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A B S T R A C T

Background: Coronavirus disease 2019 (COVID-19) has caused a substantial increase in mortality and eco-
nomic and social disruption. The absence of US Food and Drug Administration�approved drugs for severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the need for new therapeutic drugs to
combat COVID-19.
Methods: The present study proposed a fuzzy hierarchical optimization framework for identifying potential
antiviral targets for COVID-19. The objectives in the decision-making problem were not only to evaluate the
elimination of the virus growth, but also to minimize side effects causing treatment. The identified candidate
targets could promote processes of drug discovery and development.
Significant findings: Our gene-centric method revealed that dihydroorotate dehydrogenase (DHODH) inhibition
could reduce viral biomass growth and metabolic deviation by 99.4% and 65.6%, respectively, and increase cell
viability by 70.4%. We also identified two-target combinations that could completely block viral biomass
growth and more effectively prevent metabolic deviation. We also discovered that the inhibition of two antivi-
ral metabolites, cytidine triphosphate (CTP) and uridine-50-triphosphate (UTP), exhibits effects similar to those
of molnupiravir, which is undergoing phase III clinical trials. Our predictions also indicate that CTP and UTP
inhibition blocks viral RNA replication through a similar mechanism to that of molnupiravir.

© 2022 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic was caused
by the infectious spread of the novel new acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), which belongs to as the genus b-corona-
virus [1]. COVID-19 has resulted in a substantial increase in mortality
and severe economic and social disruption worldwide [2]. According
to the World Health Organization (WHO) COVID-19 dashboard [3], as
of January 27, 2022, COVID-19 had been responsible for over 5.6 mil-
lion deaths in 194 countries and over 360 million infections. Facing
this unprecedented crisis, many research groups, industries, and gov-
ernments have expended considerable effort and resources to
develop vaccines and medications to combat COVID-19 [4]. Several
prevention methods and treatments for COVID-19, such as mask
wearing, social distancing, and vaccination, have been promulgated
by the Taiwan Centers for Disease Control and Prevention and similar
agencies in nearly every country [5]. Vaccination can prevent viral
infection and reduce the spread of the disease. Authorized COVID-19
vaccines are now widely available. According to the WHO dashboard
(https://covid19.who.int/), as of January 25, 2022, a total of over 9.6
billion vaccine doses had been administered. However, the absence
of US Food and Drug Administration (FDA)-approved drugs against
SARS-CoV-2 highlights an urgent need to design new drugs [6]. Sev-
eral approaches [6�12] to drug screening and repurposing have been
developed to identify potential agents for treating COVID-19.

The rapid identification of potential therapeutic targets for COVID-
19 is essential. Computational methods and systems biology
approaches can play key roles in the discovery of suitable drugs. Con-
straint-based modeling (CBM) has been successfully applied in funda-
mental research [13�15], the inference of oncogenes [16�22], the
discovery of anticancer targets [23�26] in oncology, microbial engi-
neering [27�29], and other research fields. CBM uses data- and
knowledge-driven constraints to identify feasible metabolic flux dis-
tributions for a given condition [13,14]. The SARS-CoV-2 Alpha vari-
ant has been incorporated into the human alveolar macrophage
model iAB-AMØ-1410 [30�32], a genome-scale metabolic model
(GSMM) of normal human bronchial epithelial cells [33], a human
metabolic reaction model [34], and the human GSMM Recon 2.2
[35,36]. These metabolic models of infection have been applied to
computationally identify targets for combating COVID-19. However,
such numerical methods are inefficient for identifying target combi-
nations. For example, Recon 2.2 accounts for 7785 reactions and
6047 species; thus, more than 30 million combinations must be ana-
lyzed to consider all two-target reactions through the numerical
approach.
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Abbreviations

Symbol Enzyme
ACADSB Short/branched chain specific acyl-CoA

dehydrogenase
AKR1C4 Aldo-keto reductase family 1 member C4
AQP8 Aquaporin-8
AQP9 Aquaporin-9
CAD CAD protein
DHODH Dihydroorotate dehydrogenase
DPYS Dihydropyrimidinase
GK Glycerol kinase
HIBADH 3-hydroxyisobutyrate dehydrogenase
IDH2 Isocitrate dehydrogenase [NADP]
NADSYN1 Glutamine-dependent NAD(+) synthetase
PRPS1L1 Ribose-phosphate pyrophosphokinase 3
SLC10A1 Sodium/bile acid cotransporter
SLC1A6 Excitatory amino acid transporter 4
SLC46A1 Proton-coupled folate transporter
SLC6A19 Sodium-dependent neutral amino acid trans-

porter B(0)AT1
SORD Sorbitol dehydrogenase
STARD3 StAR-related lipid transfer protein 3
TK2 Thymidine kinase 2
UCK2 Uridine-cytidine kinase 2
UMPS Uridine 50-monophosphate synthase

Symbol Metabolite
13dpg 3-Phospho-D-Glyceroyl Phosphate
2pg 2-Phospho-D-Glycerate
3ivcoa 3-Hydroxyisovaleryl Coenzyme A
Accoa Acetyl Coenzyme A
Akg 2-Oxoglutarate
Ala Alanine
Arg Arginine
Argalaala Arginyl-Alanyl-Alanine
Asn Asparagine
Asp Aspartic acid
ATP Adenosine Triphosphate
Cbasp N-Carbamoyl-L-Aspartate
Cbp Carbamoyl Phosphate
CE2873 3,5-Diiodo-L-Thyronine 4-O-Sulfate
CE4832 3(S)-Hydroxy-Tetracosa-6,9,12,15,18-All-Cis-

Pentaenoyl Coenzyme A
CE4854 10Z,13Z,16Z,19Z-Docosatetraenoyl Coenzyme A
CTP Cytidine-50-Triphosphate
Cys Cysteine
Ddeccrn Lauroyl Carnitine
Dhor_S (S)-Dihydroorotate
G6p D-Glucose 6-Phosphate
Glac D-Glucurono-6,3-Lactone
Gln Glutamine
Glu Glutamic acid
Gly Glycine
GTP Guanosine-50-Triphosphate
Gua Guanine
HC00576 Homocarnosine
HC01668 Propinol Adenylate
His Histidine
Hpdcacoa Heptadecanoyl Coenzyme A
Ile Isoleucine
Leu Leucine
Leuasplys Leucyl-Aspartyl-Lysine
Lys Lysine

M01469 Cholesterol-Ester-5,8,11-Eico
Met Methionine
Nmn Nicotinamide Ribotide
Orot Orotate
Orot5p Orotidine 50-Phosphate
Pep Phosphoenolpyruvate
Phe Phenylalanine
Pro Proline
Prpp 5-Phospho-Alpha-D-Ribose 1-Diphosphate
Q10 Ubiquinone-10
Q10h2 Ubiquinol-10
Ser Serine
Thr Threonine
Trp Tryptophan
Ttc_ggdp Trans, Trans, Cis-Geranylgeranyl Diphosphate
Tyr Tyrosine
Ump Uridine-50-Monophosphate
UTP Uridine-50-TrIphosphate
Val Valine
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The present study integrated the SARS-CoV-2 Delta variant into
the genome-scale human metabolic model Recon 3D [37] to present
the viral infection. We developed a fuzzy multiobjective hieratical
optimization framework based on a modification of Identifying Anti-
cancer Target (IACT) framework [38,39] to mimic general wet-lab
experiments and discover potential targets for treating COVID-19.
The objectives were to limit viral biomass growth, maximize cell via-
bility, and minimize metabolic deviation of the cells perturbed by
potential treatments. The optimization method was employed in the
infection model to consider target combinations of not only genes
but also metabolites. Fuzzy set theory was applied to convert the
multiobjective optimization problem into a maximizing decision-
making problem, which was a mixed-integer trilevel optimization
problem. Currently available commercial software tools cannot solve
the fuzzy hierarchical optimization problem. Conventional genetic
algorithms can be extended to solve the problem to obtain global sol-
utions [40]. This study applied the nested hybrid differential evolu-
tion (NHDE) to solve the decision-making problem [38,39] to obtain
optimal antiviral targets.

2. Materials and methods

2.1. Integration of SARS-CoV-2 into human metabolic model

Viruses are nonliving entities and do not have their own metabo-
lism for reproduction; therefore, they are entirely dependent on the
hosts that they infect. According to experimental studies, viral infec-
tion leads to significant metabolic alterations in the host, including
increases in the glycolysis rate and changes in adenosine triphos-
phate (ATP) production [41�44]. A key step in the viral replication is
the synthesis of the viral biomass within the host cell, including
structural proteins and genetic material.

Experimental observations have indicated that viral biomass
synthesis causes significant metabolic flux changes in host cells
and that metabolic perturbations can directly alter viral reproduc-
tion. Thus, GSMMs can be used to predict how various metabolic
alterations affect viral reproduction and to identify antiviral tar-
gets to combat COVID-19. This study created an integrated
host�virus (HV) GSMM to screen promising antiviral targets for
COVID-19. The human GSMM Recon3D [37], which accounts for
5835 species, 10,600 reactions, and 2248 enzyme-encoding genes,
was used as the host model (denoted as HT) in this study. Host
cells infected with SARS-CoV-2 were integrated into the HV
model. The gene and protein sequences of the SARS-CoV-2
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B.1.617.2 Delta variant were downloaded from National Center
for Biotechnology Information (NCBI) genome database [45] and
used to generate the stoichiometric coefficients of a viral biomass
objective function (VBOF). The VBOF is a pseudo-reaction simulat-
ing the production of virus particles, namely nucleotides and
amino acids, and the associated energy metabolites required to
produce virus particles. The stoichiometric information of viral
lipids was not included in the VBOF because dynamic experimen-
tal data on viral envelopes are scarce.

The VBOF was generated in accordance with the seven steps
described by Aller et al [44], Renz et al [30] and Delattre et al [35].
The pseudo-reaction occurs in cytoplasm and is expressed as

X4
i¼1

SNiNi þ
X20
j¼1

SAj
Aj þ SH2OH2Oþ SATPATP !vBOF

Virus� Biomassþ SADP þ SPi Pi þ SPPiPPiþ SHþHþ
ð1Þ

where SNi
and SAj

are the stoichiometric coefficients of nucleotides
(Ni) and amino acids (Aj), and calculated using protein and gene
sequences, respectively. The stoichiometric coefficient of each metab-
olite in Eq. (1) is expressed as millimoles per gram of viral biomass
and are calculated as follows:

SNi
¼ 1000

MTot
Ni

MWv

 !
ð2Þ

SAj
¼ 1000

MTot
Aj

MWv

 !
ð3Þ

where the total molecules (MTot
Ni

) of each nucleotide in a mole of virus

particles is MTot
Ni

¼ CG
P

Ni
ðFGNi

þ FRNi
Þ, where CG is the genome copy

number, FGNi
is the nucleotide’s frequency in the viral genome and FRNi

is its frequency in the replication intermediates. The total molecules
(MTot

Aj
) of each amino acid per mole of virus particles is obtained using

the protein sequence of structural (FSPAj
) and non-structural (FNPAj

) pro-

teins and the formulaMTot
Aj

¼
X
SPk

CSPk F
SPk
Aj

þ
X
NPk

CNPkF
NPk
Aj

, where CSPk and

CNPk are the copy numbers of each structural and non-structural pro-
tein, respectively.

The amount of each nucleotide is converted into grams per mole
of virus particles by using GNi

¼ MTot
Ni

MWNi
, whereMWNi

is the molec-
ular weight (or molar mass, g/mol) of the nucleotide Ni. Similarly, the
amount of each amino acid per mole of virus particles is converted
into grams per mole of virus by GAj

¼ MTot
Aj

MWAj
, where MWAj

is the

molar mass of the amino acid Aj. The total mass of virus particles is
calculated for the total of the genomic and proteomic mass by using
MWv ¼

P
i GNi

þPj GAj
.

Protein and RNA nucleotide polymerization require energy from ATP
hydrolysis and pyrophosphate liberations. We revised the computation
of the stoichiometric coefficient for the other components built from
Aller et al [44], Renz et al [30] and Delattre et al [35] as follows. The total
molecules of ATP (MTot

ATP) are calculated from the molecule of each struc-
tural (ASPk ) and non-structural (ANPk ) protein as follows.

ASPk ¼ kATP YSPk � 1
� � ð4Þ

ANPk ¼ kATP YNPk � 1
� � ð5Þ

MTot
ATP ¼

X
SPk

CSPkA
SPk þ

X
NPk

CNPkA
NPk ð6Þ

The polymerization of amino acid monomers requires approximately
four ATP molecules per peptide bond, i.e. the constant kATP is defined as
kATP = 4. Here, YSPk and YNPk are the length of amino acids for the kth
structural and non-structural protein, respectively. The copy numbers,
CSPk and CNPk , are acquired from Delattre [35]. The stoichiometric coeffi-
cient of ATP is expressedmillimoles per gram of virus:

SATP ¼ 1000
MTot

ATP

MWv

� �
ð7Þ

ATP is hydrolyzed into adenosine diphosphate (ADP), Pi, and H+

through the following reaction: ATP + H2O ! ADP + Pi + H+ + free
energy. The stoichiometric coefficients of ADP, Pi and H+ are equal to
that of ATP: SATP ¼ SADP ¼ SPi ¼ SHþ .

Amino acids are polymerized in cells to make polypeptides and
proteins. The formation of peptide bonds consumes energy, which is
obtained from the hydrolysis of ATP. Furthermore, amino acids poly-
merize through condensation polymerization; therefore, for every
monomer added to a growing polymer chain, one molecule of water
is also produced. As a result, the number of molecules of H2O should
consider both the hydrolysis of ATP required for polymerization and
water produced in the formation of the peptide bond. The stoichio-
metric coefficient of water can thus be calculated by the equation

SH2O ¼ 1000
MTot

H2O

MWv

 !
ð8Þ

where MTot
H2O

represents the overall molecules of H2O required for ATP
hydrolysis as fromMTot

H2O
¼ ðkATP � 1ÞMTot

ATP .
The polymerization of RNA nucleotide monomers to form the viral

genome (+ssRNA or -ssRNA) releases PPi molecules (defined in the
following expressions by the constant kPPi =1). The number of mole-
cules of PPi (MTot

PPi ) required to form the viral genome (PG) and replica-
tion intermediates (PR) is calculated using the respective nucleotide
counts:

PG ¼ kPPi
X
Ni

FGNi
� 1

 !
ð9Þ

PR ¼ kPPi
X
Ni

FRNi
� 1

 !
ð10Þ

MTot
PPi ¼ CG PG þ PR� � ð11Þ

The frequencies, FGNi
and FRNi

of the virus genome and its replication
intermediate are calculated from the viral RNA sequence. The stoi-
chiometric coefficient of PPi in the VBOF is expressed in millimoles
per gram of virus:

SPPi ¼ 1000
MTot

PPi

MWv

� �
ð12Þ

2.2. Antiviral target discovery problem

We developed a computer-aided strategy for screening potential
therapeutic antiviral targets to combat COVID-19. The screening
strategy was designed to identify not only antiviral enzymes, but also
anti-metabolites. The antiviral target discovery (AVTD) framework
described in Fig. 1 was formulated as a hierarchical optimization
problem based on a modified form of IACT framework [38,39] to
mimic a wet-lab experiment. The hierarchical screening procedure
was formulated as a trilevel optimization problem consisting of an
outer optimization problem with multiple objectives and subject to
two loop inner optimization problems describing the characteristics
of treated and perturbed cells.

The aim of the AVTD problem is to identify a set of potential thera-
peutic antiviral targets to remedy COVID-19. The identified antiviral
targets require to fulfill three goals, i.e. the virus replication can be
eliminated (Fig. 1F and H), the infected cells can restore to their
healthy counterparts (Fig. 1E, F and H), and metabolic perturbation of



Fig. 1. Flowchart of computer-aided screening for antiviral targets to combat COVID-19. (A) Gene and protein sequences of SARS-CoV-2 were downloaded from NCBI database. (B) A
pseudo-reaction was constructed as a viral biomass objective function. (C) The human genome-scale metabolic network Recon3D was downloaded from Virtual Metabolic Human
(https://www.vmh.life/). (D) The genome-scale metabolic model of the host-virus cells was created. (E) Flux distribution patterns for host cells were obtained from clinical data if
available; otherwise, the template values were computed with flux balance analysis (FBA) and uniform flux distribution (UFD) problem without perturbation. (F) A set of antiviral
targets was identified using the nest hybrid differential algorithm (NHDE), and used to compute the flux distributions of the host-virus cells during treatment. (G) The same targets
were used to compute the flux distributions of perturbed host cells during treatment. (H) From fuzzy set theory, the flux distributions of the template, treated and perturbed cells
are determined to evaluate the fitness of the targets. (I) If the fitness was unsatisfactory, the next antiviral targets were generated using the NHDE algorithm, and the procedure was
repeated. (J) If the fitness was satisfactory, the target was identified as potential candidate.
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the host cells are as small as possible to reach smaller side effects
(Fig. 1E, G and H). The goals are formulated as fuzzy multiple objec-
tives in the outer optimization problem as follows.

Outer optimization problem :

Fuzzy minimizing the viral biomass production for treatment :gmin
d;z

vTRBOF � 0

8<:
Fuzzy minimizing the biomass growth of treated cells and perturbed cells :gmin
d;z

vTRbiomass � 0; gmin
d;z

vPBbiomass � 0

8<:
Fuzzy maximizing ATP production of treated cells and perturbed cells :gmax
d;z

vTRATP � vHT ;max
ATP ; gmax

d;z
vPBATP � vHT ;max

ATP

8<:
Fuzzy similarity of flux and metabolite� flow alterations of treated cells to

the host cells :gSimilarity
d;z

vTRj � vHTj ; gSimilarity
d;z

rTRm � rHTm

8>>><>>>:
Fuzzy similarity of flux and metabolite � flow alterations of perturbed

cells to the host cells :gSimilarity
d;z

vPBj � vHTj ; gSimilarity
d;z

rPBm � rHTm

8>>><>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
ð13Þ

The first objective is the fuzzy minimization of the viral biomass, i.
e. the viral biomass production (vTRBOF ) for treatment was achieved as
close zero as possible. The second and third objectives are optimized
the cell viability of the host-virus cells (vTRbiomass) and host cells
(vPBbiomass) during treatment. The fourth and fifth objectives are used to
optimize the flux distributions (vTRj ) and metabolite-flows (rTRm ) of the
treated cells that achieved as similar the host template (vHTj and rHTm )
as possible and the metabolic perturbations of host cells during treat-
ment that got as close the template as possible, and are defined by
fuzzy equality functions [46]. The inner optimization problems are
expressed as follows.

Inner optimization problems :

Treatment of host� virus cells :

FBA problem :

max
vf =b

obj ¼ vBOF

subject to

NHV vf � vb
� � ¼ 0

vLB;TRf =b;i �vf =b;i�vUB;TRf =b;i ; zi 2V
TR

vLBf =b;j�vf =b;j�vUBf =b;j; zj=2V
TR

UFD problem :

min
vf =b

P
i2VInt vf ;k

� �2 þ vb;k
� �2

subject to

NHV vf � vb
� � ¼ 0

vLB;TRf =b;i �vf =b;i�vUB;TRf =b;i ; zi 2V
TR

vLBf =b;j�vf =b;j�vUBf =b;j; zj=2V
TR

obj�obj�HV

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
Perturbation of host cells :

FBA problem :

max
vf =b

obj ¼ vATP

subject to

NHT vf � vb
� � ¼ 0

vLB;TRf =b;i �vf =b;i�vUB;TRf =b;i ; zi 2V
TR

vLBf =b;j�vf =b;j�vUBf =b;j; zj=2V
TR

UFD problem :

min
vf =b

P
i2VInt vf ;k

� �2 þ vb;k
� �2

subject to

NHT vf � vb
� � ¼ 0

vLB;TRf =b;i �vf =b;i�vUB;TRf =b;i ; zi 2V
TR

vLBf =b;j�vf =b;j�vUBf =b;j; zj=2V
TR

obj�obj�HT

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð14Þ

https://www.vmh.life/


Fig. 2. Illustrations of gene- and metabolite-centric approaches. (A) In the gene-centric approach, the reaction r1 is catalyzed by isozymes, E1 and E2, and the reaction r2 is regulated
by E1. The isozymes, E1 and E2, are knocked out to inhibit r1, and r2 is also blocked by E1. (B) In the metabolite-centric approach, the metabolite, M1, is inhibited, and the synthesis
reactions, r2, r3 and r4 are there by also inhibited.
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where vf/b is the forward-backward flux vector of reactions; NHV

and NHT are the stoichiometric matrices for host-virus cells and
host cells, respectively; and vLBf =b;j and vUBf =b;j are the positive lower
bound (LB) and upper bound (UB) of the jth forward-backward flux,
respectively; and obj�HV=HT is the maximal cellular objective obtained
through FBA. The approaches depend on the vLB;TRf =b;i and vUB;TRf =b;i of the
ith modulated reactions from the inner optimization problems. The
AVTD framework can be employed to investigate reactions modu-
lated on gene-centric or a metabolite-centric approach Fig. 2. illus-
trates the concepts underlying depicts the concept of both
approaches, and a detailed example described in Additional File 2.
In the gene-centric approach, the LBs and UBs of modulated reac-
tions are restricted as follows:

Up� regulation :

1� dð Þvbasalf ;i þ dvUBf ;i �vf ;i� vUBf ;i

vLBb;i�vb;i� 1� dð Þvbasalb;i þ dvLBb;i; zi 2V
TR

8<:
Down � regulation :

vLBf ;i�vf ;i� 1� dð Þvbasalf ;i þ dvLBf ;i

1� dð Þvbasalb;i þ dvUBb;i�vb;i�vUBb;i ; zi 2V
TR
V

IZ

8<:
1� eð Þvbasalf ;i �vf ;i� 1þ eð Þvbasalf ;i

1� eð Þvbasalb;i �vb;i� 1þ eð Þvbasalb;i ; zi 2VTR \VIZ

8<:
Knockout :
vf ;i ¼ 0

vb;i ¼ 0; zi 2VTR
V

IZ

(
1� eð Þvbasalf ;i �vf ;i� 1þ eð Þvbasalf ;i

1� eð Þvbasalb;i �vb;i� 1þ eð Þvbasalb;i ; zi 2VTR \VIZ

8<:

ð15Þ

where VIZ is the set of reactions regulated by isozymes deter-
mined using the gene-protein-reaction (GPR) associations, and
modulation parameter d is determined by a nested hybrid differ-
ential evolution (NHDE) algorithm. The metabolite-centric regula-
tors modulate the synthesis reactions of the active metabolites.
The LBs and UBs of modulated reactions for the ith active metabo-
lite are restricted as
Regulated bounds for the ith active metabolite :

Up� regulation :

1� dð ÞvCAf ;j þ dvUBf ;j �vf ;j� vUBf ;j ; j2Nij > 0 and j2Vrxn

1� dð ÞvCAb;j þ dvUBb;j�vb;j� vUBb;j ; j2Nij <0 and j2Vrev

8<:
Down� regulation :

vLBf ;j�vf ;j� 1� dð ÞvCAf ;j þ dvLBf ;j ; j2Nij >0 and j2Vrxn

vLBb;j�vb;j� 1� dð ÞvCAb;j þ dvLBb;j; j2Nij <0 and j2Vrev

8<:
Knockout :
vf ;j ¼ 0; j2Nij > 0 and j2Vrxn

vb;j ¼ 0; j2Nij <0 and j2Vrev

(

ð16Þ
2.3. Solving strategy

The outer optimization problem in the AVTD framework com-
prises various fuzzy objective functions. Following procedures similar
to those used by Wang et al [38], the fuzzy multiobjective hierarchi-
cal optimization problem was converted into a maximizing decision-
making problem using fuzzy set theory. The maximization problem is
expressed as follows

max
d;z
hD ¼ whVBOF þ 1�wð Þmin hVBOF ;hCV ;hMDf gð Þ

subject to the inner optimization problems :
1: FBA and UFD problems for treating host� virus cells
2: FBA and UFD problems for perturbing host cells due to treatment

8>>><>>>:
ð17Þ

where hVBOF, hCV and hMD are the membership grades of the
VBOF, cell viability, and metabolic deviation, respectively, and w
is a weighting factor. The transformation of each fuzzy objective
function in the outer optimization problem describes as follows.
A one-side linear membership function is applied to convert
each fuzzy minimization objective in Eq. (13) into a decision cri-
terion.
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hTR=PB
biomass ¼

1; if vTR=PBbiomass < LB

UB� vTR=PBbiomass

UB� LB
; if LB�vTR=PBbiomass�UB

0; if vTR=PBbiomass >UB

8>>>><>>>>: ð18Þ

where the LB and UB are provided by a user, and vTR=PBbiomass is the bio-
mass growth rate of treated (TR) and perturbed (PB) cells calculated
from the inner optimization problems. Fuzzy minimization of the
VBOF is calculated using a method similar that in Eq. (18).

Converting each fuzzy maximization objective in Eq. (13) into a
decision criterion requires a one-side linear membership function.

hTR=PB
ATP ¼

0; if vTR=PBATP < LB

vTR=PBATP � LB
UB� LB

; if LB�vTR=PBATP �UB
1; if vTR=PBATP >UB

8>>>><>>>>: ð19Þ

The second and third goals in the outer optimization problem are
combined to determine the cell viability of the treated and perturbed
cells through the computation of mean-min operation [38] as

hTR=PB
CV ¼ hTR=PB

biomass þ hTR=PB
ATP

� �
=2þ min hTR=PB

biomass;h
TR=PB
ATP

n o� �
=2 ð20Þ

Hence, overall cell viability is calculated as

hCV ¼ hTR
CV þ hPB

CV

� �
=2þ min hTR

CV ;h
PB
CV

� 	� �
=2 ð21Þ

A two-side linear membership function is employed to convert
the fuzzy similarity objective from Eq. (13) into a decision criterion.

hTR=PB
ðvj or rmÞ ¼

0; ifðvj or rmÞTR=PB < LB

ðvj or rmÞTR=PB � LB
UB� HT

; if LB �ðvj or rmÞTR=PB <HT

1; ifðvj or rmÞTR=PB ¼ HT

UB� ðvj or rmÞTR=PB
UB� HT

; if HT < ðvj or rmÞTR=PB�UB
0; ifðvj or rmÞTR=PB >UB

8>>>>>>>>>>><>>>>>>>>>>>:
ð22Þ

The decision criteria of fuzzy similarity for all fluxes in the GSMM are
summed in all two-side membership functions as

hTR=PB
v ¼ PNF

j¼1
hTR=PB
vj =NF , where NF is the total number of fluxes in the

GSMM. The metabolite-flow alternations can be calculated using a

similar equation: hTR=PB
M ¼ PNM

m¼1
hTR=PB
m =NM , where NM is the total num-

ber of metabolites in the GSMM. The flow rate of the mth metabolite
is computed as

rm ¼
X
i2Vc

X
Nij >0;j

Nijvf ;j �
X

Nij <0;j

Nijvb;j

0@ 1A;m2Vm ð23Þ

where Vc is the set of species located in different compartments of
the cell.

The metabolic deviations for treated and perturbed cells compris-
ing flux and metabolite-flow alterations as

hTR=PB
MD ¼ hTR=PB

v þ hTR=PB
M

� �
=2þ min hTR=PB

v ;hTR=PB
M

n o� �
=2 ð24Þ

Hence, overall metabolic deviation is defined as

hMD ¼ hTR
MD þ hPB

MD

� �
=2þ min hTR

MD;h
PB
MD

� 	� �
=2 ð25Þ

With the intersection of the membership functions, the fuzzy multi-
objectives can transformed into the hierarchical fitness hD by Eq. (17)

for maximization. The optimality of the AVTD problem can be dem-

onstrated using a procedure similar to that described by Wang et al

[38]. The maximizing decision-making problem (17) is a mixed-inte-

ger trilevel optimization problem involving linear and quadratic
programming. It is a high dimension NP-hard problem that no com-
mercial software has solved. In this study, we modified the primal
version of NHDE algorithm to solve the maximizing
decision-making problem (17). The NHDE algorithm is a parallel
direct search procedure and extended from the hybrid differential
algorithm [47]. It has succeeded to solve the NP-hard problems such
as strain design problems [29], oncogene inference problems
[18�22] and anticancer target design problems [38,39]. The perfor-
mance and solution quality of the NHDE algorithm depended on
three key setting factors: tolerance ratio used in migration, popula-
tion size, and maximum number of iterations. The tolerance ratio
was set to 0.05. A population size of 50 was used and the default
number of iterations was 100.

3. Results and discussions

3.1. Stoichiometric analysis

We used the stoichiometric coefficients of the amino acids and
nucleotides in the viral pseudo-reaction for Alpha and Delta variants,
and the reaction of cell growth of the host cell to compare the stoichi-
ometry between infected and uninfected cells. Many of the amino
acids and all of the nucleotides differed substantially in stoichiometry
between the viral pseudo-reaction and biomass reaction of the host
cells, as illustrated in Fig. 3A. The coefficients of glutamic acid (Glu),
histidine (His) and proline (Pro) for the infected cells decreased sig-
nificantly. By contrast, the coefficients of tryptophan (Trp), aspara-
gine (Asn) and tyrosine (Tyr) for the infected cells increased. The
difference of stoichiometric coefficients for leucine (Leu), alanine
(Ala) and glycine (Gly) were nonsignificant. The stoichiometric coeffi-
cients for the Delta variant and host cells are presented in Fig. 3B. The
stoichiometric coefficients for Leu, Ala and Gly in both cells were
higher than those of the amino acids and nucleotides (Fig. 3B). The
stoichiometric coefficients of RNA nucleotides were more than 2.6-
fold higher (log2 fold change � 1.38). The stoichiometric coefficients
for ATP and UTP were greater than those for guanosine-50-triphos-
phate (GTP) and cytidine triphosphate (CTP), as illustrated in Fig. 3B.

RNA and protein sequencing of the SARS-CoV-2 Alpha variant was
also applied to determine the stoichiometric coefficients for the VBOF
for comparison. The stoichiometry of the Alpha variant was nearly
identical to that of the Delta variant, as illustrated in Fig. 3A. To com-
pare the protein sequences of the viruses, we first used the Expasy
Translate tool (https://www.expasy.org/resources/translate) to trans-
late the RNA sequences into the corresponding protein sequences,
which were identical to the protein sequences accessed from the
NCBI database [45]. We then compared the variants’ sequence align-
ments, and identified few differences in structural and nonstructural
proteins of these variations (Table 1). The results indicated that the
structural spike protein (S protein) of both viruses consists of 1273
amino acids and exhibit nine variations, and the nucleocapsid has
three variations. The nonstructural protein ORF1ab was found to
comprise 7096 amino acids and exhibit seven variations. The
altered locations of the proteins are listed in Table 1. We discov-
ered the sequences of the structural membrane (M) and envelop
(E) proteins and nonstructural proteins ORF7B and ORF10 to be
completely identical.

3.2. Gene-centric approach

The NHDE algorithm [38,39] was applied to solve the maximizing
decision problem in Eq. (17) by using the gene-centric approach
defined in Eq. (15) to discover optimal enzyme targets. The algorithm
was run several times to identify a set of single gene targets exhibit-
ing the highest fitness among 2248 enzyme-encoding genes. The
NHDE algorithm is a genetic algorithm that can obtain and rank tar-
gets by fitness. We identified five potential target enzymes with a

https://www.expasy.org/resources/translate


Fig. 3. Stoichiometric analysis of amino acids and nucleotides in the viral biomass reaction. (A) Log2 fold changes of stoichiometric coefficients in amino acids and nucleotides of
Delta and Alpha variants versus to host cells. (B) Stoichiometric coefficients of amino acids and nucleotides in the biomass reaction of Delta variant and host cells.
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membership grade for VBOF greater than 0.762, as listed in Table 2.
Two targets, dihydroorotate dehydrogenase (DHODH) and ribose-
phosphate pyrophosphokinase 3 (PRPS1L1), participated in the
metabolism on pyrimidine and purine, which are used for RNA and
DNA synthesis. 3-hydroxyisobutyrate dehydrogenase (HIBADH) par-
tially participates in the amino acid degradation related to protein
synthesis. Aquaporin-9 (AQP9) and sodium/bile acid cotransporter
(SLC10A1) participate in bile secretion. SARS-CoV-2 was recently dis-
covered in the bile of a patient with severe COVID-19 [48,49]. The
membership grade (hVBOF) for the VBOF reflects the percentage
decrease in viral biomass production in treated cells. When hVBOF = 1,
viral biomass production has completely stopped. On the basis of this
computation, we determined that each of these single-target gene
treatments could reduce viral biomass production by more than 76%.
The enzyme DHODH catalyzes the oxidation of dihydroorotate
(Dhor-S) to orotate (Orot) by using ubiquinone as an electron accep-
tor (Fig. 4). It is involved in producing pyrimidines, which are build-
ing blocks of DNA, RNA, and molecules such as ATP and GTP that
serve as energy sources in cells. Downregulation of DHODH in the HV
cells reduced the synthesis rate of Orot from 1.4 to 0.42 mmole/gDW/
h. In addition, the flow rates of metabolites such as Dhor-S, Orot5p
and Ump on the pyrimidine pathway decreased as illustrated in
Fig. 4. The cell growth rate of the HV cells reduced by 99.4% after
treatment with DHODH inhibitors. The cell viability grade hCV for
treated and perturbed cells was 0.704, and the metabolic deviation
grade hMD for the DHODH inhibition treatment was 0.656. The high
metabolic deviation grades indicated that both flux patterns for
treated HV cells and perturbed host cells were close to those of the



Table 1
Protein sequences of SARS-CoV-2 Delta and Alpha variants. Amino acids in parentheses present the altered
amino acids between the variants’ protein sequences. Gene and protein sequences were accessed from NCBI
genome database (https://www.ncbi.nlm.nih.gov/nuccore/MZ724506).

Gene Total No. of Amino Acids Altered Location (Delta !Alpha)

S 1273

142 (D !G), 154 (K !E), 218 (H !Q),
452 (R !L), 484 (Q !E), 614 (G !D),

681 (R !P), 1071 (H !Q), 1101 (D !H)

N 419 3 (Y !D), 204 (M !R), 377 (Y !D)

M 222 �

E 75 �

ORF1ab 7096
81 (Y !H), 1567 (I !T), 3646 (A !T),

4715 (L !P), 5753 (I !M), 6711 (R !K), 6958 (R !K)

ORF1a 4405 81 (Y !H), 1567 (I !T), 3646 (A !T)

ORF8 121 69 (L !S)

ORF7a 121 82 (A !V)

ORF6 61 33 (T !I)

ORF3a 275 26 (L !S)

ORF7b 43 �

ORF10 38 �

Table 2
Optimal single antiviral target enzymes determined using the NHDE algorithm. h

VBOF
, hCV, and hMD are the membership grades for viral biomass

growth rate, cell viability, and metabolic deviation, respectively, for the treated and perturbed cells. Higher hVBOF, hCV, and hMD indicate lower viral
biomass growth rate, higher viability of treated and perturbed cells, and smaller metabolic alterations to the host, respectively. No. Drug denotes the
number of drugs listed in the DrugBank database (https://go.drugbank.com/) that modulate the related gene.

Gene Protein hVBOF hCV hMD No. Drug Participated Pathway

DHODH Dihydroorotate dehydrogenase (quinone) 0.994 0.704 0.656 26 Pyrimidine metabolism
PRPS1L1 Ribose-phosphate pyrophosphokinase 3 1 1 0.247 0 Purine metabolism
HIBADH 3-hydroxyisobutyrate dehydrogenase 0.887 0.999 0.240 1 Valine, Leucine and Isoleucine Degradation
AQP9 Aquaporin-9 0.868 0.999 0.240 1 Bile Secretion
SLC10A1 Sodium/bile acid cotransporter 0.762 0.998 0.240 25 Synthesis of Bile Acids and Bile Salts
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host cells, thereby implying lower rates of side effect. Therefore,
DHODH inhibitor may effectively combat COVID-19 while causing
fewer side effect than other treatments cause (Table 2). Some studies
have suggested that DHODH inhibitors can be used to treat auto-
immune diseases [50] and cancers such as small-cell lung cancer
[51] and acute myeloid leukemia [52]. Leflunomide is an
approved DHODH inhibitor that widely used as a modest immune
regulator to treat autoimmune diseases, in treating COVID-19 dis-
ease with a small-scale of patients [53]. An orally bioavailable
compound, PTC299, is a potential anti-COVID-19 inhibitor of
DHODH to reduce SARS-CoV-2 replication [54]. Based on the
computational results, we observed DHODH to be a promising
antiviral target for COVID-19; this result is consistent with previ-
ous reports [53�57]. The AVTD framework can be used to identify
promising targets for treating COVID-19 and to decipher meta-
bolic mechanisms of inhibition for treatment (Fig. 4). We
searched DrugBank [58] and identified 26 drugs that inhibit
DHODH, 25 that inhibit SLC10A1, and 1 that inhibits HIBADH and
AQP9. These are all potential candidates for drug repurposing to
combat COVID-19.

Drug combinations can be used to increase therapeutic efficacy
and reduce toxicity [59]. The use of such combinations may increase
the success rate of drug repurposing. However, the wet-lab approach
to identifying and validating effective combinations is limited by the
excessive number of potential target combinations. Computer-aided
screening may overcome the drawback at the expense of a large
computational burden. This study employed the Recon3D GSMM
[37] to integrate with the viral cell growth of SARS-Cov-2 and create
an HV model accounting for 5835 species, 10,601 reactions, and 2248
enzyme-encoding genes. If the NHDE algorithm is applied for a single
group of candidates to generate searching individuals, more than 2.5
million combinations must be evaluated. To identify two-target com-
binations and reduce the computational burden, the NHDE algorithm
was applied for two groups of candidates to generate searching indi-
viduals. We performed a series of computations to obtain a set of
two-target combinations and determine their optimal grades. We
identified numerous combinations able to completely block viral bio-
mass production (i.e., with a membership grades hVBOF = 1). However,
the membership grades for cell viability and metabolic deviation var-
ied. The 20 two-target combinations with the highest fitness values
are presented in Fig. 5. The membership grade for the VBOP for all
treatments was equal to one (hVBOF = 1), and the combination of
DHODH downregulation and thymidine kinase 2 (TK2) upregulation
resulted in the membership grades for cell viability and metabolic
deviation being 42% and 21% higher, respectively, than those
achieved by single-target DHODH inhibition. TK2 is involved in the
production and maintenance of mitochondrial DNA (mtDNA).
Reduced mtDNA production can be caused by certain genetic varia-
tions. Upregulation of TK2 may prevent the dysregulation of biomass
maintenance during treatment. As a result, targeting the combination
of DHODH and TK2 achieved higher grades for cell viability and meta-
bolic deviation. The 12 two-target combinations with the highest fit-
ness in Fig. 5 resulted in improved metabolic deviation grades and
thus may result in less severe side effects than other targets. The final
eight combinations in Fig. 5 achieved maximal ATP production and
minimal cell growth (hCV = 1) in the treated and perturbed cells but
achieved metabolic deviation grades of approximately 0.35. Subse-
quently, we evaluated three-target combinations and determined

https://www.ncbi.nlm.nih.gov/nuccore/MZ724506
https://go.drugbank.com/


Fig. 4. Integration of a concise metabolic network regulated by the enzyme DHODH with viral replication. DHODH inhibition downregulates the conversion of Dhor-S to Orot in the

host�virus cells. The numerical values in the box TRjPB
HVjHT indicate the metabolite flow rates (mmol/gDW/h) for treated cells (TR), perturbed cells (PB), host�virus cells (HV), and host

cells (HT).

Fig. 5. Membership grades for viral biomass objective function (VBOF), cell viability (CV), and metabolic deviation (MD) under various multi-target combination treatments.
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that the three-target combination of DHODH, PRPS1L1, and PCYT2
increased the metabolic deviation grade to 0.771 but reduced the cell
viability grade to 0.87.

3.3. Metabolite-centric approach

The viral pseudo-reaction in Eq. (1) used 20 amino acids and four
nucleotides to produce viral biomass. Using the metabolite-centric
approach, we first downregulated each one of these building metabo-
lites to investigate the performance of each antimetabolite treatment,
as illustrated in Fig. 6. Downregulation of any of the amino acids or
nucleotides could nearly terminate viral cell growth (hVBOF � 0.91,
except His) and achieve satisfactory membership grades for cell via-
bility (hCV � 0.67, except ATP). The membership grade for metabolic
deviation reached 0.827 when aspartic acid (Asp) synthesis was
downregulated (i.e., exhibited lower metabolic alterations compared
to the template in host cells); as a result, Asp synthesis downregula-
tion should result in fewer side effects than other treatments do. By
contrast, downregulation of His was incapable of inhibiting viral bio-
mass production, such that hVBOF = 0. Although the inhibition of ATP
synthesis could reduce viral biomass production, it also prevented
biomass maintenance in the normal cells, leading to membership



Fig. 6. Membership grades for viral biomass objective function (VBOF), cell viability (CV), and metabolic deviation (MD) for treatments targeting each of 20 amino acids and four
nucleotides.
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grades for cell viability and metabolic deviation of 0.187 and 0.141,
respectively.

Many antiviral drugs for treating SARS-CoV-2, such as molnupira-
vir and remdesivir, are undergoing phase III clinical trials. Both mol-
nupiravir and remdesivir inhibit key enzymes of SARS-CoV-2,
including viral RNA-dependent RNA polymerase (RdRp). Molnupira-
vir is a prodrug of synthetic nucleosides that mimic cytidine and uri-
dine and exert antiviral action by introducing copying errors during
viral RNA replication [60,61]. In this study, the inhibition of CTP and
UTP exhibited effects similar to those of molnupiravir (Fig. 6). The
prodrug remdesivir acts as an adenosine nucleoside triphosphate
analog to interfere with the action of viral RdRp [62]. Our computa-
tional predictions indicate that ATP inhibition would exert an effect
similar to that of remdesivir by blocking viral RNA replication but
result in low cell viability and high metabolic alteration. We
Fig. 7. Membership grades for two-target combinations. The NHDE algorithmwas applied to
20 amino acids or one of four nucleotides with another metabolite in the model.
performed a series of computations to obtain a set of two-target com-
binations and their corresponding optimal grades (Fig. 7), and we
compared the two-target combinations with their single-target coun-
terparts (Fig. 6). His combined with Gly completely blocked viral bio-
mass production (hVBOF = 1), and targeting the combination of ATP
and GTP improved cell viability and attenuated metabolic deviation.
Combinations involving one of six amino acids resulted in an
enhanced metabolite flow rate and the combination of UTP and
2-phosphoglyceric acid (2pg) also improved cell viability and attenu-
ated metabolic deviation.

On the basis of the aforementioned computations, the building
blocks of viral biomass—amino acids and nucleotides—were elimi-
nated to diminish viral growth. In addition, we identified seven single
antimetabolite targets that could nearly block viral biomass growth
(Fig. 8) while achieving membership grades of cell viability and
discover the most favorable two-target combinations, each of which consisted of one of



Fig. 8. Membership grades for single-target antimetabolite and two-target combination treatments. These antimetabolites were determined by the NHDE algorithm and excluded
the viral biomass building blocks—comprising 20 amino acids and four nucleotides—as candidates.
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metabolic deviation greater than 0.67. These anti-metabolites related
to metabolites in metabolic pathways regulated by DHODH are
nucleotide derivatives that participate in the pyrimidine biosynthetic
pathway to produce cytosine, thymine, and uracil for viral RNA repli-
cation, as illustrated in Fig. 4. Using these data, we identified various
two-target antimetabolite combinations that obtained higher VBOF,
cell vitality, and metabolic deviation grades than their single-target
counterparts (Fig. 8).

4. Conclusions

Authorized COVID-19 vaccines are now widely available. How-
ever, the absence of FDA-approved drugs against SARS-CoV-2 has
highlighted an urgent need to manufacture and screen new drugs or
repurpose existing drugs and identify promising targets for treating
COVID-19. This study developed the AVTD optimization framework
to mimic a wet-lab experiment for discovering antiviral gene and
metabolite targets against COVID-19. The basic step in drug discovery
and development processes is to discover potential antiviral targets.
The identified antiviral enzymes and metabolites through AVTD
framework can provide for biologists to carry on subsequent pro-
gressing in order to save a lot of times for screening procedures.

The gene and protein sequences of the SARS-CoV-2 Alpha and
Delta variants were used to model the viral biomass growth reaction.
Comparison of the protein sequences of the Alpha and Delta variants
revealed few differences in their structural and nonstructural pro-
teins, and the stoichiometries of the variants were nearly identical.
We generated an integrated HV human GSMM using Recon3D and
the viral stoichiometry. The AVTD framework employs a fuzzy hierar-
chical optimization method, which we used to identify potential anti-
viral targets using the integrated model. Potential treatments were
evaluated in terms of their ability to limit viral biomass growth and
metabolic deviation while maximizing cell viability in both treated
and perturbed cells.

The AVTD framework identified not only gene regulator targets
but also metabolite-centric targets. DHODH inhibitors reduced viral
biomass growth by 99.4% and achieved cell viability and metabolic
deviation grades of 70.4% and 65.6%, respectively. Consistent with
our predictions, several articles have recently reported that DHODH
inhibitors can potentially be used to treat COVID-19. We also identi-
fied two-target combinations that could completely block viral
biomass growth while achieving even higher metabolic deviation
grades. Some of the identified targets are modulated by drugs exist-
ing in the DrugBank database, as listed in Additional File 1. These
drugs may serve as potential candidates for repurposing to develop
new treatments for COVID-19.

Through a metabolite-centric approach, we identified 19 amino
acids and four nucleotides that could nearly terminate viral biomass
growth (except His) and achieve satisfactory membership grades for
cell viability (except ATP). The inhibition of CTP and UTP exhibited
effects similar to those of molnupiravir, which is undergoing phase III
clinical trials for COVID-19 treatment. In addition, we determined
that certain two-target combinations of antiviral enzymes and
metabolites could achieve similar antiviral results with higher grades
for cell viability and metabolic deviation.
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