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Abstract
Microbes constitute a vital part of the plant holobiont. They establish plant-microbe or

microbe-microbe associations, forming a unique microbiota with each plant species and

under different environmental conditions. These microbial communities have to adapt to

diverse environmental conditions, such as geographical location, climate conditions and

soil types, and are subjected to changes in their surrounding environment. Elevated ozone

concentration is one of the most important aspects of global change, but its effect on micro-

bial communities living on plant surfaces has barely been investigated. In the current study,

we aimed at elucidating the potential effect of elevated ozone concentrations on the phyllo-

sphere (aerial part of the plant) and rhizoplane (surface of the root) microbiota by adopting

next-generation 16S rRNA amplicon sequencing. A standard japonica rice cultivar Nippon-

bare and an ozone-tolerant breeding line L81 (Nipponbare background) were pre-grown in

a greenhouse for 10 weeks and then exposed to ozone at 85 ppb for 7 h daily for 30 days in

open top chambers. Microbial cells were collected from the phyllosphere and rhizoplane

separately. The treatment or different genotypes did not affect various diversity indices.

On the other hand, the relative abundance of some bacterial taxa were significantly affected

in the rhizoplane community of ozone-treated plants. A significant effect of ozone was

detected by homogeneity of molecular variance analysis in the phyllosphere, meaning that

the community from ozone-treated phyllosphere samples was more variable than those

from control plants. In addition, a weak treatment effect was observed by clustering samples

based on the Yue and Clayton and weighted UniFrac distance matrices among samples.

We therefore conclude that the elevated ozone concentrations affected the bacterial com-

munity structure of the phyllosphere and the rhizosplane as a whole, even though this effect

was rather weak and did not lead to changes of the function of the communities.
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Introduction
Plants are colonized by a large number of microorganisms in nature. Among the plant-coloniz-
ing microbes, bacteria represent by far the most dominant domain [1–3], with numbers rang-
ing from 106 to 107 bacteria /cm2 in the phyllosphere (leaf surface) and from 106 to 109

bacteria /g soil in the rhizosphere [1,4]. These microorganisms utilize metabolites from plants,
establish plant-microbe interactions and affect the surrounding environment as well as the
growth and fitness of host plants. Their interactions with the host plants can be beneficial, neu-
tral or harmful [5]. For instance, some microbes such as symbiotic rhizobial bacteria enhance
plant growth under nutrient deficiency [1,6]. In contrast, negative plant-microbe interactions
involve pathogens, which cause detrimental effects on the host plants [1,5,7]. The plant-colo-
nizing microbes obtain nutrients from the host plant and form their habitat on the plant sur-
face (epiphytes) and/or inside the plants (endophytes). Microbial communities are highly
influenced by diverse environmental parameters, including nutrient availability, geographical
location and soil type, climatic conditions and further habitat-specific factors such as radiation
in the phyllosphere [1,4]. Thus, the microbial community composition is variable as plants
grown under various environmental conditions recruit different sets of microbes leading to
variable feedback on plant performance and plant-microbe interactions [1,4].

The environments that plants grow in are changing at an unprecedented rate since the last
century due to intensive agricultural land use and global climate change [8–10]. These shifts in
the environment can affect the microbial communities inhabiting the plant surfaces, and may
further lead to secondary effects on the surrounding environment and the host plant. For
instance, long-term application of inorganic fertilizer induced changes in the rhizosphere
microbial community, especially the relative abundance of some taxa and the diversity of the
soil bacteria [11]. Similarly, the rhizosphere microbial community and carbon allocation was
altered under elevated atmospheric CO2 concentrations, which implicates changes of carbon
flow paths in the rhizosphere and a larger effect on the terrestrial ecosystem in the future [12].
These reports highlight the effect of environmental conditions on the plant-associated micro-
bial community and its function, as well as potential secondary effects.

One important aspect of global change is elevated concentrations of tropospheric ozone [9].
This air pollutant is formed from precursor gases such as nitric oxide, carbon monoxide and
volatile organic compounds, and its concentration has been rising steadily along with the
increasing emission of these precursor gases [13,14]. The background concentration of tropo-
spheric ozone was around 20 ppb in the beginning of the 20th century [15], but the current
background concentration has reached 60 ppb in many parts of the world, periodically reach-
ing 80 ppb as a monthly average in some parts of Asia [15,16]. These concentrations are far
beyond the critical level for plants [17] and damage cultivated crops and natural vegetation
[18,19]. This trend will exacerbate in the future, especially in Asian countries, due to continu-
ing industrialization and rising precursor gas emissions [20].

The effects of elevated tropospheric ozone on plant-based ecosystems and individual plants
are fairly well understood due to intensive research during the past decades [21–24]. In con-
trast, we have only very limited knowledge of the effect of ozone on plant-associated microbes.
A few previous studies revealed that ozone decreases the phylogenetic diversity of bacterial and
archaeal communities in the rhizosphere under elevated ozone concentration in rice fields [25–
27]. However, these analyses were limited to the rhizosphere soil, and little attention has been
paid to the microbes directly colonizing the plant surface (i.e. phyllosphere and rhizoplane).
Especially the microorganisms in the phyllosphere may be more strongly affected by elevated
ozone concentrations, as they are in direct contact with higher ozone concentrations, while
ozone concentrations in soil are very low [28]. Even though earlier reports suggested that
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ozone negatively affects bacteria at high concentration when they exist alone in the air [29,30],
its effect at moderate concentration on plant epiphytes is largely unknown. Considering the
above-mentioned vital roles of microbes and possible effects on the ecosystem, more investiga-
tion is required to understand this poorly explored aspect of global change and its possible
implication for agricultural production.

In the current study, we aimed at assessing the effect of ozone on the microbial community
living in association with rice plants, which is presumably the most widely grown crop in the
areas highly polluted by tropospheric ozone. We focussed our analysis on the domain of bacte-
ria, which is the most dominant group of microorganisms in the phyllosphere [1,2,4] and rhi-
zoplane/rhizosphere [3,31,32]. We analysed the community of the phyllosphere-associated
bacteria and rhizoplane-associated bacteria using the high-throughput 16S rRNA amplicon
sequencing strategy [33], which enables culture-independent and deep analysis of the target
microbial community. To examine if ozone sensitivity of the host plant influences the effect on
the microbial community, we used contrasting genotypes, i.e. a standard japonica type rice cul-
tivar Nipponbare (NB) and an ozone-tolerant breeding line L81 [34], which carries two ozone-
tolerant chromosomal introgressions from an aus landrace Kasalath [35,36] in the genetic
background of NB. We treated these plants with a realistic concentration of ozone for 30 d and
analysed the bacterial communities in the phyllosphere and rhizoplane. For each bacterial
community, we evaluated; 1) species diversity, 2) community structure and relative abundance
of each species, and 3) molecular and functional properties.

Materials and Methods

Plant materials and growth condition
Two rice genotypes were used for the study and grown in a greenhouse from March to June
2015. The seeds of NB and L81 were sterilized with 5% NaClO for 5 min, rinsed with deionized
water 5 times and imbibed at 28°C in the dark on a petri dish with wet paper. After 3 d, the
seedlings were transferred to a greenhouse (located in Bonn, Germany; 50.7°N, 7.1°E) under
natural light and grown for another 11 d on a floating netted styrofoam tray in distilled water.
Additional supplementary light was employed from 7 AM till 8 PM throughout the experiment
to ensure a minimum light intensity of 250 μmol/s/m2 at the canopy level. In the 4th week
(counting from the seed imbibition), the seedlings were transplanted into soil (local luvisol
taken at Meckenheim, Germany; 50.6°N, 7.0°E; pH 7.39, density: 1.3 kg/L, N content: 0.49‰,
C content: 4.38‰, K: 3.91 mg/100 g, P: 0.83 mg/100 g, Mg: 8.96 mg/100 g) filled in a plastic pot
(approx. 5 x 5 x 7 cm; length, width, height). In the 6th week, two plants of the same genotype
were transplanted into a pot containing 5 L of the above-mentioned soil. All the irrigation was
conducted using rainwater stored in an outside reservoir container to simulate natural condi-
tions. Rainwater was sprayed on the phyllosphere 3–4 times a week until the onset of ozone
fumigation to support the formation of the microbial community. Each plant received 5 g of
compound fertilizer Ferty 3 (15% N, 10% P2O5, 15% K2O; Planta Düngemittel GmbH, Regen-
stauf, Germany) in three splits before the onset of the fumigation. In the 12th week (i.e. in the
middle of ozone fumigation), 1 g of urea was added to each pot to supply additional nitrogen.
The average temperature was 29°C /25°C (day/night) and the average relative air humidity was
39% /49% (day/night). The temperature was adjusted by occasionally opening the roof of the
greenhouse, which enabled the airborne microbes to enter the greenhouse.

Stress treatment
The ozone treatment was conducted from the 10th week upon seeding using custom-made
ozone generators and open-top chambers as described earlier [37]. The size of the chambers
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was 1 x 1 x 1.3 m (length, width, height) and the sides were covered with transparent plastic
sheets. Four chambers were randomly assigned to ozone treatment, and another four were
used as control. Each chamber contained one pot of NB and L81, respectively. The treatment
was conducted for 7 h (9 AM– 4 PM) every day for 30 d. The ozone concentration measured
by an independent ozone monitor (Series 500, Aeroqual Ltd., Auckland, New Zealand) was
85 ± 34 ppb (average of 9 AM– 4 PM) and 5 ± 4 ppb in the control. The most recently fully
expanded leaf of one plant in each pot was sampled from the main culm 1 d prior to the end of
ozone treatment, flash-frozen with liquid nitrogen and used for expression analysis of an ozone
inducible gene to confirm the effect of ozone.

RNA extraction and gene expression analysis of plant leaf samples
The frozen leaf tissue was ground into a fine powder with mortar and pestle. Total RNA extrac-
tion and reverse transcription were conducted using PeqGOLD Plant RNA Kit (Peqlab,
Erlangen, Germany) and GoScript Transcription System (Promega, Mannheim, Germany) as
described earlier [37]. Real-time PCR was conducted using the StepOnePlus real-time PCR
system (Applied Biosystems, Foster City, CA, USA) using the delta-delta CT quantification
method. The primers for the internal control (U2_snRNP; [38]) were 5’-CACAACAGGCCAA
CTGTGTC-3’ (forward) and 5’-GAGGGTCTCAACCTCACCAA-3’ (reverse), and the primer
pairs for the target gene OsNPR1 were 5’-AGAAGGGACCCACAACTCGG-3’ (forward) and
5’-TCCTCGCCAAAGCAACTCGG-3’ (reverse). The amplification efficiency of each primer
pair was more than 80%.

Microbe harvesting
At the end of the ozone treatment, microbes were harvested from the phyllosphere and rhizo-
plane separately from each plant. We focused on epiphytes and not endophytes by adopting a
previously published “surface washing strategy” [3] rather than grinding the whole tissue. Phyl-
losphere bacteria were harvested as follows: Plants were cut at 20–25 cm height from the soil
surface and put into a plastic bag with 250 mL of TE buffer containing detergent (10 mM Tris-
HCl and 1 mM EDTA, pH 7.5 + 0.2% Silwet L-77) to efficiently collect microbes from the
hydrophobic surface of rice leaves. The plastic bag containing the buffer and plant materials
was shaken for 5 s, followed by two cycles of 45 s sonication using a sonication bath (35 kHz,
Sonorex Super RK102H, BANDELIN electronic, Berlin, Germany) and 30 s of shaking. The
resultant buffer containing washed microbes was filtrated over a mesh (mesh size 200 μm;
Meerwassershop, Taufkirchen, Germany) to remove large tissue debris. The washed solution
from two individual plants of the same pot was pooled, dispensed into 50-mL plastic centrifuge
tubes, and centrifuged at 3,250 g, 4°C for 10 min. The pellet was resuspended in 1 mL of TE
buffer (without detergent), transferred to a 2-mL centrifuge tube, and the pellet was collected
again after centrifugation at 15,000 g, 4°C for 5 min. The obtained pellet was stored at -20°C
until DNA extraction.

The rhizoplane microbes were collected as follows: After roughly removing the bulk soil,
roots were washed thoroughly with running water to remove all adhering soil particles. After
washing, a representative part of the root was excised (approx. 1/4 of the whole root) and put
into a glass jar with approximately 30 g of glass beads. After addition of 200 mL TE buffer con-
taining 0.1% Silwet L-77, roots were shaken at 300 rpm for 20 min on a KS-15 shaker (Edmund
Bühler GmbH, Hechingen, Germany), followed by 5 min sonication in a sonication bath (45
kHz, USC-T 500, VWR, Darmstadt, Germany). The resulting suspension was filtered over a
500 μm nylon mesh (Meerwassershop) and centrifuged at 3,200 g, 4°C for 20 min. Washing
and sonication of the roots was repeated once and the resulting pellet was merged with the
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pellet from the first cycle. The combined pellets were resuspended in TE buffer and stored at
-20°C until DNA extraction.

DNA extraction and amplification of 16S rRNA gene
DNA from phyllosphere microbes was extracted using a kit (FastDNA SPIN Kit; MP Biomedi-
cals, Santa Ana, CA, USA) according to the manufacturer’s instructions with minor modifica-
tions during cell lysis and purification steps as published previously [39]. The extracted DNA
was defined as “phyllosphere DNA”. The DNA from the rhizoplane microbes was extracted
using the PowerSoil DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA) using the
same mechanical cell lysis procedure as above. The extracted DNA was defined as “rhizoplane
DNA”.

The 16S rRNA gene was amplified by PCR using primers 799F and 1193R [40]. This primer
pair amplifies the V5, V6 and V7 hypervariable regions of the bacterial 16S rRNA gene, with
minimum contamination of plastid DNA [40,41]. Although the selected primer pair amplifies
mitochondrial DNA as well, it can easily be separated by different amplicon sizes on agarose
gels [40]. For the amplification step, we used proof-read polymerase, which introduces mini-
mal sequence errors [42]. The following setup was used for PCR reaction. For phyllosphere
DNA: 2.5 μL 10x AccuPrime Pfx reaction mix, 0.5 μL AccuPrime Pfx DNA polymerase
(Thermo Fisher Scientific, Waltham, MA, USA), 0.5 μL of 10 μM 1193R primer, 0.5 μL of
10 μM 799F primer (attached with sample specific barcode sequences; S1 Table), 19.3 μL of
nuclease-free water and 2 μL of phyllosphere DNA template. The thermal condition for PCR
was the following: 95°C for 2 min, 35 cycles of 95°C for 15 s, 50°C for 30 s and 68°C for 1 min,
followed by an additional extension at 68°C for 5 min. For rhizoplane DNA, the amount of
template DNA was reduced to 1 μL since using a large amount of template from the rhizoplane
fraction adversely affected the amplification, probably due to a higher content of PCR inhibi-
tory substances in this fraction. The PCR was performed with 20 cycles.

The amplified DNA fragments were separated on an agarose gel. The band representing the
bacterial 16S rRNA gene fragment was excised and purified using a gel-extraction kit (Fas-
tGene Gel/PCR Extraction Kit; Nippon Genetics, Dueren, Germany). The DNA concentration
of the elution was measured using a Qubit Fluorometer (Thermo Fisher Scientific). Equimolar
amounts of each elution were separately pooled for phyllosphere and rhizoplane. The pools
were purified with magnetic beads following manufacturer’s instructions (HighPrep PCR
beads, MagBio Genomics, Gaithersburg, MD, USA). Library preparation using the NEBNext
Ultra™ DNA Library Prep Kit (New England Biolabs, Ipswich, MA, USA) and sequencing were
performed by the Max Planck-Genome-centre Cologne. Sequencing was conducted on an Illu-
mina MiSeq personal sequencer using the v2 chemistry with paired-end reads of 2 x 250 bp fol-
lowing the manufacturer’s instructions (Illumina, San Diego, CA, USA). The MiSeq sequence
data were deposited in the NCBI SRA archive (accession number SRP075957).

Data processing and bioinformatics analyses
Since the Illumina MiSeq sequencing run generated paired-end reads, the full-length amplicon
was reconstructed by combining two reads by PANDAseq software [43], applying the quality
threshold of 0.9. Most of the downstream processing was conducted using the Mothur v1.36.1
programme [44], largely following the Standard Operating Procedure for MiSeq (www.
mothur.org/wiki/MiSeq_SOP; [45]). Demultiplexing and quality control were conducted,
allowing perfect match of the barcode sequences, average quality score > 33, no ambiguous
base, not more than 8 bp of homopolymer, and a length between 370 and 380 bp (after removal
of primers and barcode sequences), since most of the expected amplicons ranged from 370 to

Effects of Ozone on Phyllosphere and Rhizoplane Bacterial Communities

PLOS ONE | DOI:10.1371/journal.pone.0163178 September 19, 2016 5 / 19

http://www.mothur.org/wiki/MiSeq_SOP
http://www.mothur.org/wiki/MiSeq_SOP


380 bp length (judged by TaxMan database; http://www.ibi.vu.nl/programs/taxmanwww/;
[46]). Chimeric sequences were removed using UCHIME v4.2 [47]. Taxonomy was assigned to
each read by using the RDP_trainset v14 database [48], and the reads not classified as Bacteria
were removed. The reads were aligned using the Silva bacteria sequence database v119 [49].
After removing singletons, the reads were clustered into operational taxonomic units (OTUs)
at 97% identity using the cluster.split command, applying taxlevel = 4 and cutoff = 0.15. Rare-
faction curves were created with the rarefaction.single command with 1,000 iterations. Alpha
diversity indices were calculated using the summary.single command after subsampling,
adjusting to the minimum sample read number (54,238 for phyllosphere and 62,188 for rhizo-
plane). Analysis of molecular variance (AMOVA) and homogeneity of molecular variance
(HOMOVA) were calculated by the implementation of Mothur based on the Yue and Clayton
measure of dissimilarity distance matrix among samples [50]. Weighted UniFrac distance [51]
was calculated using the phylogenetic tree among OTUs and a count file containing the infor-
mation of the abundance of each OTU in each sample. Analysis of similarity (ANOSIM) [52]
was conducted after the clustering using the implementation of Mothur.

Community functional analysis was conducted using the PICRUSt programme [53] on the
Galaxy platform [54]. Since PICRUSt only allows the use of the Greengenes reference taxon-
omy database, the above analysis was carried out again using Greengenes 13 database [55]
instead of RDP reference taxonomy files. The KEGG database [56,57] was used to map the
genes on the metabolic pathway.

Statistical analyses
Statistical analyses of diversity indices were conducted using SAS software (SAS Institute, Cary,
NC, USA) applying a PROC MIXED model. Treatment, genotype and the interaction between
the two of them were treated as fixed effects, and chamber was treated as random effect. For
relative abundance of OTU and PICRUSt analyses, an R-based programme edgeR [58] was
used to determine the effect of treatment and genotype since these analyses produced discrete
data, not continuous data. For multiple comparisons, a false discovery rate (FDR) was calcu-
lated according to Benjamini and Hochberg [59].

Results

Ozone treatment and next-generation sequencing
Rice plants were treated with 85 ppb of ozone stress for 30 d prior to the microbe collection.
This is a realistic concentration, which is anticipated in the near future in many parts of the
world, and this high level has already been reached in some highly polluted areas [16,20].
Ozone treatment indeed affected plants, as shown by the induced expression of OsNPR1 (Fig
1), a general marker gene for ozone stress in rice [37]. OsNPR1 is a transcription factor which
modulates a wide range of defense responses in rice [60], and which is stimulated under ozone
stress. The Illumina MiSeq sequencing yielded a total of 7,935,598 reads for pooled phyllo-
sphere samples and 7,747,296 reads for rhizoplane samples. Through stringent read quality
check and removal of chimeric and singleton reads, we obtained 2,256,695 high-quality reads
for the 16 phyllosphere samples and 1,944,731 high-quality reads for the 16 rhizoplane samples
(S2 Table). These reads were used for defining operational taxonomy units (OTUs) at 97%
identity and further analyses. One of the 16 samples showed an excessively high number of
OTUs in the phyllosphere fraction. Moreover, this sample was most distantly related to all
other samples when Yue and Clayton dissimilarity distance [50] was calculated both in the
phyllosphere and rhizoplane (S1 Fig). Therefore, we treated this sample as an outlier and
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eliminated this sample from both, the phyllosphere and rhizosphere dataset, for all subsequent
analyses.

Community structure and diversity analysis
Based on OTUs picked at 97% identity, alpha-diversity in each group was visualized by rarefac-
tion curves (Fig 2). In both compartments, sequencing effort was reasonably deep to thor-
oughly analyse the community (Fig 2). Comparing the two compartments, the rhizoplane was
inhabited by a higher diversity of bacteria. No clear separation was observed among the groups
in either fraction, meaning that different genotype or treatment did not cause obvious changes
in the diversity and richness of the microbial community. Alpha diversity was also quantita-
tively assessed by calculating inverse Simpson index. It was also not significantly affected by
different genotypes or ozone treatment (Table 1). Species richness and evenness were further
analysed by calculating the Chao 1 index and Simpson’s evenness index, respectively. Ozone
treatment or different genotypes did not significantly affect these indices (Table 1). Other indi-
ces showing the community’s diversity and evenness also did not reveal any significant effect of
treatment or genotypes (S3 Table).

In order to further evaluate a potential effect of ozone treatment and genotypic differences,
we analysed the structure of the community by analysis of molecular variance (AMOVA) and
homogeneity of molecular variance (HOMOVA) [61]. AMOVA, a nonparametric analogue of
ANOVA, which determines whether the genetic diversity within each community is different
from the average genetic diversity of both communities, revealed no significant effect of geno-
type or treatment (Table 2). In contrast, HOMOVA, a nonparametric analogue of Bartlett’s F-
test, which is used to test whether the genetic diversity is the same in multiple communities,

Fig 1. Relative expression level of an ozone marker gene OsNPR1. The expression level of the OsNPR1 gene
(Os01g0194300) was analysed from each sample to assess the effect of ozone fumigation on the whole plant. Total RNA was
extracted from the most recently fully expanded leaf from one plant in each pot and qPCR was conducted. The values for 16
samples (four different groups and four replicates) are shown. The expression level was calibrated to an internal control gene
U2_snRNP (Os05g0564200). The mean value obtained for OsNPR1 from the four control samples was set to 1 in each
genotype. The asterisks indicate that the expression levels are significantly different between control and ozone treated samples
(P < 0.01; by Student’s T-test).

doi:10.1371/journal.pone.0163178.g001
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Fig 2. Rarefaction curve of each sample. The number of sampled sequences is plotted on the x-axis, and the
number of different OTUs detected in the samples is plotted on the y-axis. (A) phyllosphere, (B) rhizoplane. The
dashed vertical line indicates the depth of subsampling (54,238 for phyllosphere and 62,188 for rhizoplane). The
number of replicates was three for ozone-L81 group and four for the rest of the groups.

doi:10.1371/journal.pone.0163178.g002

Table 1. Comparison of various alpha diversity indices in different groups and the result of ANOVA in the phyllosphere and the rhizoplane.

Fraction Category Index NB-Control L81-Control NB-Ozone L81-Ozone G T GxT

Phyllosphere Diversity Inverse of Simpson index 1.22 ± 0.04 1.22 ± 0.05 1.42 ± 0.17 1.29 ± 0.07 ns ns ns

Richness Chao1 index 244 ± 35 179 ± 25 234 ± 46 254 ± 50 ns ns ns

Evenness Simpson’s evenness index 0.011 ± 0.001 0.012 ± 0.002 0.012 ± 0.003 0.011 ± 0.001 ns ns ns

Rhizoplane Diversity Inverse of Simpson index 9.7 ± 1.6 8.7 ± 2.5 7.0 ± 1.4 7.7 ± 1.6 ns ns ns

Richness Chao1 index 1948 ± 224 1717 ± 113 2025 ± 130 2000 ± 65 ns ns ns

Evenness Simpson’s evenness index 0.0087 ± 0.0023 0.0080 ± 0.0023 0.0055 ± 0.0012 0.0061 ± 0.0014 ns ns ns

Alpha diversity indices were categorized into “Diversity”, “Richness” and “Evenness”, and the values of each index were calculated for four groups (i.e. two

treatments and two genotypes). ANOVA was conducted specifying treatment, genotype and the interaction between them as variables. The mean value of

three or four replicates is shown with standard error. The result of ANOVA is shown on the right columns. G, genotype; T, treatment; GxT, genotype and

treatment interaction; n.s., not significant. NB, Nipponbare.

doi:10.1371/journal.pone.0163178.t001
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showed a significant treatment effect in the phyllosphere fraction (Table 2). The variance
within the group was higher in ozone-treated samples (1.7 x 10−4) compared to that of the con-
trol samples (9.1 x 10−6).

The relationship among samples was visualized in a principal coordinate analysis (PCoA)
plot based on the Yue and Clayton measure of dissimilarity [50] (Fig 3A–3D). Plotting the first
two axes, a weak clustering was observed for the rhizoplane fraction (Fig 3B). In the phyllo-
sphere fraction, a somewhat weak clustering was observed by plotting the second and the third
axes (Fig 3C). The significance of clustering was analysed by calculating the values for analysis
of similarity (ANOSIM). In both fractions, no genotypic effect (R = -0.08, P = 0.89 for the phyl-
losphere, R = -0.03, P = 0.51 for the rhizoplane) was observed, while a weak treatment effect
(R = 0.11, P = 0.10 for the phyllosphere, R = 0.12, P = 0.11 for the rhizoplane) was observed for
both fractions (Fig 3A–3D). A dendrogram made from the same distance matrix showed a sim-
ilar pattern (S2 Fig).

To obtain deeper insight into the changes in the community composition, we calculated a
weighted UniFrac distance. UniFrac makes use of the phylogenetic information of the detected
OTUs and provides more power than simply comparing the abundance of OTUs. The
weighted UniFrac analysis was conducted on the subsampled OTU table for each fraction (the
subsampling size was 54,238 for phyllosphere and 62,188 for rhizoplane, including all rare
OTUs). The PCoA plot based on the UniFrac distance matrix showed no obvious clustering in
the phyllosphere fraction, although the associated P value was relatively small (P = 0.12; Fig
3E). In the rhizoplane fraction, there was a weak tendency of clustering (P = 0.06, R = 0.10 by
ANOSIM).

Community compositional analysis
To evaluate possible responses of the microbial community members further, the relative
abundance of each OTU was calculated for each fraction. Here we defined OTUs with more
than 0.5% of relative abundance as abundant OTUs (A-OTU), and the subsequent community
compositional analysis was conducted on A-OTUs, since rare OTUs cannot be robustly quanti-
fied due to low replicability [62]. The phyllosphere fraction contained 6 A-OTUs, while the rhi-
zoplane fraction contained 23 A-OTUs (S4 and S5 Tables). The phyllosphere community was
largely dominated by one OTU classified as Variovorax at genus level, comprising 89% of the
total reads (S4 Table). On the other hand, the major OTUs in the rhizoplane were classified as

Table 2. Comparison of community structure by analysis of molecular variance (AMOVA) and homogeneity of molecular variance (HOMOVA) and
the results of significance tests.

Fraction Parameter Comparison P value

Phyllosphere AMOVA Control vs Ozone 0.675

Nipponbare vs L81 0.348

HOMOVA Control vs Ozone 0.021

Nipponbare vs L81 0.330

Rhizoplane AMOVA Control vs Ozone 0.161

Nipponbare vs L81 0.313

HOMOVA Control vs Ozone 0.146

Nipponbare vs L81 0.412

AMOVA and HOMOVA were conducted by the Mothur programme based on the distance matrix created by the Yue and Clayton measure of dissimilarity

made from the subsampled OTU table. The comparison was performed between different genotypes and ozone treatment. Analysis was conducted

separately for each fraction.

doi:10.1371/journal.pone.0163178.t002
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Fig 3. Principal coordinate analysis plot of Yue and Clayton and weighted UniFrac distances among samples.
(A-D) Relatedness among samples shown by the principal coordinate analysis plot based on the Yue and Clayton
dissimilarity distance in the phyllosphere fraction (A, C) and rhizoplane fraction (B, D). The first and second axes were
plotted for A and B, and the second and third axes were plotted for C and D. (E, F) Principal coordinate analysis plot of
weighted UniFrac analysis in the phyllosphere fraction (E) and rhizoplane fraction (F) based on the phylogenetic tree of
OTUs and their abundance in each sample. The results of analysis of similarity (R value and P value) are also shown. An
ellipse was drawn when a tendency of clustering between the treatments was seen on the plot. NB, Nipponbare; C,
control; O, ozone. The number of replicates was three for L81O group and four for the rest of the groups.

doi:10.1371/journal.pone.0163178.g003
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Azospira (28%), Pelomonas (13%), Dechloromonas (7%) and Geothrix (5%) at genus level, and
these four major OTUs accounted for 50% of the total reads (S5 Table). We calculated the
effect of different genotypes and treatment on the relative abundance of each A-OTU. In the
phyllosphere fraction, no A-OTU was significantly affected when false-discovery rate (FDR)
adjustment was applied (S4 Table). In the rhizoplane fraction, on the other hand, two OTUs
were significantly affected by ozone treatment (S5 Table). An OTU belonging to the Rhodospir-
illaceae family and another OTU belonging to the Clostridiales order decreased their relative
abundance in ozone-treated plants as compared with the plants under the control condition
(FDR < 0.05; S5 Table). We further compared the relative abundance on higher levels of taxo-
nomic classification (i.e. family, order, class and phylum; Fig 4; S4 and S5 Tables). No taxa
were significantly affected by treatment or different genotypes when the OTUs were classified
by these higher taxonomy levels (S4 and S5 Tables).

Community functional analysis
To explore the possibility that the function of the community alters due to these effects, we esti-
mated the number of genes involved in certain functions or metabolic pathways, which each
community possesses as a whole. To this end, we used the PICRUSt software [53], which esti-
mates the functional profile of the community based on the abundance of genes involved in
certain metabolic pathways in each taxon and their relative abundance. We selected genes with
counts of more than 1,000 in all the samples for robust quantification and conducted statistical
analysis using the edgeR programme. None out of 1,897 and 2,750 pathways for the phyllo-
sphere and rhizoplane fractions, respectively, were significantly affected by ozone treatment or
different genotypes (S6 and S7 Tables).

Discussion

Evaluation of the sequencing analysis and dominant taxa in each
fraction
Our results of the relative abundance of the rhizoplane community members are largely com-
parable with a previous report conducted under field and greenhouse conditions, where Proteo-
bacteria were the dominant phylum, and Acidobacteria and Actinobacteria were also relatively
abundant in the rice rhizoplane [63] (Fig 4; S5 Table). This suggests that a characteristic rhizo-
plane microbiota established under the conditions adopted in the current study. Chloroflexi
were also reported as an abundant phylum earlier [63], but not in the current study (S5 Table).
This inconsistency and some other differences (such as a rather low abundance of Plantomy-
cetes) might originate from different soil types, growth conditions or different primers used in
different studies. In previous studies, it was shown that different primers caused biases in the
relative abundance of some taxa [62,64]. In the phyllosphere fraction, the community was
dominated by the genus Variovorax, a member of the class Betaproteobacteria (S4 Table). Pre-
vious studies identified Actinobacteria and Alphaproteobacteria [3] or Enterobacteriaceae (clas-
sified as Gammaproteobaceria at the class level) [65] as the dominant taxa in the phyllosphere
in paddy-grown rice. Such discrepancies can be explained by the fact that the phyllosphere bac-
terial community is highly influenced by the initial community members, leading to the forma-
tion of specific microbial communities (”stochastic niche model”) [66]. Considering that the
phyllosphere bacteria originate from diverse sources including air, soil, paddy water and the
seed itself [3,4,66], this fraction is probably more sensitive to the environmental factors and
plant growth conditions, which may affect the initial colonizers. Since some of the species in
the Variovorax family inhabit soil and paddy water [67,68], the large number of Variovorax in
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the phyllosphere could have originated from the irrigation or paddy water. However, the high
abundance of Variovorax is not simply a passive effect of irrigation, since bacteria of this taxon
actively form habitats as the plant grows and increase their relative abundance [66]. Another
reason for the discrepancy could be different growth conditions and the geographical locations,
since our experiment was conducted in a greenhouse at a location different from the natural
rice cultivation areas.

Ozone treatment leads to weak responses in the bacterial community
composition
HOMOVA revealed a significant effect of ozone on the phyllosphere microbial community
(Table 2), suggesting that the microbial communities from the phyllosphere of ozone-treated
plants are more variable than those from the phyllosphere of control plants. The difference of
the community composition was also supported by the PCoA plot based on the Yue and Clay-
ton dissimilarity index, where the two treatments were weakly clustered in both fractions (Fig
3A–3D). In weighted UniFrac analysis, very weak treatment effects were observed in the rhizo-
plane fraction (Fig 3E and 3F). We found that two taxa were significantly affected by ozone
treatment in the rhizoplane. Rhodospirillaceae are nonsulfur photosynthetic bacteria, and often
found in freshwater-rich conditions such as mud. The order Clostridiales belongs to the phy-
lum Firmicutes, and it is an obligate anaerobe often found in flooded soil. The relationship
between these bacterial taxa and the response of plants to ozone needs further investigation.

Despite the observed changes in relative abundance of the above-mentioned taxa, no signifi-
cant treatment effect was seen in the molecular functions of the community (S6 and S7 Tables).
Considering these facts, we suggest that ozone affects the community as a whole, but not
towards a certain direction, which would lead to an alteration of the function of the formed
community in either fraction.

The fact that ozone treatment affected rhizoplane community composition at all is remark-
able, as it is less intuitive than effects observed in the phyllosphere. The overall effect of ozone
was more evident in the rhizoplane fraction than in the phyllosphere fraction (Fig 3). It is
unlikely that effects in the rhizosphere were direct, since ozone is mostly taken up through sto-
mata and immediately decomposes into reactive oxygen species (ROS). Therefore the concen-
tration of ozone is virtually zero beyond the stomatal pore [69], and ozone does also not
penetrate into the soil [28]. Earlier investigations revealed that elevated tropospheric ozone
leads to alterations of mycorrhizal colonization in the rhizosphere (reviewed in [70]). Recently,

Fig 4. Relative abundance of each phylum in different environments. The phyla with more than 0.5% of relative abundance are shown for each
group. (A) phyllosphere, (B) rhizoplane. NB, Nipponbare. The value is the mean of three to four replicates.

doi:10.1371/journal.pone.0163178.g004
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field experiments demonstrated changes in the methanogenic archaeal and bacterial commu-
nity in the rhizosphere soil of rice under elevated ozone concentration. It was found that an ele-
vated ozone concentration affects the relative abundance of some microbial taxa and decreases
phylogenetic diversity in the rhizosphere of rice paddy soil [25–27]. A previous study suggested
changes in carbon sequestration in the soil under elevated ozone concentration as an indirect
effect of ozone through changes in microbial community composition [71]. Thus, our current
results are consistent with previous findings, where ozone significantly affected belowground
microorganisms [25,71–74]. However, the decrease of bacterial diversity in the rhizosphere
reported previously [26] was not seen in the current study in the rhizoplane. This might be due
to different ozone treatment schemes or different growth stages of the plants adopted in differ-
ent studies, since the response of the rhizosphere microbial community was stronger in an ear-
lier growth stage [26,27]. Another explanation is linked to the fact that different colonizers
inhabit rhizosphere soil and rhizoplane; While the rhizosphere bacterial community has close
links to the bulk soil bacteria, the rhizoplane bacteria form a unique community, which is dif-
ferent from that of the rhizosphere in terms of composition and complexity [63].

Possible factors leading to different community composition in the
phyllosphere
A possible mechanism that has the potential to induce changes in phyllosphere bacterial com-
munities is via carbon release from the leaf surface. Plants emit volatile organic compounds
upon ozone stress to scavenge incoming ozone before passing through the stomata [75]. Since
some phyllosphere bacteria utilize volatile organic compounds emitted from plants [4], differ-
ent carbon availability on the leaf surface under ozone stress might have affected the nutrient
availability of the phyllosphere microorganisms. However, this may not explain the type of
response observed in the current study, since bacteria that utilize VOCs are rather specific taxa
[4,76,77], and it would have affected the relative abundance of these VOC-utilizing taxa and
their VOC-related metabolic pathways between treatments. Another possibility for community
compositional changes is direct toxicity of ozone. Previous studies reported that bacteria and
fungi were killed by direct exposure to ozone in the air [29,30]. However, these strong negative
effects of ozone on microbes were observed at rather high concentrations of ozone, and the
involvement of a direct effect remains unclear at lower concentrations as applied in the current
study. Possible mechanisms should be investigated in more detail in the future.

Possible factors leading to different community composition in
rhizoplane/rhizosphere
Since the rhizosphere/rhizoplane microbes utilize the root exudates and nutrients from the
root surface, different allocation of carbon and nutrient status of rhizosphere/rhizoplane upon
ozone stress might have affected the community composition [78]. Considering that a signifi-
cant amount of net photosynthetically assimilated carbon is partitioned into the rhizosphere as
root exudates and tissue sloughing (up to 50% of assimilated carbon; [5,79]) and that ozone
negatively affects carbon assimilation [24,80], altered nutrient availability from the plant
root might explain the effect of ozone on the rhizosphere/rhizoplane microbial community.
Changes in root morphology represent another possibility. Several reports suggested that
ozone decreases the amount of fine roots in some plant species [81,82]. Moreover, a previous
study reported different levels of fungal colonization on different root types in rice [83,84].
Therefore, different sets of microorganisms might have colonized different root types (e.g. fine
roots and crown roots), which were differently affected by ozone treatment.

Effects of Ozone on Phyllosphere and Rhizoplane Bacterial Communities

PLOS ONE | DOI:10.1371/journal.pone.0163178 September 19, 2016 13 / 19



Limitation of the current study and future perspectives
The current approach did not take into account archaea and fungi since the primer pair that
we used did not amplify their 16S rRNA genes. Although the abundance of these groups of
organisms is smaller compared to that of bacteria in the phyllosphere and rhizosphere/rhizo-
plane [1–4,31,32], they might be involved in additional important processes such as nutrient
uptake (e.g. arbuscular mycorrhizal fungi) and methane emission (e.g. methanogenic archaea).
A further limitation of the current approach is that the analysis was largely limited to epiphytes,
and endophytes were not systematically collected during the sampling. Since ozone induces
oxidative stress and leads to the formation of ROS in the apoplast [23,85] and bacteria are liable
to damage under such conditions [86,87], some endophytes colonizing the apoplast may be
also affected by ozone stress. Also, ozone stress increases the expression and protein levels of
some anti-pathogenic enzymes such as β-glucanases and chitinases in various plant species
[88–90], which could also affect the endophytic microbial community. Finally, it has to be con-
sidered that the experimental conditions in the current study were different from natural rice
cultivating areas, due to different soil types, use of a greenhouse and the geographical location
of the experimental site.

In conclusion, we detected a weak effect of ozone on the bacterial community in the phyllo-
sphere and the rhizosphere of rice as judged by HOMOVA and clustering analyses, although this
difference did not lead to detectable changes in specific metabolic pathways. Further research is
warranted to elucidate the underlying mechanisms for the shift in community changes.
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