NanoZoomer-XR (Ha-
mamatsu Photonics, Hamamatsu City, Japan) at 40X magnification
(0.226 μm/pixel) or 20X magnification (0.452 μm/pixel) and were
manually inspected to be free of obvious blurring artifacts. The images
at 20X magnification serve as the high resolution (HR) dataset (ground
truth). WSI in the HR dataset were cropped to 1024 x 1024 image tiles
without any overlap between image tiles. Tiles over 50 KB were kept, a
file size which was derived empirically to filter out tiles lacking tissue.
The LR image tiles were generated by down sampling with a scaling
factor of 2X or 4X using bicubic interpolation from 20X images, yield-
ing images with equivalent resolution to 10X magnification (0.904
μm/pixel) and 5X magnification (1.808 μm/pixel), respectively.
Data splitting

The WSIs was tiled and roughly split into training (70%), validation
(20%), and testing (10%) datasets. (Table 1). The image tile sets were
derived from sampling image tiles from the tissue WSI splits. Since tis-
sues naturally varied in size, certain tissue types produced more image
tiles than others. Thus, the training, validation and testing sets were
limited to 15 000, 1950, and 1690 image tiles, respectively for data
balancing. The single-tissue training dataset consisted of tiles derived
from the same tissue type, while the mixed-tissue training dataset
consisted of tiles from all tissue types. For single-tissue models, we
made lung, kidney, and brain training sets. In contrast, mixed-tissue
models had a training set consisting of an equal contribution (∼1154
tiles) from all tissue types, with the exception of ovary (n = 642) and
urinary bladder (n=1036) which are small tissues and required tile re-
sampling to attain the target sample size. Both single-tissue models and
the mixed-tissue models were evaluated in the same validation and test
set. The validation tile set was derived from the WSI validation split and
was comprised of all 13 tissue types (Table 1). The test set was com-
prised of all 13 tissue types and 1690 image tiles in total (Table 1).
The test set was used for hyperparameter tuning and evaluation of all
models in this study.
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Model training

Two deep SR models were primarily investigated in this study: Deep
Back-Projection Networks For Super-Resolution (DBPN)10 and Lightweight
Image Super-Resolution with Information Multi-distillation Network
(IMDN).28 Model architectures and implementation details for both net-
works were described by Haris et al10 and Hui et al,28 respectively. Models
were implemented in PyTorch 1.5.1, an open source deep learning python
library. Model training was done in 3 phases in alignment with the 3 parts
of the study. The first phase focused on observing the effect of training pa-
rameters such as color and data augmentation to select the suitable models
for the next phase. In the second phase, we focused on improving the image
quality output of the selected models from the prior phase by training them
in a GAN. In the third phase, we trained DPBN and IMDN models with dif-
ferent training datasets.

In the first phase, hyperparameters were found experimentally by train-
ing on the kidney dataset at 2X and 4X super-resolution scales. Following
the training procedures in10,28 DBPN and IMDN were initially trained
with mean squared (Eq. 1) and mean absolute error (Eq. 2), respectively,
to serve as the base or null model:

Lmse ¼ LDBPN XHR, bXHR

� �
¼ ‖XHR � bXHR‖22

Equation 1. Mean squared error loss or DBPN Loss function

Lmae ¼ LIMDN XHR, bXHR

� �
¼ ‖bXHR � XHR‖1

Equation 2. Mean absolute error loss or IMDN Loss function

where X_HR and Xhat_HR are the ground truth and reconstructed im-
ages, respectively.
Fig. 1. Data preprocessing and model architecture overview. a. HR image patches a
downscaling and feeding into a deep super-resolution model. b. Deep super-resolutio
model fine tuning was performed on select models by including a VGG discriminato
resolution image, SR: Super-resolution).

3

To improve image quality generated by these models, we incorporated
color augmentation and mix-up,19 whereby we composed two different
image tiles of the same tissue type into one image patch (Fig. 1a). When
color augmentation was included in the training process, the HR image
patch was randomly color augmented before downsampling. Similarly,
when mix-up was included as a parameter in the model training, the com-
posed image was first created with the HR image tiles and then
downsampled to the LR image patch to be fed as input to the super-
resolution model. Augmentations were applied during training. IMDN
and DBPN models were trained with experimentally derived learning
rates of 2 x 10-6 and 1 x 10-4, respectively. All models were trained with a
batch size of 16 on two Nvidia (Santa Clara, CA, USA) P6000 GPUs for 60
epochs using the ADAM optimizer.29

Threemain training parameterswere explored, producing 4 variations of
DBPN and IMDN training protocols. These models were trained with either:
(1) color jitter augmentation, (2) color jitter augmentation with 1 - SSIM
added to the batch loss, (3) 1 - SSIM added to the batch loss, or with (4)
color and mix-up augmentation with 1 - SSIM added to the batch loss.

In the second phase, we fine-tuned the IMDN and DBPN models from
the previous phase with a GAN13 by applying a discriminator network
(Fig. 1b) to training process. We incorporated 3 additional loss terms as de-
scribed in Haris et al10: adversarial, VGG, and style loss. In a GAN configu-
ration, an adversarial loss (Eq. 3) is used to encourage a generator network
G to compete with a discriminator network D. The generator network G is
either the IMDN or DBPN model trained on kidney image patches with su-
pervision using Eqs (2) and (1), respectively. The discriminator is a separate
neural network classifier that attempts to determine which images are true
HR images and which images are generated reconstructions.

Ladv ¼ log D XHRð Þð Þ þ log 1 � D G XLRð Þð Þð

Equation 3. Adversarial loss
re first extracted from tissue regions of the WSI and then are augmented before
n models were trained to generate HR image patches from LR images. Additional
r to create a generative adversarial network. (WSI: Whole slide image, HR: High
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We used a VGG1930 convolutional neural network pre-trained on the
ImageNet dataset31 as our discriminator. We employed VGG loss32 (Eq. 4)
to ensure consistent discriminator feature representations between the re-
construction and ground truth where f denotes the feature maps of the
VGG network frommultiple max-pool layers near the beginning of the net-
work (i = 2,3,4,5).

Lvgg ¼ ∑
5

i¼2
‖ f i XHRð Þ � f iðbXHRÞ‖22

Equation 4. VGG loss

As per Haris et al,10 style loss was used to facilitate the generation of
high quality textures and was originally proposed by Gatys et al.33 Style
Fig. 2. PSNR and SSIM performance increase with data augmentation. Deep super-resolu
to the DBPN and IMDN models increased metrics. DPBN models showed the highes
augmentation, alpha: alpha mix-up augmentation, ssim: 1-SSIM added to the batch loss

4

loss uses the same convolutional feature maps as in the VGG loss (Eq. 4)
but are parameterized by a function, phi.

Lstyle ¼ ∑
5

i¼2
‖ϕðf i XHRð ÞÞ � ϕðf iðbXHRÞÞ‖22

Equation 5. Style loss

To compute the style loss requires a Gram matrix where F denotes the
feature maps as inputs to phi from Eq. (5). In Eq. (5), taking the dot product
of the flattened image features (ground truth or super-resolved ) with the
convolutional feature map of the VGG network aims to adopt some of the
visual style learned from the earlier layers of VGG network. Early layers
tion models trained to upscale LR images by 2X or 4X. Hyperparameter adjustments
t PSNR and SSIM. a. DPBN & DBPN GAN b. IMDN & IMDN GAN (cj: color jitter
).
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of a convolutional neural network like VGG represent low-level features
such as corners, blobs, and edges.

ϕ Fð Þ ¼ FFTϵ Rnxn

Equation 6. Gram matrix

The DBPN GAN and IMDN GAN models were trained on kidney image
patches with the aforementioned VGG discriminator. During training, the
generator and discriminator jointly optimize the following loss function:

LGAN ¼ LMSE þ LVGG þ Ladv þ Lstyle

Equation 7. GAN loss

Both IMDNGAN and DBPN GANmodels use the same GAN loss (Eq. 7),
which uses the aforementioned losses: adversarial loss (Eq. 3), VGG loss
(Eq. 4), style loss (Eq. 5), and mean squared error loss (Eq. 1). The learning
rates for IMDN GAN and DBPN GAN models were trained with the same
rates in the first phase 2 x 10-6 and 1 x 10-4, respectively. All GAN models
Fig. 3.Metrics of brain, kidney, and lung reconstructions in the image survey. DBPNGAN
and SSIM values. Captions under each tile denote PSNR, SSIM,mean rater score as PSNR
score. a. Brain reconstructions. b. Kidney reconstructions. c. Lung reconstructions.

5

were trained with a batch size of 16 on two Nvidia (Santa Clara, CA,
USA) P6000 GPUs for 60 epochs using the ADAM optimizer.29

Lastly, the third phase focused on training IMDN andDBPNmodels with
color jitter augmentation on different datasets: brain, kidney, lung, or a
mixed tissue set. The DBPN and IMDN models were optimized according
to Eq. (1) or Eq. (2), respectively. The number of epochs, learning rate,
batch size, optimizer, and GPU hardware used to train these IMDN and
DBPN models were the same as above.

Model evaluation

Model performance was evaluated using the PSNR and SSIM of the test
dataset across all tissue types. To calculate the PSNR and SSIM of each tile,
the original tile from the 20X WSI was first downscaled to the 5X or 10X
WSI by bicubic interpolation and then reconstructed back to a 20X WSI
equivalent with tile size (1024 x 1024 pixels).

PSNR and SSIM provide valuable quantitative metrics for image quality
evaluation and are widely used in image analysis. However, PSNR and
SSIM cannot fully capture human perception of image quality. To investi-
gate the correlation between PSNR, SSIM, and the human perception of
model generated images were rated the highest, despite the attributed lower PSNR
/ SSIM /mean rater score. Captions under the original columndenote themean rater
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image quality in the digital pathology domain, an image quality survey of
31 human raters was conducted. Survey participants with varying experi-
ences with H&E images from researcher with no pathology background
to board-certified pathologists (n = 5) were asked to score perceived
image quality on a scale from 1 to 3. The survey consisted of kidney models
applied to all 11 tissue types. In addition, the survey included HR ground
truths and LR image up scaled by bicubic interpolation. In total, each survey
participant evaluated 121 tissue tiles. Spearman correlation was computed
between the perceived image quality scores and the objective quality mea-
sures.

Single-tissue DBPN and IMDNmodels were trained with a combina-
tion of losses and color augmentation techniques using the kidney data
and evaluated on the test set to determine the best training strategy and
the best performing model. To investigate the utility of mixed-tissue
versus single-tissue type training, the best performing models were
trained with either multiple-tissue or single-tissue type datasets using
the training strategy described above. Single-tissue models were
trained on brain, kidney, and lung tissue. Multiple-tissue models
were trained on all tissue types simultaneously. The single-tissue
models were evaluated in 2 analyses. In the first analysis, the single-
Fig. 4.Correlation of rater scores andmodel performance. The y-axis denotes themean ra
the image survey. The x-axis denotes the model's mean and standard deviation SSIM an
increase with the model’s attributed SSIM and PSNR values. a. Mean rater score vers
show the mean rater scores of the ground truth images.

6

tissue model was evaluated on a test subset of the same tissue type.
For example, the trained model which was only exposed with kidney
data was used to generate HR images for only kidney data in the test
set and the trained brain model was used to generate HR images for
only brain data. The evaluation metrics were computed separately for
individual tissues. In the second, converse analysis, the single-tissue
model was evaluated on the tissue types it was not trained on. In
other words, the model trained with kidney data was used to generate
HR images from non-kidney LR images in the test sets. The evaluation
metrics were computed for the 3 single tissue models for the converse
analysis. Both analyses were conducted at 2X and 4X super-resolution
factors.

Results

SISR model performance

Fig. 2 shows the mean PSNR and SSIM scores in the test set for 2X and
4X kidney models trained with different parameters and illustrates the
effects of augmentation and adversarial loss to the base (null) DBPN and
ter score and standard deviation of all the images reconstructed by themodel used in
d PSNR values derived from evaluation of the test set. Image reconstruction scores
us model SSIM. b. Mean rater score versus model PSNR. Orange horizontal lines
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IMDNmodels. In this regard, all DBPN and IMDNmodels performed better
than the bicubic interpolation baseline and the highest performing models
for DBPN and IMDN at both scales were statistically significant for
PSNR and SSIM (p-value <0.005) compared to their base (null) models
(Supplemental Table S1).

Both DBPN and IMDN trained to upscale by 2X showed significant
improvement to the base models in SSIM and PSNR when color jitter and
mix-up augmentation was used (Supplemental Table S1). On average, the
calculated PSNR/SSIM values of DBPN and IMDN 2Xmodels for color jitter
augmentation increased by 0.975/0.027 and 0.858/0.044, respectively
and mix-up augmentations increased by 1.18/0.033 and 0.757/0.042,
respectively.

Similarly, we observed an improvement in PSNR and SSIM com-
pared to the base models trained to upscale by 4X. Color jitter augmen-
tation resulted in the highest scores for both models and was significant
(Supplemental Table S1). On average, the calculated PSNR/SSIM values
of DBPN and IMDN 4X models for color jitter augmentation increased
by 0.37/0.029 and 0.507/0.037, respectively, and mix-up augmenta-
tions increased by 0.07/0.006 and 0.256/0.015, respectively. The
PSNR and SSIM metrics of the 4X models were lower than the 2X
models, as expected. We conclude that the augmentation techniques ex-
plored for DBPN and IMDN are beneficial for super-resolution in terms
of PSNR and SSIM metrics.

Additional fine tuning with a pre-trained VGG network as a preceptor
(Fig. 1b) resulted in increased or decreased PSNR and SSIM scores that
Fig. 5.Kidney compared to other tissues in the image survey. Kidneywas rated the highe
by rater score, PSNR, and SSIM. Shown asmeanwith 95% confidence interval. b–d. Exam
1 (b), 2 (c), and 3 (d). e–g. Example kidney image reconstructions (250 by 250 pixels),
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were dependent upon the neural network architecture (whether a pre-
trained IMDN or DBPN was used). PSNR and SSIM decreased for all
DBPN GAN models (Fig. 2). For example, DBPN GAN with color jitter aug-
mentation decreased by -1.549 PSNR and -0.054 SSIM. In contrast, the
IMDN GAN model showed an increase in these metrics for some cases
such as when mix-up and color jitter augmentation were used during
training.

Perceptual image quality on SSIM and PSNR

When super-resolved image quality was subjectively evaluated by
human observers, the DBPN models were rated better than the IMDN
models in the image survey. This agreed with the quantitative results as
the DBPN models demonstrated higher PSNR and SSIM scores. Fig. 3
shows examples of the 5 reconstruction methods used to create image recon-
structions for this survey across 3 tissue types (brain, kidney, and lung) along
with the PSNR, SSIM, and averaged scores from raters. Across all tissue types,
models trainedwith adversarial loss are preferred by human raters. In this set
of image reconstructions, the average PSNR and SSIM across the three tissues
for DBPNmodels were 26.34 and 0.75, respectively, which were higher than
the DBPN GAN scores. Of note, the human rater scores suggested that the
DBPN GAN model could super-resolve images with higher quality than the
DBPN model (DBPN GAN average rater score: 2.75; DBPN average rater
score: 2.21). These results suggest that PSNR and SSIMmay not fully capture
image quality preference by human evaluators.
st compared to other tissues in the image survey. a. Kidney compared to other tissues
ple spinal cord image reconstructions (250 by 250 pixels), that weremostly rated as
that were mostly rated as 1 (e), 2 (f), and 3 (g).
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From the image survey, SSIM correlated higher (R = 0.64) with image
quality ratings given by human raters than PSNR (R = 0.26). Fig. 4 illus-
trates model PSNR and SSIM values plotted against rater scores (number
of data points = 3630). Fig. 4a shows a plot of each model evaluated
SSIM on the test set and the corresponding mean rater score. Spearman’s
rank-order correlation between rater score and model SSIM was strong
with a significant p-value of 0.003. Fig. 4b shows a plot of each model
PSNR and the corresponding mean rater score. Spearman’s rank-order cor-
relation between human rater score and model PSNR was significant
(p<<0.01) with a p-value 2.1 x 10-56, suggesting that the higher correlation
value of SSIM to perceptual rating could be a better proxy measure for
human preference than PSNR. This is likely due to SSIM captures local,
structural information better than PSNR.

For simplicity, a single-tissue kidneymodel was used to generate all HR
images for the images survey instead of using a model trained on multiple
tissues. As expected, the kidney tissue reconstructed image was rated
the highest (Fig. 5a, Supplemental Figure S1) since the models have
been trained with those data. A Whitney–Mann rank-sum test was
computed and kidney reconstructions were significantly preferred to
non-kidney reconstructions with a p-value 0.002. However, the kidney
Fig. 6. Image reconstruction comparison between single-tissue andmixed-tissue DBPNm
tissue or mixed-tissue DPBN model. a. 20X lung image patches b. 20X kidney image pat
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model demonstrated promising reconstructions for other tissues like
brain, lung, and urinary bladder with average score greater than 2 (Supple-
mental Figure S1). In Fig. 5, we illustrate low, medium, and high scoring
super-resolved images of kidney (Fig. 5b–d) and spinal cord (Fig. 5e–g).

Single-tissue versus mixed-tissue models

Sample single-tissue models (brain, kidney, or lung) and a mixed-tissue
model evaluated on example brain, kidney, lung, and urinary bladder tiles
at 2X generated images with quality scores that differed by less than 15.6%
(PSNR) and 12.4% (SSIM) from each other. Supplemental Figures 2 & 3
illustrate the DBPN image reconstruction improvements over the bicubic
interpolation method for 2X and 4X scales on these example tissues. For in-
stance, upscaling of a lung image patch by 2X resulted in PSNR and SSIM
values that were higher in both the lung model (33.92/0.94) and the
mixed-tissue model (33.61/0.93) compared to bicubic (29.68/0.88). At
4X a similar trend was observed with PSNR but SSIM had a larger spread;
PSNR and SSIM of images reconstructed by single-tissue or mixed-tissue
models were within 12.2% and 33.3% of each other on these example
tissue tiles, respectively (see Fig. 6 for example lung and kidney tissue
odel. Examples to illustrate the similarity of reconstructed images by either a single-
ches.



Table 2
Summary of SSIM performance by models trained with single-tissue versus mixed-
tissues.

DBPN (x2 / x4) IMDN (x2 / x4)

Single tissue Mixed tissue Single tissue Mixed tissue

Lung 0.90 / 0.66 0.88 / 0.65 0.85 / 0.54 0.84 / 0.50
Brain 0.83 / 0.41 0.83 / 0.41 0.80 / 0.34 0.80 / 0.35
Kidney 0.87 / 0.60 0.87 / 0.60 0.83 / 0.50 0.82 / 0.49

The mean SSIM was calculated from brain, lung, or kidney tiles in the test set. The
single tissue model column corresponds with either the lung, brain, or kidney
trained model.

Table 3
Summary of PSNR performance bymodels trained with single versus mixed tissues.

DBPN (x2 / x4) IMDN (x2 / x4)

Single tissue Mixed tissue Single tissue Mixed tissue

Lung 36.86 / 29.09 36.42 / 28.94 34.58 / 26.30 34.15 / 25.81
Brain 32.85 / 27.69 32.62 / 27.64 31.96 / 26.67 31.88 / 26.69
Kidney 33.94 / 28.19 33.87 / 28.18 31.94 / 26.18 31.59 / 26.04

The mean PSNR was calculated from brain, lung, or kidney tiles in the test set. The
single tissue model column corresponds with either the lung, brain, or kidney
trained model.
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reconstructions to compare images generated using a single-tissue or
mixed-tissue model).

A super-resolved urinary bladder tile had PSNR and SSIM within 4.9%
and 4.7% of each other using single-tissue versus a mixed-tissue model at
2X (PSNR Mixed Model = 31.83 and PSNR Lung Model = 30.31; SSIM
Mixed Model = 0.87 and SSIM Lung Model = 0.83). Similarly, at 4X, the
PSNR and SSIM were within 5.3% and 9.2% of each other using a single-
tissue versus mixed-tissue model (PSNR Mixed Model = 26.51 and PSNR
Brain Model = 26.15; SSIM Mixed Model = 0.57 and SSIM Lung Model
0.52). These results suggest that both single-tissue and mixed-tissue train-
ing approaches are viable when developing SISR models for many tissue
types.

Table 2 summarizes the calculated SSIM of brain, lung, and kidney
image tiles in the test set. The average SSIM of the lung, brain, and kidney
tiles reconstructed by either a single-tissue or a mixed-tissue model were
within 8.1% for DPBN and 6% for IMDN at 2X and within 46.7% for
DPBN and 45.4% for IMDN at 4X. In addition, single-tissue models evalu-
ated on their respective image tiles (i.e., lung model evaluated on lung
tiles) were within 2.2% or equal in SSIM compared to the mixed-tissue
model.

Table 3 summarizes the calculated PSNR of brain, lung, and kidney
image tiles in the test set. The average PSNR of the lung, brain, and kid-
ney tiles reconstructed by either a single-tissue or a mixed-tissue model
were within 12.2% for DBPN and 9% for IMDN at 2X and within 5% for
DPBN and 3.4% for IMDN at 4X. In addition, single-tissue models eval-
uated on their respective image tiles were within 1.2% in PSNR com-
pared to the mixed-tissue model at either scale or model architecture
(DPBN or IMDN).

A detailed breakdown of the calculated SSIM and PSNR of the other tis-
sues in the test set by these super-resolutionmodels are summarized in Sup-
plemental Tables S2 and S3 for 2X and 4X results, respectively. In general,
both single-tissue and mixed-tissue training are viable when building SISR
models.

Conclusions

Image resolution plays an important role in pathology but can be
constrained in digital workflows. However, resolution of the digitized slides
can be enhancedwith computational methods such as SISR algorithms. The
9

results from this work inform SISR model improvement for H&E WSI with
supervised training strategies that involve data augmentation. Additionally,
we demonstrate that the use of PSNR and SSIMmetrics was not an ideal sur-
rogate for human-perceived image quality. The proposed methods can be
used to virtually magnify H&E images with better perceptual quality than
interpolation methods (i.e., bicubic) commonly implemented in digital pa-
thology viewers. The impact of deep SISR methods is more notable when
scaling to 4X is needed, such as in the case of super-resolving a low magni-
fication WSI from 10X to 40X.

In this study, DBPNGANmodels achieved lower PSNR and SSIM values
than their non-GAN counterparts (Fig. 2), but the DBPN GAN models
reached higher perceived quality scores provided by human raters and
the highest perceived image score was achieved by DBPN GAN (Fig. 4).
These data suggest that the DBPN GAN models learned features in H&E
WSI that humans use for image quality evaluation. These features cannot
be entirely quantified by SSIM or PSNR. Consistent with our findings,
Ledig et al32. performed a mean opinion score test to quantify the ability
of various super-resolution algorithms (GAN-based and non-GAN-based)
approaches to reconstruct perceptually convincing images and observed
that GANmodels achieved highermean opinion scores while demonstrated
lower PSNR and SSIM scores in various datasets.

Although an imperfect reflection of human perception scores, and in
spite of the findings of Ledig et al. that SSIM and PSNR were not optimal
for evaluating image quality,32 SSIM was significantly correlated with per-
ceptual image quality scored by human raters in our work (Fig. 4). There-
fore, we used SSIM to evaluate the performance of single-tissue and
mixed-tissue training in select examples (Tables 2 and 3). The 2 approaches
resulted in image reconstructions that differed by less than 12.4% SSIM at
2X. Depending upon the goals and constraints of a particular project, our re-
sults suggest that either approachmay be appropriate. For example, a single
tissue DBPN GAN model could be suitable to reconstruct other tissue types
(Fig. 3).

Two aspects of our study that may limit the generalizability of our re-
sults include: (1) limited training data, and (2) the 20X target magnifica-
tion. In all model training, we limit the training to 15 000 WSI tiles to
control across all training experiments. While we saw the best results
with DBPN GAN, the image reconstructions could possibly be improved
with additional training data as deep learning models are notoriously
data hungry. While our target magnification was 20X, we cannot say with
certainty that the same training principles detailed herein could be applied
to higher magnifications. As 40X scanners become more common, more
training data will be available to help answer this question. In the future,
we hope to gather a large enough dataset of 40X magnification to deter-
mine if our method generalizes to higher target resolution.

We present a deep SISR framework to obtain high perceived image
quality of WSI reconstructions. These data augmentation methods
could be used to extend future model architectures that may emerge.
This work adds to the limited research done on developing deep
SISR methods in digital pathology by highlighting the limitations of
using PSNR and SSIM as a proxy to perceived image quality. We dem-
onstrate that optimizing deep SISR models with GAN loss is promising
and additional controlled studies of increasing the training set are
warranted. Future work will investigate augmenting the digital slide
review process by a pathologist with SISR methods to bring more vi-
sual clarity to low magnification slides.
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