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Targeting IL-2 signaling 
pathway for cancer therapy
IL-2 is produced primarily by activated 
CD4+ T cells and acts in a paracrine or 
autocrine fashion (1, 2). IL-2 receptor 
(IL-2R) signaling occurs through three 
subunits: alpha (CD25), beta (CD122), 
and gamma (CD132) (3). Intermediate- 
affinity dimeric IL-2 receptor consists of 
IL-2Rβ and IL-2Rγ on naive CD4+ and 
CD8+ T cells, memory T cells, and natu-
ral killer (NK) cells. TCR engagement or 
IL-2 stimulation induces the expression 
of IL-2Rα to form high-affinity trimeric 
IL-2 receptors that are highly expressed 
on Treg cells and recently activated effec-
tor T cells (4). IL-2 signaling has been 
an attractive immunotherapeutic target 
since IL-2 mediates effector T cell acti-
vation, including effector CD8+ T cells, 
which are vital for antitumor immunity. 
High-dose IL-2 was approved by the FDA 
in 1992 for treatment of certain types of 
cancer (5). However, IL-2 possesses a 
very short half-life and requires high dos-

es to be effective, leading to toxicity and 
severe side effects, such as inflammation 
and vascular leak syndrome (6). Alter-
natively, low doses of IL-2 preferentially 
target IL-2Rα on Treg cells, restricting 
the immune response, and are associated 
with poor prognosis in patients with can-
cer (7, 8). Therefore, methods to target 
certain T cell subsets while reducing Treg 
cell binding have been a recent focus in 
the field of IL-2 therapy.

Manipulation of T cell 
phenotype by IL-2 therapy
To effectively manipulate effector T cells 
and reduce side effects of high-dose IL-2, 
IL-2 variants have been developed to 
stimulate specific T cell subsets through 
selective targeting of certain IL-2R 
chains. One strategy has been to intro-
duce mutations in IL-2 to create mutants 
with preferential IL-2R chain binding. 
Mutants with reduced IL-2Rβ binding 
have been shown to target high-affini-
ty IL-2 receptor expressed on effector T 

cells (Figure 1). These mutants have also 
exhibited reduced toxicity, possibly due to 
decreased binding of intermediate-affini-
ty receptors on NK cells that lack IL-2Rα 
(1, 9). STK-012, a partial IL-2 agonist pro-
duced by Synthekine, employs a similar 
strategy by selectively binding IL-2Rα and 
IL-2Rβ subunits, but not IL-2Rγ. Effector 
T cells that may be specific for tumor epi-
topes can thus expand and readily attack 
the tumor while avoiding NK cell stimu-
lation (10). However, undesirable Treg 
cell expansion remains a concern due to 
high IL-2Rα expression on Treg cells (7, 
8). To address this issue, IL-2 mutants 
with reduced binding to IL-2Rα have also 
been generated. The cytokine company 
Nektar has engineered an IL-2 mutant 
with a bias toward IL-2Rβ and IL-2Rγ, 
rather than IL-2Rα, to reduce Treg cell 
binding (10). H9, an IL-2 superkine (sum-
IL-2) with enhanced IL-2Rβ binding with-
out the need for IL-2Rα, was shown to 
increase expansion of cytotoxic memory 
T cells and NK cells while decreasing that 
of Treg cells (11). Interestingly, H9T, an 
engineered H9-based partial agonist with 
further reduced binding to IL-2Rγ, was 
also recently shown to promote CD8+ T 
cell proliferation that maintained a stem-
like memory state and mediated greater 
antitumor immunity (12).

To enhance the activity of IL-2 in vivo 
and limit toxicity by reducing the nec-
essary dose, IL-2 therapy has been com-
bined with anti–IL-2 monoclonal antibod-
ies (mAb). Interestingly, various anti–IL-2 
mAbs differentially stimulate different 
immune cell subsets. Anti–mouse IL-2 
mAbs S4B6 and JES6-5, as well as anti–
human IL-2 mAb MAB602, complexed 
with recombinant IL-2, selectively stim-
ulate memory CD8+ cells and NK cells in 
vivo to improve IL-2 cancer therapy (Fig-
ure 1) (13). On the other hand, anti–IL-2 
mAb JES6-1 inhibits proliferation of CD8+ 
cells and NK cells yet maintains its ability 
to activate Treg cells and has been impli-
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IL-2 is a pleiotropic cytokine. In this issue of the JCI, Ren et al. report on the 
development of a low-affinity IL-2 paired with anti–PD-1 (PD-1–laIL-2) that 
reactivates intratumoral CD8+ T cells, but not CD4+ Treg cells. PD-1–laIL-2 
treatment synergized with anti–PD-L1 therapy to overcome tumor resistance 
to immune checkpoint blockade (ICB) in tumor-bearing mice. Rejection 
of rechallenged tumors following PD-1–laIL-2 therapy demonstrated the 
establishment of a potent T cell memory response. Furthermore, PD-1–laIL-2 
therapy manifested no obvious toxicity. These findings suggest the potential 
of PD-1–laIL-2 therapy in treating patients with cancer.
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PD-1–laIL-2 seemed to selectively target 
intratumoral PD-1+TIM-3+CD8+ T cells, 
which are usually described as a function-
ally exhausted and/or terminally differ-
entiated T cell subset. Therefore, PD-1–
laIL-2 could reactivate PD-1+TIM-3+CD8+ 
T cells to enhance antitumor activity 
(Figure 1). Tumor rechallenge resulted in 
spontaneous rejection in tumor-bearing 
mice previously treated with PD-1–laIL-2.  
This effect was also dependent on the 
presence of CD8+ T cells, indicating these 
rejuvenated T cells are tumor antigen- 
specific and can mediate a strong memory 
response. These promising results suggest 
that PD-1–laIL-2 therapy may bring clini-
cal benefits to patients with cancer.
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Targeting intratumoral effector 
T cells with IL-2 and anti–PD-1 
therapy
Ren et al. (20) addressed this intratu-
moral T cell targeting gap by engineering 
an immunocytokine fusion protein con-
sisting of low-affinity IL-2 (laIL-2) linked 
to an anti–PD-1 antibody (PD-1–laIL-2). 
laIL-2 exhibits reduced binding to IL-2Rα 
and IL-2Rβ to diminish unfavorable Treg 
cell binding in the tumor and periphery. 
Meanwhile, PD-1 is highly expressed 
on tumor-infiltrating CD8+ T cells. As 
a result, PD-1–laIL-2 possessed elevat-
ed avidity toward intratumoral CD8+ T 
cells, rather than Treg cells or peripheral 
CD4+ and CD8+ T cells. This specifici-
ty not only reduced the systemic toxic-
ity, but also enhanced tumor control in 
A20 and MC38 tumor models, as well as 
A375 tumor-bearing humanized mice. 
In addition, PD-1–laIL-2 in combination 
with anti–PD-L1 therapy overcame tumor 
resistance to PD-L1 blockade therapy. 
Notably, this effect was dependent on 
intratumoral CD8+ T cells, whose prolif-
eration was selectively induced by PD-1–
laIL-2. Further investigation revealed that 

cated as a potential treatment for auto-
immune disease (14). Binding of these 
various mAbs to certain regions of IL-2, 
therefore blocking IL-2 binding to specific 
IL-2R chains, may explain these contrast-
ing cell type affinities (1, 2).

IL-2–based fusion proteins are another 
IL-2 therapy strategy with a multitude of 
current preclinical and clinical trials (15, 
16). Fusion of IL-2 to a fragment crystalliz-
able (Fc) region has proven to be beneficial 
due to increased half-life, complement 
activation, and induction of antibody- 
dependent cellular cytotoxicity (ADCC) 
toward Treg cells (17–19). Furthermore, 
fusion of IL-2 to antigen-specific antibod-
ies (termed an immunocytokine) allows 
for targeted delivery of IL-2 to cells and 
tissues expressing a protein of interest. 
Numerous IL-2 immunocytokines have 
been developed to target tumor-associat-
ed antigens expressed by cancer cells and 
their surrounding tissue (16). IL-2 is there-
fore honed to tumor tissues to enact its 
function. However, this strategy still lacks 
the ability to specifically target effector T 
cells within the tumor that are pertinent to 
anticancer immunity.

Figure 1. Targeting IL-2 signaling for cancer therapy. High-dose IL-2 may preferentially target high-affinity IL-2R present on Treg cells and recently activated 
effector T cells. Recent strategies to target IL-2 signaling for cancer therapy include mutant IL-2 with affinity toward different IL-2R chains (alpha, or beta and 
gamma). Mutant IL-2 with affinity toward IL-2Rα is used to target Treg cells or recently activated effector T cells. Meanwhile, mutant IL-2 with affinity toward 
IL-2Rβ or IL-2Rγ subunits, rather than IL-2Rα, has been shown to target CD8+ memory T cells and NK cells with reduced binding to Treg cells. Combination of 
IL-2 therapy with various anti–IL-2 mAbs also differentially stimulates specific immune cell subsets. IL-2–based fusion proteins bound to antigen-specific 
antibodies (immunocytokines) allow for targeted delivery of IL-2 to cells/tissues expressing a protein of interest. PD-1–laIL-2, developed by Ren et al. (20), con-
sists of low-affinity IL-2 (laIL-2) linked to an anti–PD-1 antibody. PD-1–laIL-2 selectively reactivates intratumoral PD-1+TIM-3+CD8+ T cells to enhance antitumor 
activity. In the future, additional IL-2–based fusion proteins may be engineered to target certain cells of interest in various disease contexts.
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