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Alzheimer’s disease (AD) is the most common cause of progressive dementia in the
elderly. It is characterized by a progressive and irreversible loss of cognitive abilities
and formation of senile plaques, composed mainly of amyloid β (Aβ), and neurofibrillary
tangles (NFTs), composed of tau protein, in the hippocampus and cortex of afflicted
humans. In brains of AD patients the metabolism of Aβ is dysregulated, which leads
to the accumulation and aggregation of Aβ. Metabolism of Aβ and tau proteins is
crucially influenced by autophagy. Autophagy is a lysosome-dependent, homeostatic
process, in which organelles and proteins are degraded and recycled into energy. Thus,
dysfunction of autophagy is suggested to lead to the accretion of noxious proteins
in the AD brain. In the present review, we describe the process of autophagy and its
importance in AD. Additionally, we discuss mechanisms and genes linking autophagy
and AD, i.e., the mTOR pathway, neuroinflammation, endocannabinoid system, ATG7,
BCL2, BECN1, CDK5, CLU, CTSD, FOXO1, GFAP, ITPR1, MAPT, PSEN1, SNCA,
UBQLN1, and UCHL1. We also present pharmacological agents acting via modulation
of autophagy that may show promise in AD therapy. This review updates our knowledge
on autophagy mechanisms proposing novel therapeutic targets for the treatment of AD.

Keywords: autophagy, Alzheimer’s disease, amyloid beta, tau

INTRODUCTION

Introduced to biology in 1963 by Belgian biochemist Christian de Duve (De Duve and Wattiaux,
1966) autophagy (from Greek “self-eating”) is an intracellular self-degradative process that is
responsible for the systematic degradation and recycling of cellular components such as misfolded
or accumulated proteins and damaged organelles (Glick et al., 2010). In 2016, the Japanese cell

Abbreviations: Aβ, Amyloid β; AD, Alzheimer’s disease; CSF, cerebrospinal fluid; MAPT, microtubule-associated protein
tau; NFTs, neurofibrillary tangles.
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biologist Yoshinori Ohsumi was awarded Nobel Prize in
Physiology or Medicine for identification of autophagy-related
genes and the discovery of the mechanisms of autophagy
(Nobelprize.org, 2017).

Autophagy has been classified into three categories based on
the mechanism by which intracellular constituents are supplied
into lysosome for degradation: microautophagy, chaperone-
mediated autophagy, and macroautophagy. In microautophagy,
the cytoplasmic material is absorbed into lysosome by direct
invagination of the lysosomal membrane (Marzella et al.,
1981). The chaperone-mediated autophagy facilitates the
degradation of cytosolic proteins by directly targeting them
to lysosomes and into the lysosomal lumen (Kaushik and
Cuervo, 2012). In macroautophagy, degradable contents of
cytoplasm are encapsulated in subcellular double-membrane
structures named “autophagosomes”. Autophagosomes transport
the cell “waste” to the lysosomes for degradation (Settembre
et al., 2013). Macroautophagy is the most predominant
form of autophagy and will be denoted as such in this
review.

Healthy mammalian cells show a low basal level of autophagy
(Funderburk et al., 2010). This basal autophagic activity plays
a dominant role in the intracellular homeostatic turnover
of proteins and organelles (Funderburk et al., 2010). Basal
activity of autophagy is essential in post-mitotic neuronal cells,
possibly due to their inability to dilute noxious components
through cell division (Funderburk et al., 2010). Autophagic
activity is enhanced by diverse stresses such as nutrient
starvation, hypoxia or inflammation (Melendez and Neufeld,
2008; Francois et al., 2013). Enhanced autophagy participates
in various physiological processes and pathological conditions,
including cell death, removal of microorganisms invading the
cell, and tumor suppression (Glick et al., 2010). On the
other hand, reduced autophagic potential is associated with
aging (Rubinsztein et al., 2011). During autophagy, proteins
are degraded into amino acids, which provide an energy
source and are likely used as building blocks for protein
synthesis (Onodera and Ohsumi, 2005; Meijer et al., 2015).
Thus, dysregulated autophagy may result in accumulation
of proteins inside the cell. Various autophagy dysfunctions
may contribute to neurodegeneration or neurodegeneration-
like symptoms, for example inhibition of the fusion of an
autophagosome with a lysosome (Boland et al., 2008), reduction
of lysosomal acidification (Shen and Mizushima, 2014) or
accumulation of proteins in cells (Garcia-Arencibia et al.,
2010).

Alzheimer’s disease is the most predominant type of
dementia diagnosed in the aged people (Uddin et al.,
2016). It is characterized by a chronic, irreversible, and
progressive neuronal degradation in the human brain caused
by complex pathophysiological processes, including oxidative
stress, neuroinflammation, excitotoxicity, mitochondrial
dysfunction, proteolytic stress, and more (Jellinger, 2010).
Formation of intracellular NFTs and extracellular senile
plaques in the brain are two common hallmarks of AD
(Armstrong, 2009). NFTs consist of aggregated, abnormally
hyperphosphorylated MAPT (Iqbal et al., 2010). Senile plaques

are primarily composed of insoluble and toxic amyloid-β
(Aβ) peptides and of dysfunctional dystrophic neurites, which
include abnormally large amounts of neurofilament, tau, or
chromogranin A proteins (Dickson et al., 1999; Armstrong,
2009).

Despite the accumulated wealth of knowledge, AD remains
incurable. The significance of autophagy in pathophysiology of
AD is now appreciated due to the discoveries of molecular
mechanisms for autophagy. The objective of this review is to
introduce an outline of the discovery of autophagy and describe
the relationship between autophagy and AD.

Please consider, that in the present review the names of
genes are written in italic, while names of proteins are written
in standard font. Names of human or Saccharomyces sp.
genes/proteins are written in all capital letters. Names of rodent
genes/proteins are written in capital letter followed by small
letters.

HISTORY OF AUTOPHAGY RESEARCH

Lysosome
In the mid 1950’s researchers explored a novel specialized
cellular substructure (organelle), encapsulating enzymes that
digest macromolecules such as proteins and lipids (Xu and
Ren, 2015). This compartment was named “lysosome” (de Duve,
2005). The lysosome was discovered by the Belgian cytologist and
biochemist Christian de Duve. For this achievement de Duve was
awarded the 1974 Nobel Prize in Physiology or Medicine (Blobel,
2013).

The lysosome is generally 100–1500 nanometers in diameter
and enclosed by a typical lipid bilayer membrane (Xu
and Ren, 2015). Lysosomes contain more than 60 different
hydrolase enzymes such as proteases and lipases (Xu and
Ren, 2015). The lysosomal enzymes are the most active
in acidic environment, such as this in the lumen of a
lysosome (pH of approximately 4.6) (Xu and Ren, 2015). This
characteristic of lysosomal enzymes provides protection against
unrestrained, pathological digestion of the constituents of the
cell, as cytosol pH is almost neutral (pH 7.2) (Alberts et al.,
2002). Hence, even if lysosomal membrane would become
damaged and the enzymes were to leak into the cytosol,
harm to the cell itself would be minimal (Alberts et al.,
2002).

Lysosomes serve as an intracellular digestive system protecting
the cell from its unused and/or noxious constituents (Huber
and Teis, 2016). Furthermore, lysosomes are involved in
various cell processes, including secretion, cell membrane
repair, cell signaling and energy metabolism (Settembre et al.,
2013). Mutations in the genes involved in the synthesis
of lysosomal proteins have been linked to over 40 human
genetic diseases (lysosomal storage diseases) (Parenti et al.,
2013).

Proteasome
Like autophagy, the ubiquitin-proteasome system is another
degradation pathway for cellular proteins. During the 1970’s
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and 1980’s, researchers began to study second system of
cell protein degradation, namely the “proteasome”. The
significance of intracellular proteolytic degradation and the
contribution of ubiquitin-proteasome system to the proteolytic
pathways (i.e., discovery of ubiquitin-mediated proteolysis)
was acknowledged with the award of the Nobel Prize in
Chemistry in 2004 to the Israeli biologist Aaron Ciechanover;
the Hungarian-born Israeli biochemist Avram Hershko and
the American biologist Irwin Rose (Karigar and Murthy,
2005).

Proteasomes are large, multisubunit protease complexes
that are responsible for the degradation of unnecessary
or damaged proteins by proteolysis (Tanaka et al., 2004).
Proteasomal degradation produces amino acids, which
may be subsequently used in generation of new proteins
(Rogel et al., 2010). Proteins are labeled for degradation with
a 76-amino acid protein called “ubiquitin” (Weissman, 2001).
Single labeling event leads to a cascade, resulting in the
formation of polyubiquitin chain, which binds to the proteasome
for proteolysis (Ciechanover and Schwartz, 1998; Li and Ye,
2008).

The proteasomal degradation pathway plays an important
role in numerous cellular processes, for example cell cycle and
immune response (Ciechanover and Schwartz, 1998). Improper
ubiquitin-mediated protein degradation has been linked to
several neurodegenerative disorders including AD, Parkinson’s
disease, Huntington’s disease and amyotrophic lateral sclerosis
(Atkin and Paulson, 2014).

Recent studies showed the existence of cross-talk between
proteasomal and autophagy pathways (Lilienbaum, 2013). Both
processes share protein degradation signaling network molecules,
may be recruited by ubiquitinated substrates, and under specific
conditions display compensatory functions to maintain cellular
homeostasis (Lilienbaum, 2013).

Autophagosome
Additional biochemical and microscopic investigations identified
a new type of vesicles carrying cellular cargo to the lysosome for
degradation. Christian de Duve, the discoverer of the lysosome,
introduced the term “autophagy” to define this process (Klionsky,
2008). The new vesicles were named autophagosomes (Klionsky,
2008). Autophagy research was kick-started in 1990s with studies
performed by Yoshinori Ohsumi, for which he was awarded the
2016 Nobel Prize in Physiology or Medicine (Nobelprize.org,
2017).

He studied autophagy using as a model organism the budding
yeast (Takeshige et al., 1992), whose vacuole is functionally
similar to the mammalian lysosome (Li and Kane, 2009).
His group has shown that starved yeast devoid of some of
the functional vacuolar proteases developed spherical bodies
inside the vacuoles (Takeshige et al., 1992). These bodies
were encompassed by a membrane and contained constituents
of cytosol such as cytoplasmic ribosomes, mitochondria,
rough endoplasmic reticulum fragments, glycogen, etc. The
constituents would be normally degraded in yeast cultured on
the nutrient-poor medium to facilitate adaptation to adverse
environment. Without functional proteases the degradation

could not commence, and so the spherical bodies remained easily
perceivable. These spherical structures were named “autophagic
bodies”.

In 1993, Ohsumi’s group published research, in which
they identified 15 genes (APG1-15) that are essential for
the activation of autophagy in yeast cells (Tsukada and
Ohsumi, 1993). Later, as a result of efforts of the scientific
community to standardize the gene names, the APG genes
were renamed to ATG (Klionsky et al., 2003). Afterward,
Ohsumi’s group cloned numerous ATG genes and identified
the function of their protein products (e.g., Funakoshi et al.,
1997; Matsuura et al., 1997). Further studies established the
interactions between these products providing the basis for
autophagy mechanisms (see Figure 1). They found that the
ATG1 protein (now: ULK1) combines with the product of
the ATG13 gene to form autophagic complex (Kamada et al.,
2000). This process is controlled by target of rapamycin
(TOR) kinase (Kamada et al., 2000). Further, Ohsumi’s group
established that for proper activation the ATG1 protein
needs to form complex not only with ATG13, but also
with ATG17 (RB1CC1/FIP200) (Figure 1) (Ohsumi, 2014).
As shown in Figure 1, the formation of this complex is the
first stage in autophagosome genesis (The Nobel Assembly
at Karolinska Institutet, 2016). The phosphatidylinositol-3
kinase (PI3K) complex that is composed of PIK3C3 (VPS34),
PIK3R4 (VPS15), BECN1, and ATG14 (Barkor) proteins
(Ohsumi, 2014), produces phosphatidylinositol-3 phosphate
(PtdIns3P or PI3P), which facilitates binding of further effector
proteins to the membrane of the autophagosome (Ohsumi,
2014).

In the late 1990’, Ohsumi’s group discovered two ubiquitin-
like conjugation systems involved in the autophagosome
formation (Figure 1) (Ohsumi, 2014). First conjugation system
results in a formation of an ATG12-ATG5 complex, while
the second one results in the formation of a conjugate of
ATG8 (MAP1LC3A/GABARAPL2/LC3) with a membrane
phospholipid, phosphatidylethanolamine (Ohsumi, 2014).
The formation of both conjugates is mediated by the ATG7
protein (Ohsumi, 2014). ATG12-related system regulates ATG8
lipidation and lipidated ATG8 is a crucial participant in the
processes of autophagosome elongation (Nakatogawa et al.,
2007; Nakatogawa, 2013). These two conjugation systems
are evolutionary conserved among yeast and mammals
(Ohsumi, 2014). Actually, fluorescently labeled product of
the mammalian homologue of yeast gene ATG8 is used
as an indicator of the formation of autophagosome in
mammalian systems (Kabeya et al., 2000; Mizushima et al.,
2004).

The ATG genes proved to play crucial roles in mammalian
organisms. For example, mice with knock-out of ATG5
gene die in the first days of life due to their inability to
cope with the post-labor starvation period (Kuma et al.,
2004). In this life period, functional autophagy allows the
neonate to keep the steady energy supply before milk feeding
starts (Kuma et al., 2004). Further studies on knockout
mouse models lacking functional versions of autophagy-
related genes have established the functions of the autophagy
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FIGURE 1 | Representation of proteins and protein complexes involved in the “Autophagy – animal” KEGG pathway. This figure was taken from the KEGG database
(http://www.genome.jp/kegg-bin/show_pathway?ko04140) and modified. Blue boxes mark the proteins that are associated with AD. Orange boxes mark additional
proteins that are not originally included in the pathway. These genes are associated with both AD and autophagy, and are discussed in the present review. Red, blue,
and violet lines mark partners with which the additional proteins interact (red color means activation, blue color means inhibition, and violet color means unspecified
or complex (e.g., both inhibitory and stimulatory effect) according to STRING database). The interactions data were extracted from the STRING database
(http://string-db.org). To assure that the presented data is reliable, we have included only interactions that showed at least medium STRING confidence score and
were either identified in an experiment or are annotated in manually curated databases. Additionally, we have added interaction between GFAP and LAMP, which
was not included in STRING database but was found by manual literature search. Permission to use KEGG figure was granted.

in different mammalian tissues (Mizushima and Komatsu,
2011).

BIOLOGICAL MECHANISMS LINKING
AUTOPHAGY AND AD

Aβ Metabolism and the Autophagy
Alzheimer’s disease is a progressive neurodegenerative disorder,
which pathophysiology includes formation of Aβ aggregates
(Oddo et al., 2006). In a healthy human central nervous system
the production rate of Aβ peptides is generally lower than their

rate of clearance, at 7.6 and 8.3% per hour, respectively (Bateman
et al., 2006).

Autophagy is a key regulator of Aβ generation and
clearance (Nilsson and Saido, 2014). Aβ peptides are produced
through cleavage of amyloid precursor protein (APP) in
the autophagosomes during autophagic turnover of APP-rich
organelles (Nixon, 2007; Steele et al., 2013). In AD the
maturation of autophagolysosomes (i.e., autophagosomes that
have undergone fusion with lysosomes) and their retrograde
passage toward the neuronal body are hindered (Nixon, 2007).
This contributes to an immense accretion of autophagic vacuoles
in neurons. Such accretion may be related to dysfunction of
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the ESCRT-III complex. This dysfunction is associated with
neurodegeneration (Lee et al., 2007; Yamazaki et al., 2010) and
may affect autophagosome maturation by disrupting fusion of
autophagosomes with the endolysosomal system (Rusten and
Stenmark, 2009).

There are two pathways for disposing Aβ peptides. Firstly,
they can be simply degraded by various Aβ-degrading proteases,
including BACE1 and CTSD (Saido and Leissring, 2012).
Secondly, Aβ peptides can accumulate in autophagosomes
of dystrophic neurites (i.e., main constituents of neuritic
senile plaques in AD), thus being incorporated into primary
intracellular reservoir of toxic peptides (Nixon et al., 2005;
Yu et al., 2005). The second recycling path of Aβ peptides is
especially prevalent in the brains of people suffering from AD
(Nilsson et al., 2013; Nilsson and Saido, 2014).

A paper published by Nilsson et al. (2013) shows that Aβ

peptides are released from neurons in an autophagy-dependent
manner and suggests that the accumulation of intracellular Aβ

plaques is toxic to brain cells leading to AD pathology. To explore
the role of autophagy in Aβ pathology in vivo, Nilsson et al. (2013)
crossed App transgenic mice, carrying Swedish mutation, with
mice lacking functional autophagy mechanisms in the forebrain
neurons due to conditional knockout of Atg7. They observed
that the offspring had far fewer extracellular Aβ plaques than
the mice with functional autophagy. The decrease of extracellular
Aβ plaque content reported by Nilsson et al. (2013) was caused
by inability of cells with disrupted autophagy to secrete Aβ

peptides. Indeed, they report that in the autophagy deficient mice,
reduction in Aβ peptides secretion co-occur with accumulation
of Aβ inside the brain cells (Nilsson et al., 2013). Moreover,
in the autophagy deficient mice, intracellular aggregation of Aβ

likely caused neurodegeneration and, together with amyloidosis,
memory impairment (Nilsson et al., 2013). These findings are
in agreement with previous reports that intracellular Aβ is
neurotoxic (Zhang et al., 2002).

Summing up, impaired autophagy is a well-established
participating mechanism in the pathology of Aβ metabolism
of AD.

Neuroinflammation
Present knowledge suggests that inflammation, autophagy and
AD are connected processes. A study by Francois et al.
(2013) provided an example of cross-talk between them. They
showed that Aβ42 influences the expression and activation of
some proteins involved in autophagy (p62, p70S6K) in vitro
(Francois et al., 2013). They also showed that the processes
of inflammation and autophagy interact within brain cells, as
severe inflammation induced by IL-1β activated autophagy in
microglia grown in tri- or mono-cultures (Francois et al., 2013).
Although the role of IL-1β itself in AD is unclear, we do know
how the neuroinflammation contributes to AD pathogenesis
(Zhang and Jiang, 2015), and why IL-1β is a key mediator
of neuroinflammation (Basu et al., 2004). Hence, one could
speculate that IL-1β may play role in pathogenesis of AD by
eliciting both neuroinflammation and autophagy. It seems viable
that during the course of AD, immune signals induce autophagy.
Indeed, it was shown that neuroinflammation might influence

autophagy following stress-induced hypertension (Du et al.,
2017). Correspondingly, another study reported that adult mice
bearing mutations of App and Psen1 genes showed higher brain
levels of inflammatory mediators (including Il-1β) along with
accumulation of autophagic vesicles within dystrophic neurons
in the cortex and hippocampus (Francois et al., 2014). Moreover,
the levels of inflammatory mediators correlated with expression
of key autophagy regulators such as mTOR and Becn1 (Francois
et al., 2014). On the other hand, Ye et al. (2017) suggest,
that inhibition of autophagy may enhance microglia activity,
including secretion of cytokines such as Il-1β and generation of
toxic reactive oxygen species (ROS) in vitro.

Taken together, these studies suggest that AD and
neuroinflammation feed autophagy (and each other), while
autophagy decreases inflammation in the brain. Thus, the
increase in autophagy may play some protective role during the
course of AD via interaction with the immune system.

Mechanistic Target of
Rapamycin (mTOR) Pathway
Mechanistic target of rapamycin signaling pathway is initiated by
nutrients and growth factors and regulates autophagy (Jung et al.,
2010). Human studies suggest participation of mTOR signaling
in AD (Sun et al., 2014). It has been shown that mTOR signaling
is inhibited in cortex and hippocampus of adult AD model
mice (Francois et al., 2014). Decreased mTOR signaling leads to
reduction in levels of Aβ (Spilman et al., 2010; Caccamo et al.,
2014) and protects memory of AD model mice from deterioration
(Caccamo et al., 2014). A study performed by Spilman et al.
(2010) on mouse model of AD reported that blocking the mTOR
signaling with rapamycin relieves cognitive deficits and reduces
amyloid pathology, likely by activating autophagy in brain cells.
Correspondingly, studies show that diet enriched with rapamycin
prolongs lifespan of animals (Harrison et al., 2009). This may
be relevant to AD research, because age is a major factor in
the pathogenesis of AD (Guerreiro and Bras, 2015). Moreover,
studies on human cells have shown that mTOR mediates intra-
and extra-cellular distribution of tau (Tang et al., 2015), its
phosphorylation and accumulation as well as resulting behavioral
effects of tau pathology (Caccamo et al., 2013). Finally, multiple
compounds tested for their efficacy as AD medication impose
their beneficial effect by inducing mTOR-depending autophagy
(see below).

Summarizing, mTOR pathway is currently one of the most
promising targets for autophagy-related AD therapy.

Endocannabinoids
Recently published reports highlight the role of the
endocannabinoid system in neurodegenerative diseases and
autophagy (Maroof et al., 2013; Shao et al., 2014; Bedse et al.,
2015). Endocannabinoids are lipophilic molecules that, when
released, activate the cannabinoid receptors CNR1 and CNR2
(cannabinoid receptor 1 and 2) (Katona and Freund, 2012).

Mice with a Cnr1 deletion have shown a pathological
accumulation of some proteins, which are not degradable by
lysosomal enzymes through autophagy (Piyanova et al., 2013).

Frontiers in Aging Neuroscience | www.frontiersin.org 5 January 2018 | Volume 10 | Article 4

https://www.frontiersin.org/journals/aging-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-10-00004 January 25, 2018 Time: 18:4 # 6

Uddin et al. Autophagy and Alzheimer’s Disease

Knockdown of CNR1 expression by siRNA results in both
mTOR- and BECN1-independent increase of autophagic vesicle
formation (Hiebel et al., 2014).

In a human AD frontal cortex, expression of the CNR1
receptor was significantly reduced (Ramirez et al., 2005; Solas
et al., 2013). In an AD mouse model Cnr1 was decreased in
dorsal hippocampus and basolateral amygdala complex (Bedse
et al., 2014). It seems that in frontal cortex and hippocampus
the activity of the CNR1 receptor depends on the progression
of AD. While in early AD the activity is increased, it shifts to
attenuation in later AD stages (Manuel et al., 2014). Additionally,
the expression levels of the CNR2 receptor were increased in
microglia cells of an AD patient’s in the hippocampus, entorhinal
cortex and frontal cortex (Benito et al., 2003; Solas et al., 2013).
The high expression of CNR2 receptor was correlated with the
Aβ42 levels and senile plaque burden (Solas et al., 2013).

All these findings suggest that there is a non-trivial connection
between endocannabinoids, autophagy, and AD. A further
investigation is required to fully understand the mechanisms
involved.

Genes Common to Autophagy and AD
To identify the genes that may mediate cross-talk between
molecular mechanisms of autophagy and AD, we have compared
two groups of genes: (1) genes involved in autophagy, defined
as being included either in Gene Ontology term “autophagy”
(GO:0006914, Homo sapiens) or in KEGG Pathway (Kanehisa
et al., 2017) “autophagy-animal” (ko04140), and (2) genes
involved in AD, defined as being included either in databases
AlzBase (Bai et al., 2016) or AlzGene (Bertram et al., 2007),
or related to AD as shown by the text-mining tool GLAD4U
(Jourquin et al., 2012). AlzBase provides data on “gene
dysregulation in AD and closely related processes/diseases
such as aging and neurological disorders” (Bai et al., 2016),
while AlzGene provides data on “genetic association studies
in the field of AD” (Bertram et al., 2007). AlzGene can
be treated as a comprehensive database of genes that were
associated with AD before year 2011, when it was last updated.
Unfortunately, currently there is no other database that collects
such information. Finally, GLAD4U is a prioritization tool
querying PubMed for given phrase and returning associated
genes (Jourquin et al., 2012). The genes that are common
to both groups’ are summarized in Supplementary Table S1.
For detailed discussion we selected genes, which met following
requirements: (1) reported to be involved in both autophagy and
AD according to the PubMed database, AND (2) constituted
top five results from either AlzBase, AlzGene or GLAD4U.
Additionally, we arbitrarily selected five genes involved in
KEGG Pathway “autophagy-animal” for further discussion.
Gene hierarchy was established for AlzBase and AlzGene
based on the total number of entries into database and
for GLAD4U as a confidence score provided by the tool.
Generally, selected genes showed strong (weight > 5) relationship
with neuroinflammation, as detected by Chilibot (Chen and
Sharp, 2004), especially BECN1, PSEN1, MAPT, GFAP, and
CDK5 (see Figure 2A). Simultaneously, the genes were not
significantly related to the endocannabinoid system (queried

FIGURE 2 | Connections between genes discussed in the “Genes Common
to Autophagy and AD” section and (A) neuroinflammation as well as (B)
cannabinoids. This figure was drawn based on data obtained using the
Chilibot tool. Black arrows mark relationships that are neither obviously
stimulatory nor inhibitory. Orange arrow marks both stimulatory and inhibitory
relationship. Red arrow marks inhibitory relationship. Green arrow mark
stimulatory relationship. The respective numbers mark the weight of the
relationship according to the Chilibot tool.

in Chilibot via keyword “cannabinoid”), with only BECN1
and GFAP showing strong interaction (see Figure 2B). The
genes described below were also added to Figure 1 along
with their known interactions with other molecules of the
pathway (see also Supplementary Table S2), as extracted from
STRING database (organism: Homo sapiens) (Szklarczyk et al.,
2017).

Autophagy-Related 7 (ATG7)
As stated previously, ATG7 is a key gene regulating autophagic
conjugation systems (Ohsumi, 2014). ATG7 is involved
in memory functions as evident from a study, in which
forebrain-specific Atg7 knockout mouse have shown memory
deficits (Inoue et al., 2012). We have found two studies
connecting dysregulated expression of ATG7 protein and
AD-like pathology. Decreased levels of the Atg7 protein
were found in cerebral cortex and hippocampus of mouse
model of AD (Carvalho et al., 2015). On the other hand,
no dysregulation of protein expression of ATG7 was
found in temporal cortices of AD patients (Crews et al.,
2010).

Atg7 mediates the transport of Aβ peptides to the
multivesicular body and their secretion in mouse neurons
(Nilsson et al., 2015). Inhibition of ATG7 expression using
siRNA partially protected against increase in production and
secretion of Aβ40 in vitro (Cho et al., 2015). On the other
hand, intra-hippocampal infusion of Aβ is able to increase the
expression of the Atg7 protein in hippocampus of rats while
reducing their memory performance (Mohammadi et al., 2016).

ATG7 seems to be involved in degradation of tau. Forebrain-
specific Atg7 knockout in mice resulted in an accumulation of
phosphorylated tau protein in hippocampus and cerebral cortex,
as well as neurodegeneration evident in loss of hippocampal
neurons and memory dysfunction (Inoue et al., 2012).
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BCL2
BCL2 is an anti-apoptotic factor that interacts with BECN1 to
regulate autophagy (Decuypere et al., 2012).

Overexpression of neuronal Bcl2 improved place recognition
memory in mice (Rohn et al., 2008). Contrary, negative
correlation between the cortical BLC2 protein expression and
memory (immediate recall) was established in AD patients (Perez
et al., 2015). Upregulation of the BCL2 protein was found in
precuneus (cortex) of AD patients (Perez et al., 2015).

Aβ treatment decreases the BCL2 expression in vitro
(Clementi et al., 2006), while APP mutation (Swedish) mediates
similar effect in vitro during starvation (Yang et al., 2009).
Overexpression of Bcl2 protects against Aβ-related death of
neuronal cells in vitro (Ferreiro et al., 2007). Rohn et al. (2008)
reported that AD model mice engineered to overexpress Bcl2
protein showed decreased processing of App and number of
extracellular deposits of Aβ, as compared to base strain (3xTg-
AD).

The overexpression of Bcl2 affects also tau processing,
reducing the number of NFTs (Rohn et al., 2008).

Beclin 1 (BECN1/ATG6)
BECN1 protein mediates the initiation of autophagy and genesis
of autophagosomes. Becn1 heterozygotic mice (Becn1+/−) show
decreased autophagy in neurons (Pickford et al., 2008).

Several reports suggest, that BECN1 is involved in the
pathophysiology of AD. Postmortem midfrontal cortex and
isolated microglia of AD patients show reduced content of
BECN1 protein (Pickford et al., 2008; Lucin et al., 2013).
Similarly, reduced Becn1 expression was found in cortex and
hippocampus of adult mouse model of AD (Francois et al., 2014).
BECN1 may protect against AD-associated cellular death. Xue
et al. (2013) report that expression of Becn1 correlates with
viability of cells treated with toxic Aβ42. Interestingly, Becn1
activity seems to be regulated by Aβ42 (Nah et al., 2013).

A study performed on the frontoparietal cortex and the
hippocampus of mice showed that decreasing of Becn1
expression leads to increased levels of Aβ (Pickford et al., 2008).
Becn1-mediated decrease in autophagy leads to accretion of Aβ

peptides and, finally, to neurodegeneration (Pickford et al., 2008).
BECN1 is also involved in neuroinflammation and

cannabinoid system activity. Inhibition of Becn1 expression
increases microglia inflammatory response (Zhou et al., 2011).
Chronic LPS-induced inflammation decreases hippocampal
Becn1 expression (Jiang et al., 2017). On the other hand, Cb2r
deletion decreases Becn1 expression in the spinal cord of mice
(Shao et al., 2014).

Cyclin Dependent Kinase 5 (CDK5)
CDK5 is an autophagy-regulating kinase (Wong et al., 2011),
which expression is enriched in central nervous system as shown
in Human Protein Atlas (HPA) (Uhlen et al., 2015).

Cdk5 modulates various cognition-related biological
processes such as neurogenesis in adult hippocampus
(Crews et al., 2011) and synaptic functions (Sheng et al.,
2016). Silencing of hippocampal Cdk5 expression using
RNAi resulted in improved memory performance in AD

model mice (Posada-Duque et al., 2015). Study connected
CDK5-associated polymorphisms with increased risk of AD
(Rademakers et al., 2005). CDK5 protein expression is enhanced
in frontal cortices of AD patients (Sadleir and Vassar, 2012).
On the contrary, CDK5 protein expression is decreased
in cerebrospinal fluid (CSF) of AD patients (Olah et al.,
2015).

CDK5 influences the metabolism and effects of Aβ. CDK5
may regulate BACE1 protein expression (Sadleir and Vassar,
2012) as well as activity (Song W.J. et al., 2015). BACE1 gene
encodes β-secretase, which is a crucial enzyme involved in APP
metabolism (Cai et al., 2015). Furthermore, Cdk5 participates in
cytotoxic activity of Aβ42 in primary cortical neurons (Chang
et al., 2012), mediates Aβ peptide-induced dendritic spine loss
(Qu et al., 2011) and APP phosphorylation (Iijima et al., 2000).
On the other hand, Aβ increases Cdk5 activity in primary cortical
neurons (Seyb et al., 2007).

CDK5 is similarly involved in tau metabolism. Cdk5 binds to
tau in vitro and is co-localized with it in rat cortex (Li et al.,
2006). Cdk5 participates in tau phosphorylation (Noble et al.,
2003), although whether this may lead to formation of NFTs is
disputed (Bian et al., 2002; Noble et al., 2003). Prevention of
Cdk5 hyperactivity in the mouse model of AD protects against
tau hyperphosphorylation, Aβ accumulation, memory loss, and
enhanced neuroinflammation (Shukla et al., 2013).

Clusterin (CLU/APOJ)
CLU is a chaperone protein that participates in autophagosome
biogenesis via interaction with ATG8E (MAP1LC3A) (Zhang F.
et al., 2014).

CLU is one of the top AD candidate genes with the third
lowest p-value of the association (p = 3.37E-23) according
to the meta-analysis included in AlzGene database (Bertram
et al., 2007). Meta-analyses showed the involvement of CLU-
related mutations in AD pathogenesis (Liu et al., 2014; Shuai
et al., 2015). CLU mutations that are suggested as causal for
AD affect hippocampal connectivity (Zhang et al., 2015), white
matter integrity in several brain regions (Braskie et al., 2011),
cortical gray matter volume (Stevens et al., 2014), as well as
working memory (Stevens et al., 2014) and episodic memory
performance (Barral et al., 2012). CLU mRNA is upregulated
in hippocampi of AD patients (May et al., 1990). According
to Miners et al. (2017) CLU protein rises in several brain
regions, including frontal cortex, of AD patients in correlation
with noxious Aβ40/42 levels. Results of study by Baig et al.
(2012) did not confirm these findings. The CLU protein is
upregulated in CSF of AD patients (Deming et al., 2016). The
content of CLU protein in the blood plasma of AD patients
was reported to be dysregulated in some studies (Mullan et al.,
2013), while others did not confirm this finding (Deming et al.,
2016).

Moreover, CLU protein interacts with Aβ, reduces its
aggregation and protects against its toxic effects (Beeg et al.,
2016). CLU decreases the Aβ intake by human primary glia cells
(Mulder et al., 2014).

The interaction between tau and CLU is less studied (Zhou
et al., 2014). However, Zhou et al. (2014) reported that the Clu
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protein is upregulated in a tau-overexpressing mouse model
of AD. Furthermore, the AD-associated CLU polymorphism
rs11136000 regulates the levels of tau protein in CSF in AD
patients (Zhou et al., 2014).

Cathepsin D (CTSD)
Cathepsin D is a lysosomal protease (Dean, 1975) that is involved
in degradation of the APP protein (Letronne et al., 2016).

Two meta-analyses on the influence of CTSD mutation
rs17571 on AD yielded contrary results (Schuur et al., 2011; Mo
et al., 2014). Similar discrepancy is also reported for another
CTSD mutation (Ala224Val) (Ntais et al., 2004; Paz-Y-Miño et al.,
2015). Directionality of the change of CTSD gene expression
seems to depend on studied tissue. CTSD level was decreased
in bone marrow-derived monocytes isolated from AD patients
(Tian et al., 2014). CTSD mRNA expression was upregulated
in whole blood of AD patients (Bai et al., 2014). On the other
hand, CTSD is downregulated on both mRNA and protein
levels in skin fibroblasts from AD patients (Urbanelli et al.,
2008).

Cathepsin D participates in processing of Aβ peptides
(McDermott and Gibson, 1996) and clearance of amyloid
plaques in vitro (Tian et al., 2014). Nevertheless, Aβ processing
mechanisms are fairly resistant to modest (38%) changes in
expression of Ctsd, at least in cerebral cortex of mouse model of
AD (Cheng et al., 2017).

Cathepsin D also interacts with tau protein. Previously
mentioned rs17571 mutation causes changes in processing of tau,
but not of APP (Riemenschneider et al., 2006).

Forkhead Box O1 (FOXO1)
FOXO1 gene encodes transcription factor that plays a role in
autophagy modulation in neurons (Xu et al., 2011). FOXO1
mutation rs7981045 was associated with response of AD patients
to a treatment based on acetylcholinesterase inhibitors (Paroni
et al., 2014)

Glial Fibrillary Acidic Protein (GFAP)
GFAP is a cytoskeletal intermediate filament-III and a marker
of astrocytes (Sofroniew and Vinters, 2010; Yang and Wang,
2015). GFAP binds with LAMP2A (Figure 1) (Bandyopadhyay
et al., 2010). Multiple studies found increased levels of GFAP
in tissues of AD patients. GFAP levels are increased in the
frontal cortices, hippocampi (Korolainen et al., 2005; Kamphuis
et al., 2014), and the CSF of AD patients (Ishiki et al., 2016).
Moreover, Gfap expression is modulated by cannabinoid receptor
1 (Cnr1) in the hypothalamus of mice (Higuchi et al., 2010) and
neuroinflammation regulates astrogliosis (abnormal increase in
the number of astrocytes) (Carson et al., 2006).

Inositol 1,4,5-Trisphosphate Receptor Type 1
(ITPR1/IP3R1)
ITPR1 gene encodes intracellular receptor mediating calcium
release from the endoplasmic reticulum (Santulli and Marks,
2015) and also plays a role in inducing autophagy (Messai
et al., 2014). Engineered downregulation of Itpr1 expression
protected AD model mice from Aβ accumulation, tau

hyperphosphorylation, as well as from dysfunction of memory
and hippocampal LTP (Shilling et al., 2014).

Microtubule Associated Protein Tau (MAPT/TAU)
MAPT gene encodes tau protein, which pathology is one
of the most well-recognized markers of AD. Autophagy is
a main pathway of degradation of tauDeltaC, which is a
form of the protein found in the brains of AD patients
(Dolan and Johnson, 2010). Autophagy dysfunction plays
important role in tau aggregation (Inoue et al., 2012). Tau
may also regulate autophagy (Pacheco et al., 2009), likely via
inhibition of HDAC6 activity (Perez et al., 2009). Finally, Mapt
deficiency reduces neuroinflammation (Maphis et al., 2015),
while neuroinflammation in turn induces Mapt phosphorylation
(Bhaskar et al., 2010).

Presenilin 1 (PSEN1)
PSEN1 protein is a regulator of the APP-cleaving γ-secretase
complex (De Strooper et al., 1998), and autophagic proteolysis
(Neely and Green, 2011).

PSEN1 gene mutations contribute to the pathogenesis of early
onset AD (Karch and Goate, 2015), and this effect may be
mediated by loss of stability and hydrophobicity of the proteins
encoded by the mutated variants (Somavarapu and Kepp, 2016).
CSF of AD patients with PSEN1 mutations showed lower levels of
Aβ than AD patients without PSEN1 mutation (Ikeda et al., 2013).
This may suggest that the proteins are retained in the brain cells
due to dysregulated autophagy. Cataldo et al. (2004) compared
brains of AD patients with mutation of presenilin 1 with brains
of sporadic AD patients. They concluded that PSEN1 mutation
is associated with higher prevalence of lysosomal pathology in
neurons of AD patients (Cataldo et al., 2004). This corresponds
to report by Lee et al. (2010), where the authors show that Psen1
is crucial for modulating lysosome acidification and proteolysis
during autophagy. Dysregulated lysosomal proteolysis may lead
to accumulation of proteins and cell death (Lee et al., 2010).
Additionally, PSEN1 is hypothesized to be involved in brain
immune response as Psen1/2 knock-out changes the expression
of neuroinflammation-related genes (Mirnics et al., 2008).

Alpha-Synuclein (SNCA/PARK1/NACP)
Expression of SNCA is enriched in brain according to
Human Protein Atlas (Uhlen et al., 2015). SNCA regulates
autophagosome formation (Yan et al., 2014), but it is also
negatively regulated by autophagy (Colasanti et al., 2014).

SNCA mutations are connected to the risk of AD (Matsubara
et al., 2001; Wang et al., 2016). Changes in expression of SNCA
proteins were also reported in some brain regions of AD patients
(Quinn et al., 2012). Dysregulated levels of SNCA in CSF are
associated with cognitive performance (Korff et al., 2013). Effect
of Snca protein expression on memory was also reported in mice
(Larson et al., 2012).

SNCA is an important component of Aβ plaques (Ueda et al.,
1993). Snca induces expression of Aβ peptides and vice versa
(Majd et al., 2013). SNCA also likely regulates APP processing by
modulating the activity of BACE1 (Roberts et al., 2017), binds Aβ

peptides and promotes their aggregation (Yoshimoto et al., 1995).
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There are also reports of Snca inhibiting Aβ plaque formation
(Bachhuber et al., 2015). On the other hand, Aβ40 decreases
SNCA uptake by neurons (Chan et al., 2016).

Similarly to interaction of SNCA with Aβ peptides, SNCA and
tau also induce each other fibrillization (Giasson et al., 2003).
SNCA binds, phosphorylates, and inhibits microtubule assembly
activity of tau (Oksman et al., 2013; Oikawa et al., 2016).

Ubiquilin 1 (UBQLN1)
UBQLN1 gene encodes ubiquitin-like protein involved in
autophagosome–lysosome fusion (N’Diaye et al., 2009) likely by
interacting with ATG8E (MAP1LC3A) (Rothenberg et al., 2010).

There is a strong evidence for involvement of UBQLN1 in AD
pathology. UBQ-8i polymorphism of UBQLN1 was associated
with increased risk of AD in two separate meta-analyses (Zhang
and Jia, 2014; Yue et al., 2015). In hippocampi of AD patients
UBQLN1 protein localizes to dystrophic neurites (Satoh et al.,
2013). Expression of UBQLN1 protein is reduced in temporal
and frontal cortices of AD patients (Stieren et al., 2011; Natunen
et al., 2016). This decrease may cause enhanced processing and
intracellular trafficking of APP (Hiltunen et al., 2006; Stieren
et al., 2011), and secretion of Aβ40/42 (Hiltunen et al., 2006).

Moreover, UBQLN1 interacts with BACE1, which is a key APP
processing protein. Ubqln1 overexpression causes an increase
of Bace1 in neuron-microglia co-cultures, though this effect did
not reach significance in the brains of mice (Natunen et al.,
2016).

Ubiquitin C-Terminal Hydrolase L1 (UCHL1)
UCHL1 is a brain-enriched ubiquitin-specific hydrolase (Uhlen
et al., 2015). It influences autophagy by interaction with LAMP2
(Figure 1), which modulates autophagosome-lysosome fusion
(Costes et al., 2014; Hubert et al., 2016).

Uchl1 plays an important role in synaptic functions and
memory as shown in mouse model of AD (Gong et al., 2006).
This effect may be related to the Uchl1 ability to restore Bdnf
signaling, which is disrupted by Aβ (Poon et al., 2013). BDNF
is one of the most critical mediators of brain functions (Lu
et al., 2014). Several publications have reported either effect or
lack of effect of UCHL1 mutations on AD (Xue and Jia, 2006;
Shibata et al., 2012). Similarly, there is some discrepancy in the
directionality of changes in expression of UCHL1 gene between
different studies performed on AD patients. In frontal cortices
the UCHL1 protein was upregulated (Donovan et al., 2012).
On the other hand, downregulation of UCHL1 was reported in
hippocampi (Poon et al., 2013) and in unspecified brain area
(Choi et al., 2004).

Co-immunoprecipitation assay showed that Uchl1 interacts
with App (Zhang M. et al., 2014). The Uchl1 overexpression,
induced by intracranial injection of Uchl1-expressing virus,
decreases the Aβ production and protects AD model mice
against memory impairment (Zhang M. et al., 2014). Decreased
expression and activity of UCHL1 protein is associated with Aβ

treatment in vitro (Guglielmotto et al., 2012). Similarly, decreased
expression of UCHL1 protein is found in the cerebral cortex
of AD patients (Guglielmotto et al., 2012). Additionally, the
cortical UCHL1 protein levels seem to be inversely correlated

to the number of NFT in AD patients (Chen et al., 2013).
Moreover, UCHL1 is involved in lysosomal degradation of
BACE1 (Guglielmotto et al., 2012).

UCHL1 protein co-localizes with NFTs in AD brains (Choi
et al., 2004). The Uchl1 expression and activity negatively
influence the levels of phosphorylated tau and aggregation of
tau protein in mouse neuroblastoma cells (Xie et al., 2016).
Tau induces mitochondrial degradation, synaptic deterioration,
and cellular death by recruiting UCHL1 in vitro (Corsetti et al.,
2015).

THERAPEUTIC IMPLICATIONS OF THE
INTERPLAY OF ALZHEIMER’S DISEASE
AND AUTOPHAGY

The protein aggregates, e.g., Aβ and tau proteins, participating
in the pathology of neurodegenerative disorders cause neuronal
damage and synaptic dysfunction (Irvine et al., 2008; Bloom,
2014). Their removal or inhibition of their formation are
proposed as potential therapeutic approaches for the treatment of
neurodegenerative disorders (Nowacek et al., 2009). Autophagy
is one of the main mechanisms by which the cell degrades
abnormal proteins. Thus, elimination of such protein aggregates
may be achieved utilizing mechanisms of autophagy (Metcalf
et al., 2012). Several autophagy-stimulating drugs have already
demonstrated considerable therapeutic potential for AD
treatment in clinical trials. We shortly discuss some of them
below.

Carbamazepine (CBZ)
Carbamazepine was primarily developed as a drug used in the
treatment of epilepsy (Okuma and Kishimoto, 1998). In the
past, scientists studied therapeutic effect of CBZ on AD-related
agitation (Xiao et al., 2010). Recently two publications have
shown that carbamazepine-induced autophagy also protected
against memory dysfunction and increase in Aβ content in brains
of mouse model of AD (Li et al., 2013; Zhang et al., 2017).

Latrepirdine
Latrepirdine stimulates mTOR- and Atg5- dependent autophagy
and reduces intracellular content of App metabolites, including
Aβ peptides, in the brain of mouse (Steele and Gandy, 2013).
Recent meta-analysis has shown no adverse effects and small
improvement in dementia-related behaviors by latrepirdine
in AD patients (Chau et al., 2015). Nevertheless, as Chau
et al. (2015) themselves admit, the analyzed literature was not
comprehensive enough to allow for more confident conclusions.

Lithium
Clinical trials have shown that lithium may ameliorate AD and
this effect may be related to its mTOR-independent autophagy-
inducing activity (Sarkar et al., 2005; Forlenza et al., 2012). In
meta-analysis of clinical studies on AD, lithium significantly
decreased cognitive decline compared to placebo, while showing
no significant adverse effects (Matsunaga et al., 2015a).
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Memantine
The NMDA (N-methyl-D-aspartate) receptors antagonist
memantine is widely used for treatment of moderate-to-severe
AD. According to recent meta-analysis it shows good tolerance
and some efficacy in AD treatment (Matsunaga et al., 2015b).
This effect may be in some extent mediated by memantine
ability to influence autophagy in either mTOR-dependent or
mTOR-independent manner (Song G. et al., 2015).

Nicotinamide
Liu et al. (2013) reported that long-term treatment with
nicotinamide (Vitamin B3/PP) reduces Aβ and tau pathologies
as well as cognitive decline in a mouse model of AD. The
effect of nicotinamide is likely mediated by enhancement of
the acidification of lysosome or autophagolysosome, leading to
reduced autophagosome accretion (Liu et al., 2013). Gong et al.
(2013) have shown that nicotinamide activity depends also on
its ability to induce degradation of Bace1. Recently published
clinical trials showed safety, but no effect of nicotinamide on
cognitive function of AD patients (Phelan et al., 2017). Despite
this, nicotinamide anti-AD activity is still studied and further trial
is currently ongoing (Grill, 2017).

Protein Phosphatase 2A Agonists
Clinical trials have suggested that protein phosphatase
2A agonists, such as metformin, can inhibit the
hyperphosphorylation of tau (Kickstein et al., 2010). Similar
results were obtained from a study on mice (Li et al., 2012).
Hyperphosphorylation of tau is a key step in generation of NFTs
in AD patients (Iqbal et al., 2010). On the other hand, metformin
did not protect diabetic mice from AD-like memory dysfunction
(Li et al., 2012).

Rapamycin
Rapamycin, a selective inhibitor of target-of-rapamycin complex
1 (TORC1) and thus modulator of the mTOR pathway activity,
improved learning and memory and reduced Aβ and tau
pathology in the brains of AD mouse model (Caccamo et al.,
2010; Spilman et al., 2010). Rapamycin also increased viability of
cells treated with Aβ42 (Xue et al., 2013). Rapamycin prodrug,
temsirolimus was shown to induce autophagy-dependent Aβ

clearance and to improve memory in mouse model of AD (Jiang
et al., 2014). Temsirolimus also lowered tau accumulation and
rescued motor dysfunctions in tau mutant mice (Frederick et al.,
2015). SMER28, a small molecule-based enhancer of rapamycin,
increases autophagy via Atg5-dependent pathway while reducing
the levels of Aβ peptide in a γ-secretase-independent manner
(Tian et al., 2011). Recent rapamycin clinical trial showed non-
significant decrease in expression of the cellular senescence
marker beta galactosidase (Singh et al., 2016).

Resveratrol
Resveratrol, a grape-derived polyphenol, and its derivatives
decreased extracellular Aβ peptide accumulation by activating
autophagy via AMPK signaling pathway (Figure 1) (Vingtdeux
et al., 2010). Recently published clinical trials studying the efficacy

of resveratrol for AD treatment showed that resveratrol is well-
tolerated but, surprisingly, AD biomarkers, such as plasma Aβ40
level, were present in treated group at even higher levels than in a
placebo group (Turner et al., 2015). On the other hand, long-term
resveratrol treatment rescued memory loss and Aβ levels in the
brain of AD mouse model (Porquet et al., 2014). Hence, viability
of this compound as a medication for AD is unclear.

Other Autophagy-Regulating Substances
That Have Shown Relevant Results Only
in Animal AD Models
Arctigenin
Arctigenin, a polyphenol extracted from Arctium lappa, was
found to inhibit Aβ production and memory impairment in
mouse model of AD (Zhu et al., 2013). The effect was mediated
by mTOR- and AMPK-dependent autophagy (Zhu et al., 2013).

β-Asarone
β-asarone is an ether found, e.g., in Acori graminei
(Liu et al., 2016). β-asarone treatment decreases Aβ42 levels
in hippocampus and improves memory in a mouse model of
AD, probably through mTOR-dependent autophagy (Deng et al.,
2016).

GTM-1
It was shown that administration of GTM-1, a derivative of
quinolone, rescues cognitive dysfunction and Aβ pathologies in
mouse model of AD by activating mTOR-independent autophagy
(Chu et al., 2013; Zhang et al., 2017).

Oleuropein Aglycone
Oleuropein aglycone is a polyphenol, which is present in plants
of Oleaceae family and induces autophagy via mTOR pathway
(Grossi et al., 2013; Luccarini et al., 2015). According to a recent
review (Martorell et al., 2016), regulation of autophagy is one
of the mechanisms via which oleuropein aglycone counteracts
amyloid aggregation and toxicity.

Tetrahydrohyperforin
Tetrahydrohyperforin is a derivative of hyperforin, which is
an active component of St. John’s Wort plant (Hypericum
perforatum). In AD model mice tetrahydrohyperforin prevented
memory impairment and physiological dysfunctions such as tau
hyperphosphorylation or turnover of amyloid plaques (Cerpa
et al., 2010; Inestrosa et al., 2011). At least one of its beneficial
effects is mediated by its autophagy-related activity, that is
clearance of APP via ATG5-dependent pathway (Cavieres et al.,
2015).

Trehalose
The disaccharide trehalose, an inducer of mTOR-independent
autophagy (Sarkar et al., 2007), inhibits the aggregation of
both Aβ40 and tau, and reduces their cytotoxicity in vitro (Liu
et al., 2005; Kruger et al., 2012). Similarly, in two separate
studies utilizing mouse models of AD, trehalose protected against
cognitive dysfunction (Du et al., 2013; Portbury et al., 2017).
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Interestingly, one of these studies also reported effect of
trehalose on hippocampal Aβ levels (Du et al., 2013), while
the other one reported a lack of this effect (Portbury et al.,
2017).

Summarizing, scientific community puts a significant effort
into developing autophagy-related therapeutics for AD. Several
agents, such as rapamycin and latrepirdine, have already
been tested on AD patients and show promising results.
However, many more potential therapeutics showing efficacy
for treatment of cognitive dysfunctions in animal models
of AD await for more comprehensive studies and trials on
humans.

CONCLUSION

Despite much of the data presented in the review being acquired
in studies performed on animal models, we propose that
properly functioning autophagy is crucial for the normal aging
of neurons. Malfunction in neuronal autophagy is one of the
key factors influencing the development of neurodegenerative
disorders, including AD. The autophagy plays a key role
in the metabolism of Aβ and tau protein, the mTOR
pathway, neuroinflammation, and in the endocannabinoid
system, all of which may mediate its effect on AD. Accordingly,
autophagy-targeted therapeutic approaches may lead to the
development of novel therapeutic strategies for the management
of AD.
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