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Extracellular vesicles (EVs) are complex ecosystems that can be derived from all body cells and circulated
in the body fluids. Characterizing the tissue-cellular source contributing to circulating EVs provides bio-
logical information about the cell or tissue of origin and their functional states. However, the relative pro-
portion of tissue-cellular origin of circulating EVs in body fluid has not been thoroughly characterized.
Here, we developed an approach for digital EVs quantification, called EV-origin, that enables enumerating
of EVs tissue-cellular source contribution from plasma extracellular vesicles long RNA sequencing pro-
files. EV-origin was constructed by the input matrix of gene expression signatures and robust deconvo-
lution algorithm, collectively used to separate the relative proportions of each tissue or cell type of
interest. EV-origin respectively predicted the relative enrichment of seven types of hemopoietic cells
and sixteen solid tissue subsets from exLR-seq profile. Using the EV-origin approach, we depicted an inte-
grated landscape of the traceability system of plasma EVs for healthy individuals. We also compared the
heterogenous tissue-cellular source components from plasma EVs samples with diverse disease status.
Notably, the aberrant liver fraction could reflect the development and progression of hepatic disease.
The liver fraction could also serve as a diagnostic indicator and effectively separate HCC patients from
normal individuals. The EV-origin provides an approach to decipher the complex heterogeneity of
tissue-cellular origin in circulating EVs. Our approach could inform the development of exLR-based appli-
cations for liquid biopsy.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Extracellular vesicles (EVs), which include exosomes and
microvesicles, are nano-scaled and membrane-enclosed particles
released from essentially all eukaryotic cells [1]. EVs contain pro-
teins, lipids, and nucleic acids that are delivered from the parent
cells to the recipient cells [2]. These bioactive molecules function
as mediators of intercellular communication [3,4]. EVs are associ-
ated with most pathological conditions, including cancers, cardio-
vascular diseases, neurologic disorders, and infectious diseases.
These particles also served as diagnostic biomarkers, therapeutic
targets, and medicine carriers for disease therapeutics [5]. Recent
evidence suggests that body fluid EVs are involved in numerous
physiological processes and play essential roles in remodeling
homeostasis of the body [6]. In particular, plasma EVs originate
from host cells mediate their mutual regulation locally or remo-
tely, these EVs have cell type-specific biomolecules and could be
exploited as predictive biomarkers for disease treatment [7–14].
The brain cell originated EVs could also be detected in CSF reflect
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the physiological and pathological changes taking place in the orig-
inated brain tissue [15–17]. Meanwhile, EVs encapsulate RNAs
reflect the phenotype and functional states of their parent cells
[18]. Tracing the source of tissue-specific genes (TSGs) in circulat-
ing EVs long RNA (exLR) pool is a noninvasive strategy for early
detection and therapeutic evaluation of human diseases [19,20].

EVs in plasma are heterogeneous, originating from different cell
types and from diverse sources, which limits the utility of bulk EV
analysis methods. Single-particle measurements such as flow
cytometry would be preferred to trace tissue-cell-originated EVs
by given cell surface receptors and other biomolecules [21]. Of
note, the flow cytometry-based approaches play an important role
in understanding the origins, functions, and diagnostic and thera-
peutic significance of EVs in health and disease [22,23]. Several
studies have used flow cytometry analysis to trace platelet- and
lymphocyte-derived EVs in circulation, these results indicated
plasma EVs predominantly originated from platelets, erythrocytes,
and other leucocytes [24–28]. While the EVs sorting techniques
have been developed and applied clinically, comprehensive assess-
ment of the heterogeneity of multiple tissue-cellular origins for cir-
culating EVs remains challenging.

Recently, a number of programs have been developed to digi-
tally estimate tissue-cellular constituents from mixture transcrip-
tional profiles using robust deconvoluting algorithms. In
particular, these programs have been used to trace the fraction of
immune cells from tissue transcriptional data [29–33]. The basis
of the hypothesis for these strategies is that the gene expression
profile in an admixture is a linear combination of the genes specif-
ically enriched from all the included cell types [34]. Several
machine learning methods have been reported, include Ridge
Regression (RR), Robust Linear Regression (RLR), linear least square
regression (LLSR), quadratic programming (QP), Nonnegative Least
Squares (NNLS), and support vector regression (SVR). These decon-
volution models are used to infer the enrichment heterogeneity of
cell types from the gene expression data [31,32,35–38]. Mean-
while, the computational measures have enabled the assessments
of the source contribution of tissue-cellular components from
other types of sequencing data.

We previously developed a genome-wide analysis of exLRs ter-
med exLR sequencing (exLR-seq) among healthy individuals and
cancer patients [19]. A large amount of TSGs was highly expressed
in healthy plasma exLR-seq transcriptomes and showed diverse
enrichment levels in multiple disease conditions. However, com-
pared with the tissue transcriptomes, the expression pattern of
these TSGs differed in plasma EVs and only a fraction of these
genes showed tissue-cellular traceability in circulation. These
results indicated the prediction system based on tissue bulk data
is not reliable on biofluid EVs. Thus, it is necessary to develop an
optimal strategy that is independently suitable for the deconvolu-
tion scenario of exLRs profiles. Investigating the idealized input
matrix of reference gene expression signatures and benchmarking
them with viable mathematical algorithms according to types of
exLRs sequencing data is a potential strategy to resolve this decon-
volution problem for circulatory EVs.

In this study, we developed a computational method to portray
the relative and absolute tissue-cellular enrichment results of
plasma EVs from exLR-seq profiles. We also explored and com-
pared the distinct tissue-cellular origins from plasma EVs samples
with diverse disease conditions. Comparison with healthy individ-
uals revealed the upregulation of the hepatogenic fraction associ-
ated with hepatic disorder and accurately predicted the
development and progression of liver disease, especially for hepa-
tocellular carcinoma (HCC). We provided our source code to the
community and hope that this repository will allow investigators
to acquire a better perspective of the complex heterogeneity of
tissue-cellular origin in biofluid EVs.
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2. Materials and methods

2.1. Sample collection for exLR-seq

The plasma exLR-seq samples were collected in our previously
published study. They included healthy individuals (n = 101),
patients with HCC (n = 71), benign hepatic tumor (n = 18), hepatitis
(n = 5), hepatic cirrhosis samples (n = 8), gastric cancer (GC, n = 9),
colorectal cancer (CRC, n = 12), breast cancer (BRCA, n = 10) and
kidney cancer (KIRC, n = 15). The validation cohort comprised
healthy (n = 14), hepatic benign disorder (n = 6), and HCC samples
(n = 33). We have summarized the sample’s number with their
demographic and clinical characteristics of entire cohorts in a dia-
gram and presented it as Table. S5 in supplementary material. Four
plasma-serum paired samples from one healthy individual were
also included in this study, three of plasma samples collected in
EDTA tubes were stored for different durations (0, 2, and 8 h) at
room temperature (15–25 �C) and processed within 2 h. The
remaining serum sample was allowed to stand at 37℃ for 30 min
before sample processing. Two 1–2 ml cerebrospinal fluid samples
were collected from patients with neurological disorder in this
study. All the CSFs were sampled by needle aspiration from the
lumbar subarachnoid space. We used our previously published
exLR-seq method to carry out EVs purification, EVs-RNA isolation,
and RNA-seq library preparation, respectively [19].
2.2. The tissue-cellular traceability system of plasma EVs

2.2.1. Filtration of TSGs and construction of signature matrices
We constructed two representative signature matrices to

deconvolute the blood and tissue fractions from exLR-seq tran-
scriptomes. The expression profiles of 31 types of solid organic tis-
sues (TPM quantification with gencodeV23 annotation) were

downloaded from the GTEx portal (https://gtexportal.org/). We
used a tissue-specific score (TSS) strategy, with scores ranging
from 0 to 5 for each gene from expression atlas of the GTEx portal
[19,39].

To construct the reliable tissue signature matrix and minimize
the influence of other unknown constituents, we removed irrele-
vant features prior to the application of machine learning methods.
We removed four tissues dominated by immune cells (adrenal
gland, salivary gland, spleen, and thyroid), seven gender-biased tis-
sues (breast, cervix uteri, fallopian tube, testis, ovary, vagina, pros-
tate, and uterus), and three hemopoietic related components
(blood, bone marrow, and blood vessel). In total, 810 tissue-
specific genes representing 16 types of tissue with TSS > 2 were
included (Table S1). We used the 101 normal exLR-seq samples
to further reduce the number of candidate TSGs: TSGs with a fre-
quency not exceeding 10% in all normal samples were removed.
Next, the top n significantly expressed genes for each tissue type
were selected and merged into a matrix covering a total of 16 tis-
sue subsets. To determine the optimal n, the system was run iter-
atively to identify the signature matrix with the minimal
conditional number. The signature matrixes with a lower condi-
tional number would be more tolerant to the variation of input
expression profile. Finally, 95 genes were included for the 16 solid
tissue subsets to constitute the representative tissue signature
matrix (Table S4). To establish the signature matrix of hemopoietic
cells, a total of 1289 blood-enriched genes (TSS > 0) from the GTEx
portal were used to construct the representative blood signature
matrix. The hemopoietic specific genes with frequencies > 0.1
among all normal exLR-seq samples were retained. We download
the sequencing datasets from seven types of isolated hematopoi-
etic cells and further filtered blood cell specific genes as described
in the aforementioned strategy. Finally, 726 genes were selected
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for seven blood cell components to construct a reliable blood sig-
nature matrix (Table S3).
2.2.2. Model selection and construction
The EV-origin is a deconvolution strategy to identify the relative

and absolute fractions of blood/tissue sources from exLR-seq pro-
files based on the hypothetical condition that the exLR-seq admix-
ture is a linear fit of the TSGs that are highly expressed from all the
included cell or tissue types. The concept of EV-origin deconvolu-
tion is to find the optimal solution of a convoluting equation
expressed as AX = B, where A is the transcriptome mixture of the
exLR-seq profile, B is the comparable signature matrix for the
expression of genes in all types of subset, and X is the vector of rel-
ative/absolute proportions of all cell/tissue components.

Additionally, with a final filtered nu-support vector regression
(m-SVR) model, our goal was to investigate a hyperplane that fits
as many data points as possible within an optimal distance. Three
main steps were included in our EV-origin process. The first step
was the zero-mean normalization of the input exLR-seq expression
data. The second step was the parameter selection. The m -SVR
model with a linear kernel was tested with different values of m
(ranging from 0 to 1). The parameter with the lowest root mean
square error (RMSE) was kept for variable shrinking and model
construction. Finally, the relative/absolute proportions of tissue-
cellular components in each sample were calculated based on
these optimized parameters. All exLR-seq profiles of normal sam-
ples were uploaded on the xCell web tool (https://xcell.ucsf.edu/)
for enrichment analysis of 64 immune and stromal cell types.
The hemopoietic components were collected and compared with
the results of the six models in this study.

EV-origin also calculated an empirical P-value for the deconvo-
lution problem using Monte Carlo sampling method [40]. This
approach allows EV-origin to test the null hypothesis that the
given exLR-seq profile was fully enriched by unconcerned EVs
and no identified cell types in the basis matrix (e.g., hemopoietic
matrix) are present in a given plasma exLR-seq mixture. For this
purpose, we used the Pearson product-moment correlation R as a
statistic index calculated between GEP mixture and the estimated
tissue-cellular fraction results. This procedure was iteratively
tested by gene expression profile in 500 times to generate the
empirical P-value of correlation R for each exLR-seq sample. The
significant hypothesis-testing result proves that the exLR-seq sam-
ple is suitable for EV-origin processing and is not susceptible to the
influence by other unrelated components. We have packaged this
computational method into EV-origin’s core algorithm and
uploaded the source code accordingly.

The distribution of estimated liver fractions in different sample
groups was tested by Wilcoxon Rank Sum test after using the
Shapiro-Wilk test to determine the data normality. Statistical anal-
yses were two-sided and a P-value < 0.05 was considered statisti-
cally significant. The core code of our model was written in R script
(version 3.6.1) and is available on GitHub (https://github.com/
HuangLab-Fudan/EV-origin).
3. Results

3.1. Overview of the EV-origin approach

Four main steps were used to construct the EV-origin approach
(Fig. 1a, see Methods for more details). The first step was tissue-
cellular RNA-seq data processing. We downloaded the raw
tissue-cellular RNA-seq data and processed them into a compara-
ble expression profile. The second step was the construction and
optimization of the signature matrixes. The TSS strategy was used
to filter 726 genes encompassing seven subsets of blood cells
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(Table S2). We identified 95 genes representing 16 types of tissue
(Fig. 1c). These tissue- and blood cell-specific genes were used to
build blood and tissue signature matrices. The third step was
model selection and evaluation. Six deconvolution algorithms
(SVR, NNLS, QP, LM, RLR, and RR) were used to deconvolute the tis-
sue and blood fractions of EVs origin based on two candidate signa-
ture matrices. We further assessed the robustness and availability
of candidate models using different types of experimental and sim-
ulated datasets. The SVR method was finally selected as the core
algorithm of EV-origin. The fourth step was to explore the atlas
of EV origins from normal or disease samples by an identified
algorithm.

3.2. The signature matrix construction

To produce the two represented signature matrices, target
genes were filtered and selected through four steps (detailed in
Methods): (i) raw data collection and pre-processing, (ii) calcula-
tion of TSS for each gene, (iii) signature matrix interaction and gene
selection, and (iv) validation of the two candidate matrices on val-
idation datasets.

First, we used TSS ranging from 0 to 5 to quantify the tissue-
specific property of each gene in each tissue/cell subsets from tis-
sue datasets. The 810 genes with TSS > 2 were regarded as tissue-
specific targets (Table S1). We further investigated the expression
pattern of this candidate gene set on plasma circulating exLR-seq
profiles (Healthy cohort, n = 101, table S5). The blood-specific
genes were highly expressed in most of the samples from healthy
individuals, whereas the TSGs were expressed in low levels. Nota-
bly, we found a much higher fraction of six tissue-specific tran-
scripts from four tissue types were captured in circulation than
from other types of tissues (Log10[TPM] > 1.5, frequency = 1;
Fig. 1b). Meanwhile, we downloaded the isolated cell sequence
data to filter the hemopoietic cell-specific genes and acquire a
blood cell signature matrix by the same strategy described above
(Table S2). We conducted interacting calculations to make the can-
didate matrices more tolerant of the variation of expression profile.
In total, 726 blood-specific and 95 tissue-specific genes were
included to separate seven blood cell subsets and 16 types of tissue
components for plasma exLR-seq profiles. These two robust signa-
tures resolved the traceability problem of blood and tissue fraction
for circulating EVs (Fig. 1c, Table S3, and 4).

We next examined experimental datasets to further evaluate
two signature matrices for the source estimation of the pool of
plasma exLRs. Seven isolated blood cells (six platelets and one
PBMC sample) and four circulating EVs (plasma with paired serum)
samples were used to validate the performance of EV-origin in pre-
dicting the platelet fraction. Using the hemopoietic matrix, the EV-
origin accurately separated the platelet fraction in isolated cells
and EVs profiles (Fig. S1a and b). We also tested the capability of
the tissue matrix to predict the brain fraction of EVs in two CSF
samples (Fig. 1f). The platelet and brain fraction results from
experimental datasets remained accurate in matching the real
source of samples.

3.3. Model assessment and building

We next benchmarked the six machine learning models on nor-
mal exLR-seq mixtures with unknown compositions. The six
deconvoluting algorithms were implemented to find the best solu-
tion in predicting blood and tissue components with two candidate
signature matrices, including SVR, LM, QP, NNLS, RLR, and RR. To
compare the performance of linear fitness and estimate the stabil-
ity of the six models, the concordance between each exLR-seq orig-
inal expression and inferred mixture was determined by Pearson
correlation coefficient (PCC) and root mean squared error (RMSE).
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Fig. 1. Schematics of estimating EVs origin from exLR-seq expression profile. (a) An overview of the computational model of EV-origin. (b) The expression pattern and
frequency distribution of 810 TSGs among all healthy exLR-seq expression profiles. (c) The circular figure of 95 candidate TSGs represented 16 types of tissue/visceral organs
in EV-origin approach. The circularized diagram was developed by five tracks. The first track integrally identifies the official gene ID of all tissue-specific targets with their
represented tissues. The second and third tracks represent the expression level of these TSGs in plasma EVs and tissue respectively. The expression frequency and TSS value of
each target are illustrated in the last two panels.
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The SVR, NNLS, and RR algorithms enabled accurate prediction of
the results of hemopoietic components on all normal samples.
The SVR method displayed the highest performance in predicting
tissue components (Fig. 2a and 2b).

We next explored the frequency distribution of all measured
results of the six models among 101 normal samples. We com-
pared the six models with another online cell fraction prediction
approach (xCell) in enumerating hemopoietic cell components
from normal exLR-seq profiles (see Methods). As illustrated in
Fig. 2c, the relative fractions of the six models agreed with those
obtained in the xCell approach. Notably, the xCell results accu-
rately matched our results generated by SVR, NNLS, and RR,
although there was a slight difference in estimating the B cell
and platelet components (Fig. 2c). The fraction results of the SVR
and RLR models covered all tissue components with a frequency
of occurrence > 0.1 (Fig. 2d). We further evaluated the degree of
variance in the component prediction results among normal sam-
ples. The SVR algorithm covered all subsets with robust estimation
results compared with the other included models, especially for
predicting tissue fractions (Fig. 2e). Further, we examined exLR-
seq data of two CSF samples to evaluate the power of candidate
methods in extracting tissue fractions. Our results showed that
NNLS, SVR, and QP were efficient in tracing brain fraction from
the CSF EVs samples (Fig. 1f). The predicted results of all subsets
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from SVR algorithm were hihgly correlated between two replicate
exLR-seq samples (Fig. S1c).

We next assessed the detection limitation of the SVR model for
rare cell subsets in bulk exLR-seq data. A simulated dataset of one
plasma sample with increased cerebrospinal fluid (CSF) content
(see Materials and Methods) was used to test the specificity of
SVR on complex exLR profiles. The predicted brain fractions were
consistent with the actual spiking proportions even when the pro-
portion of the CSF content reached 95% (Fig. S2a). The findings pro-
vided solid evidence that the SVR model had high specificity in
separating a complex exLR-seq admixture. Based on these compar-
ison results of the included models, the SVR algorithm was finally
demonstrated to be a representative computational approach for
further exploration of plasma EVs traceability.

3.4. The atlas of circulating-EV origins in normal plasma samples

The EV-origin approach was used to resolve the constitution of
blood and tissue components of EVs across 101 normal plasma
exLR-seq samples. The relative and absolute composition results
of seven types of whole blood cells and 16 types of tissues were
obtained from each exLR-seq sample. To evaluate the consistency
of sample estimation of EV-origin, the result of the absolute frac-
tion of normal samples was analyzed by the t-SNE method [41].



Fig. 2. Comparison of the performance of six deconvolution models using different EV transcriptomic datasets. (a-b) Root mean square error (RMSE) and Pearson’s
correlation coefficient (PCC) between the predicted matrices and input profiles were used to evaluate the performance of the six models on blood and tissue origin of EVs. The
higher PCC and lower RMSE of assessed results for each model were respectively indicated to a higher concordance and lower differences between known and estimated
tissue/cell-type proportions. (c) The estimated proportion of blood cell components generated from xCell and the six deconvolution models were compared among all normal
samples. (d) Evaluation of frequency distribution of relative enrichment results from the six models. (e) Comparison of the stability and relative enrichment distribution
predicted by the different models. (f) The comparison of relative prediction results of brain components from each model from normal CSF exLR-seq profiles.
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The two-dimensional visualization indicated that the component
profile clustered the normal samples into an independent group,
with only a few numbers of the sample as outliers (Fig. S2b). We
removed eight exceptional samples and the resulting 93 normal
samples were selected as normal cohort for subsequent analysis.

For hemopoietic component estimation, plasma EVs predomi-
nantly originated from platelets (51 ± 6%), followed by B cells
(26 ± 5%), CD4 + T cells (11 ± 2%), and others cell types (Fig. 3a).
Concerning the distribution of tissue constituents, adipose tissue
predominated (82% ± 13%), followed by muscle (6% ± 6%), lungs
(2% ± 4%), liver (2% ± 8%), and others (Fig. 3b). Adipose tissue
was the most prominent tissue contributor to plasma EVs. These
exLRs may produce by adipose cells in the hematopoietic system
(especially for medulla ossium flava) [42]. We combined the two
reference matrices and reconstructed a new signature matrix to
estimate the total amount of blood and tissue components. The
results showed only 0.2% of plasma EVs were derived from tissues,
with 99.8% of them generated from hemopoietic cells.

We then explored whether tissue/cell components correlated
with demographic factors of healthy individuals. Differential
expression analysis was used to identify the age- and gender-
related fractions in normal samples. Notably, none of the blood
or tissue fractions of EV-origin were associated with human age
and gender (Student’s t-test, P < 0.05; Fig. 3c and 3d). These results
also indicated that the reliable TSGs were included in EV-origin,
which made our prediction results more suitable for exLR-seq sam-
ples with different demographic factors. Furthermore, correlation
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analysis between the platelet and tissue absolute fractions indi-
cated that our approach independently filtered the tissue and
hemopoietic components without cross-interaction (Fig. 3e).

3.5. Heterogeneity of circulating-EVs origin in diverse disease status

We further explored the heterogeneous pattern of the source
contribution of plasma EVs under different disease conditions.
The predictive value of absolute fractions was compared among
normal and three types of hepatic disease samples (benign hepatic
disorder, hepatitis and cirrhosis, and HCC). We have enrolled eight
of liver-specific genes (FGB, APOA2, ORM1, FGA, APOH, ALB, FGG, and
AHSG) which were expressed both in liver tissue and normal exLR-
seq samples (Fig. 1c). An increasing enrichment of the liver fraction
was distributed in samples with liver disease compared with
healthy individuals (Fig. 4b). The hepatic constituents were specif-
ically enriched in HCC exLR-seq samples compared to samples
from individuals with hepatitis, liver cirrhosis, and other hepatic
benign tumors (Fig. 4c, P-value < 0.05). The abnormal enrichment
results of the liver fraction of plasma EV-origin may reflect the
development of liver damage and the progression of hepatic dis-
ease (Fig. S2c). The liver component from EV-origin could also dis-
tinguished HCC patients from non-tumor individuals and from
individuals with other types of cancer (Fig. 4d, P-value < 0.05).
We additionally performed a receiver operating characteristic
(ROC) analysis integrated with component results to investigate
the potential of EV-origin with respect to disease types. The liver



Fig. 3. The landscape of tissue/blood cell origins by the EV-origin approach among normal plasma samples. (a) The relative distribution of all blood cell components
from EV-origin. (b) The pie plot shows the relative comparison of and 16 types of tissue fractions from EV origin. (c and d) The estimation of age-related (c) and gender-related
(d) components from EV-origin. (e) Pearson’s correlation between the platelet component with other tissue fractions from the absolute results of EV-origin.
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absolute component from EV-origin effectively distinguished HCC
patients from non-cancerous individuals with an area under the
ROC curve (AUC) of 0.7978 (95% CI: 0.7028–0.8929). In addition,
the EV-origin was also accurate in separating HCC from healthy
samples, whereas exhibited lower diagnostic accuracy for HD
patients (HCC: AUC = 0.8395, 95% CI: 0.4553–0.6962; HD:
AUC = 0.5758, 95% CI: 0.4553–0.6962; Fig. 4d).

Consistently, we have tested our EV-origin method in a consec-
utive validation cohort which includes 40 healthy individuals, 6
benign and 33 HCC patients (Table. S5). Comparing with normal
sample, the liver originated fraction was highly enriched in hepatic
disease group (mean absolute fraction: control group = 0.007, hep-
atic disease group = 0.125, P-value = 1.11e-07, Wilcoxon rank sum
test, fold-change = 17.49; Fig. S3b). Of note, the predicted absolute
liver constituent of EV-origin could effectively separate HCC
patients from non-cancerous individuals with an AUC of 0.836
(95% CI: 0.7424–0.9295, Fig. 4e). Moreover, the results showed that
the enrichment of hepatogenic fraction of plasma EVs for HCC
patients was significantly correlated with clinically accepted bio-
marker AFP concentration (ng/ml, P-value = 0.038, R = 0.25, Pear-
son correlation analysis). These results made strong evidence
that the EV-origin algorithm has potential application to process
hepatic disease identifying and early screening.

4. Discussion

Recent studies have revealed the abundance of cell-type-
specific RNAs in EVs originating from tissues [19,43–45]. A few
tissue-specific RNAs were enriched in plasma EVs, reflecting the
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biological activity and metabolic status of their host cells
[19,20,39]. Several studies reported the elevated expression level
of tumor-specific genes in the circulating EVs and implicated these
as potential biomarkers for cancer diagnosis [19,39]. However, the
relative abundance of the tissue cells that are sources of EVs in cir-
culation has remained unclear. In the present study, we optimized
an digital approach termed EV-origin to clarify the cell-of-origin
landscape of plasma EVs using the plasma exLR-seq profile. The
EV-origin could also separate cerebral tissue fractions from CSF
exLR-seq data. To the best of our knowledge, our approach firstly
enumerates the abundance of hemopoietic and tissue source con-
tributing to EVs from a complex exLR-seq mixture in body fluid.

The differences between EV-origin and those of similar signa-
ture gene-based deconvolution programs are as follows: firstly,
we used the TSS method to screen all the tissue-specific targets,
rather than conservative differential expression analysis. The
approach endowed the full transcriptome with tissue/cell speci-
ficity, allowing the complete screening of valuable targets accord-
ing to a given cutoff. Secondly, instead of isolated cells, the tissue
signature was constructed by GEPs from the GTEx portal, which
reflects the true metabolic condition and physiological status of
each tissue. Thirdly, we filtered TSGs with high expression fre-
quency in our internal normal samples. The signature matrices
were subsequently constructed using tissue or isolated cell RNA
sequencing data, rather than the expression level from microarray
profiles. These strategies reduced the computational redundancies,
making our approach more reliable for use on exLR-seq data.

Our approach has a number of advantages. Firstly, it provides
the expression pattern of TSGs in circulating EVs and allows the



Fig. 4. Heterogeneous origins of plasma EVs from different disease conditions. (a) Boxplots show the comparison of the absolute liver fraction of EV-origin in diverse
hepatic diseases. (b) Three-dimensional scatterplot visualization displaying the fold-change comparisons of EV-origin absolute results for HCC and other types of non-tumor
samples. (c) Comparison of relative liver fraction of EV-origin from all types of exLR-seq samples. The results are shown as the mean ± SEM. *P < 0.05; ***P < 0.001. (d) ROC plot
unravels the diagnostic performance of EV-origin in distinguishing HCC and hepatic disease samples from healthy individuals. The high diagnostic performance of EV-origin
for separating carcinoma from non-carcinoma individuals is also indicated. HD: hepatic disorders. (e) ROC diagram shows the diagnostic efficiency of absolute hepatic
fraction derived from EV-origin in validation cohort.
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development of tissue-cellular traceability system for exLR-seq
profile. Secondly, the approach can respectively estimate the total
fraction of exLR origin into blood and tissue subgroups for each
sample, and can predict the proportions inherent in both subsets.
This reduces the interference of certain exLRs co-expressed in both
blood and tissue. Thirdly, the candidate model and reference
matrices of EV-origin were validated by experimental and simu-
lated datasets that utilized an optimal strategy to robustly trace
the tissue cell components from the exLR-seq profile. We used
three types of composition-enriched EV samples (CFS, serum, and
plasma with different storage times) to compensate for the lack
of exact EV-sorting RNA-seq data. Fourthly, the abnormal results
of hepatogenic components from EV-origin may indicate varying
degrees of liver damage and may correlate with the development
and progression of HCC. Finally, platelets release many EVs during
the clotting process [46]. These platelet-derived fractions are
involved in formation of blood exLRs pool and may reduce the
accuracy in estimating tissue components. The EV-origin platelet
fraction can be used to evaluate the changes in the collection and
storage process of plasma samples and develop reasonable stan-
dards for plasma preparation.

However, the most significant current limitation of EV-origin is
the insufficiency of EV flow cytometry results in validating the pre-
diction results. We used other EVs sequencing profile from the
samples having well-defined cell origin and specific body fluid as
an additional experimental dataset to validate the prediction
results for each tissue/cellular component. To make up for this lim-
itation, in our subsequent studies, we will sort and collect EVs from
2857
different blood cell sources to obtain plasma EV specific transcrip-
tome data, and these data will be used to train the EV-origin model
to obtain more accurate prediction results. Meanwhile, we only
included seven major categories of hematopoietic cells to evaluate
the blood component of EV-origin. This was done because many
types of blood cell enriched genes share similar expression pat-
terns in plasma EVs, which could influence the accuracy and speci-
ficity of the prediction results. Fewer hematopoietic estimating
results, particularly of immune cell components, could diminish
the application scope of immunological application of our
approach. Moreover, we only filtered tissue-specific targets from
the GTEx portal database without reference to other data sets
and research conclusions. This may result in incomplete informa-
tion concerning the tissue specificity of our candidate matrices.
In addition, miRNAs are secreted via extracellular vesicles (EVs),
which are released from various cell types with tissue-cellular
specificity [47–49]. While the abundance and expression pattern
is different between small RNA cargo and exLRs in plasma EVs
[19,50]. To make EV-origin’s results stable and comparable, this
study did not use miRNA as an applicable resource for estimating
EVs origin, which results in the partial deficiency of tissue speci-
ficity information of our predicting results. In particular, we inte-
grated the candidate two signature matrixes into the
computational model for totally separating blood- and tissue-
derived fractions in EVs. Since a large number of blood cell specific
genes in hemopoietic matrix, the deconvolution model may overfit
during component tracing, resulting in fewer components of
tissue-originated EVs in the predicting results. We will add the



Y. Li, X. He, Q. Li et al. Computational and Structural Biotechnology Journal 18 (2020) 2851–2859
sorting data of plasma EVs in subsequent studies and refine the
preliminary data obtained in this study.

EV-origin can simultaneously measure the component hetero-
geneity of multiple tissues and organs in biofluid EVs. If we include
a large number of blood samples from healthy individuals and
those with various diseases, and construct multiple predicting
models, our approach can predict the development and progres-
sion of diverse diseases, especially the disorders featuring multiple
organ lesions, such as malignant tumors and chronic infectious dis-
eases. EV-origin could be a compelling reference for prognosis and
efficacy assessments of disease therapy, in the light of heterogene-
ity of immune cell components in plasma EVs. Notably, exploring
the landscape of immune cell components in EVs, particularly T
cells fraction, can help us fully understand the interplay between
immune system and diseases and indicate helpful information
for improving the outcome of immunotherapy in precision treat-
ment. Meanwhile, our findings provide an extensive repertoire of
exLRs in normal CSF samples and suggest the potential application
of exLRs as EVs source indicator and noninvasive diagnostic
biomarkers for neurological diseases. Our approach also enables
the large-scale analysis of abundant exLR-seq mixtures to investi-
gate EVs biomarkers and therapeutic targets in biofluids.

5. Conclusion

In conclusion, our study depicts landscape of tissue-cellular
source contribution of circulating EVs from healthy individuals
and patients with cancer. Our results highlight the advantages of
EV-origin in the early detection of diseases and other disorders.
We believe that EV-origin will become an important approach in
disease diagnosis and risk assessment. Our approach could inform
the development of exLR-based applications for liquid biopsy.
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