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Two major types of  T cells that deliver help (Th) 1 for B cell responses to 
thymic-dependent (TD) antigens have been described. The  classic Th  cell re- 
sponds to carrier antigenic determinants  and generates help for B cell responses 
to haptenic determinants  (1-5). Induction of  carrier-specific Th  cells requires 
histocompatible accessory cells (6-8). MHC requirements for Th-B cell interac- 
tions, however, have been controversial (9-16). Studies with cloned murine Th  
cells (17-19) have revealed that activation of  small, resting B cells requires the 
help of  MHC-restricted, antigen-specific cells (20, 21). Once activated, B cells 
can be induced to divide and mature under  the influence of  T cell-derived B 
cell growth and differentiation factors. It has also been shown that activation of  
Lyb-5- B ceils requires MHC restriction and hapten-carrier linkage for Th-B cell 
interaction (22, 23), while activation of  Lyb-5 ÷ B cells is MHC unrestricted and 
can be tr iggered by hapten and carrier on separate molecules (22, 23). 

Another  class of  T h  cells appears to depend upon B cell immunoglobulin (Ig) 
determinants for induction. A subpopulation of  helper T cells that recognizes Ig 
(Thlg) and normally acts in synergy with carrier-specific T h  cells, cannot be 
detected in anti-u suppressed mice that lack Ig + B cells (24, 25). Thtg cells may 
express two receptors, one for idiotype and the other  for antigen (26). These T 
cells interact with B cells via idiotype recognition and require antigen stimulation 
before collaboration with B cells. Induction of  Thxg cells in an Igh-rectricted 
environment  leads to efficient help of  B cells bearing the matching Igh-linked 
product  (27). Antigen-activated B cells appears to be responsible for induction 
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of Thlg cells (28). The cumulative evidence leads to the conclusion that subsets 
of  Th cells can support either idiotype- (29, 30), allotype- (31), or isotype- (28, 
32-34) specific B cell responses to TD antigens. 

A major inductive site for murine IgA responses is the gut-associated lympho- 
reticular tissue (GALT), e.g., Peyer's patches (PP), which contain significant 
numbers of  IgA-committed B cells and T cells that support IgA responses (35). 
We have isolated and characterized several T cell clones from murine PP that 
exhibit antigen-specific helper activity predominantly for IgA isotype responses 
(PP Th A; reference 36). These PP Th A clones supported higher IgA responses 
in cultures of  B cells from PP than from spleen. Since PP contain an abundance 
of surface IgA-positive (sIgA ÷) B cells, one explanation for higher responses in 
PP B cell cultures could be that PP Th A cells act directly on the postswitched 
sIgA ÷ B cell subpopulation, perhaps via soluble differentiation factors (37). 
Alternatively, the PP Th A cells could induce B cell isotype switching, and recent 
work with mitogen-activated PP T cell clones supports this possibility (38, 39). 
In order to distiguish an isotype switch mechanism from preferential induction 
of  sIgA ÷ B cells, we have examined the B cells that collaborate with PP Th A 
cell clones for IgA responses. 

Materials and  Methods  

Mice. C3H/HeJ (The Jackson Laboratory, Bar Harbor, ME) and C3H/HeN (National 
Institutes of Health, Bethesda, MD) mice were bred and maintained in laminar flow units 
in the University of Alabama in Birmingham Cancer Center, a facility designed for 
immunocompromised mice. All mice used in these studies were 7-12 wk of age, except 
for the newborn and young mice used in the study of IgA B cell ontogeny. 

Culture Conditions for PP Th A Clones. Helper T cell clones used here were derived 
from PP of C3H/HeJ mice, as previously described (36). Briefly, C3H/HeJ mice were 
given sheep erythrocytes (SRBC; Colorado Serum Co., Denver, CO) by gastric intubation 
(daily for two consecutive days), their PP aseptically removed 1 wk later and cells 
dissociated to single cell suspensions with the enzyme Dispase (35). T cells were purified, 
cultured in RPMI 1640 (Grand Island Biological Co., [Gibco], Grand Island, NY) contain- 
ing 2 mM L-glutamine, penicillin (100 U/ml), streptomycin (100 #g/ml), gentamicin (50 
~g/ml), and 15 mM HEPES (Gibco) (incomplete TC medium), 10% fetal calf serum (FCS; 
Flow Laboratories, McLean, VA) and 2-mercaptoethanol (2-ME; 5 X 10 -~ M) (complete 
TC medium). SRBC and T cell growth factor (TCGF) were added and T cells were 
cultured in an atmosphere of 7% O~, 10% CO2, and 83% N2. Wells exhibiting cell growth 
after 2-3 wk were cloned by limiting dilution (17, 36). Individual clones were assessed 
for helper activity in B cell cultures immunized with SRBC. A total of 21 clones were 
selected which supported either mainly IgA with some IgM (9 clones) or high IgA and 
low IgM, IgGb IgG2, and IgGs (12 clones)anti-SRBC plaque-forming cell (PFC) responses 
(36). 

Feeder Cells. Single cell suspensions of spleens from C3H/HeN mice were treated with 
a cocktail of monoclonal antibodies (anti-mouse Thy-l.2 [Clone HO-13-4], anti-Lyt-1 
[Clone 53-7.313] and -Lyt 2 [Clone 53-6.72] antibodies) for 30 min at 4°C, followed by 
incubation with anti-rat IgG and rabbit complement (C) for 30 rain at 37°C. Cells were 
washed twice by centrifugation and the pelleted cells were irradiated (3,000 rads). Cells 
were washed and resuspended in complete TC medium and 1-2 × 106 cells were added 
to macroculture plates (Linbro Chemical Co., Hamden, CT). Cultures were incubated for 
2-3 h at 37 °C in 5% CO~ in air and nonadherent cells were removed by vigorous pipetting 
and addition and removal of media. In other studies, peritoneal cells were removed by 
flushing the exposed abdominal cavities of C3H/HeN mice with I 0-12 ml of incomplete 
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TC medium; cells were washed twice before irradiation (3,000 rads). Cells were added 
(1-2 x 105) to cultures and nonadherent cells removed as described above. 

TCGF Production and Assay. T cell growth factor (TCGF) was prepared from Con A-  
induced spleen cell culture supernatants as described previously (36). TCGF was also 
obtained from the EL-4 thymoma cell line (40). EL-4 cells were cultured (1 X 106/ml) in 
incomplete TC medium with 1% FCS in the presence of 10 ng of phorbol-12-myristate- 
13-acetate (PMA) for 40 h as described (40). Culture supernatants were obtained following 
centrifugation, filter sterilized, and TCGF activity assessed. 

The TCGF-dependent helper T cell clone (HT-2) was used for titration of TCGF (17, 
41). HT-2 cells were cultured in triplicate in flat-bottomed microplate wells (Flow) in 
complete medium. Each well contained 5 x 103 cells in the presence of log2 dilutions of 
TCGF supernatants. After 20 h in culture at 37°C in 5% CO~ in air, wells were pulsed 
for 4 h with 0.5 #Ci of tritiated thymidine (SH-TdR, New England Nuclear, Boston, MA), 
harvested on glass fiber strips, and SH-TdR uptake measured in a liquid scintillation 
counter. A 50% endpoint for uptake of 3H-TdR was designated as 1 U of TCGF activity 
(41). 

Immune Responses in B Cell Cultures. C 3 H / H e N  mice were given 0.075 ml of rabbit 
anti-thymocyte sera (Microbiological Associates, Waikersville, MD) 48 h before sacrifice. 
Splenic or PP single cell suspensions were prepared (36) and treated with monoclonal 
anti-T cell cocktail as described above. The cocktail of monocional antibodies was added 
to the cell pellet in medium containing 2% FCS (30 min/4°C) followed by addition of 
anti-rat IgG and C (30 min, 37°C). Cells were washed twice in minimal essential medium 
(Gibco) supplemented with L-glutamine, gentamicin, sodium bicarbonate, sodium pyru- 
vate, nonessential amino acids (incomplete MEM), and resuspended in complete MEM 
medium (incomplete MEM plus 10% FCS and 2-ME) (35, 36). This population of B cells 
was free of residual T cells since <1% of cells stained with FITC-anti-Thy-l.2,  and did 
not elicit mitogenic responses to PHA or Con A or form PFC responses to several thymic- 
dependent antigens. Appropriate concentrations of B cells and cloned T cells were added 
to macroculture or microculture (Linbro) wells containing erythrocyte antigen and incu- 
bated at 37°C in an atmosphere of 7% O~, 10% CO~, and 83% N~. 

Depletion~Enrichment of slgA + B cells by Flow Cytometry. For depletion of sIgA + B cells, 
either splenic or PP B cells were separated on Ficoll-hypaque gradients, washed, and cells 
(2-6 x 107) were stained with 50 zi of fiuorescein isothiocyanate-conjugated, affinity- 
purified goat IgG specific for mouse a heavy chain (FITC-anti-a) (Southern Biotechnology 
Co., Birmingham, AL) by incubation for 30 min at 4°C. Cells were then washed twice 
with incomplete MEM and resuspended to 6 × 106 cells/ml for cell sorting. Flow cytometry 
was performed using a FACS IV (Becton-Dickinson and Co., Sunnyvale, CA) equipped 
with a logarithmic amplifier. Aliquots of cells were then examined with a Leitz fluorescent 
microscope (E. Leitz, Inc., Rockleigh, NJ) for the presence of sIgA + B cells. Examination 
of 1,500 cells revealed the presence of less than 2 total slgA + cells. 

For collection ofslgA + B cells from PP cell cultures, FITC anti-a treated cell populations 
were sorted into slgA + and slgA- cell pools. Due to the low cell yields of sIgA + B cells, it 
was necessary to perform microculture in vitro assays. Accessory cells were provided by 
addition of 1-2 x 105 irradiated (3,000 rads) C3H/HeN splenic mononuclear cells to 
each well and incubation for 2 h at 37°C in 5% CO2, followed by the removal of 
nonadherent cells before addition of sorted cells (1 × 105 cells/well) and T cells (1 × 10 s 
cells) for culture. 

Separation of slgA + and slgA- B Cells by the "Panning" Method. Enriched sIgA + and sIgA- 
B cell populations were prepared from PP B cell preparations (described above) by 
pretreating the B cells with goat IgG anti-mouse a heavy chain, followed by adherence to 
rabbit anti-gnat IgG-coated plates (42). Affinity-purified rabbit anti-gnat IgG antibody 
was absorbed with mouse immunoglobulin before coating of the petri dishes. For panning, 
rabbit anti-goat IgG antibody (10 ml at 25 #g/ml in 0.05 M Tris buffer, pH 9.5) was 
added to petri plates (15 × 100 mm, Falcon Labware, Oxnard, CA) and plates were 
incubated at room temperature for 40 min. Plates were washed four times with phosphate- 
buffered saline (PBS) and finally with PBS containing 1% FCS. Goat IgG anti-mouse a- 
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treated PP B cells in 3 ml of PBS containing 5% FCS were poured onto these precoated 
plastic plates. The dishes were incubated at 4°C for 70 rain. Nonadherent cells were 
harvested with four gentle washes using PBS containing 1% FCS. In some experiments, 
pooled nonadherent cells were further treated with goat anti-mouse a (Meloy Laborato- 
ries, Springfield, VA) and complement. These preparations served as sIgA- B cell cultures. 
Adherent cells were recovered by addition of PBS containing 1% FCS and by vigorous 
pipetting of media over the plate surface. Recovered cells were further treated with goat 
anti-mouse # and ~, (Meloy) and complement before their use as sIgA + B cell cultures. 
Aliquots of cells were then examined with a Leitz fluorescent microscope for the presence 
of sIgA ÷ cells as described above, <5 sIgA + B cells were seen per 1,500 cells examined in 
the nonadherent preparation, while >95% of the adherent cell population was sIgA +. 
Either sIgA + or sIgA- B cells (4 X 105 cells/well) were cultured with cloned PP Th A 
cells (4 x 10S/well), accessory cells (described above), and SRBC antigen in microculture 
plates. 

Splenic B Cell Cultures from Young Mice. Single cell suspensions of spleen were obtained 
from C3H/HeN mice of various ages (days 1, 4, 7, 14, 17, 21, 25, 28, 31, 42, and 49). B 
cell cultures were prepared using monoclonal anti-T cell cocktail antibodies and rabbit C 
as described above. B cells were added (2.5 × 106/well) to macroculture wells containing 
SRBC (1-2 x 106) and appropriate cloned T cells (1 x 104/well) and cultured as described 
above. 

PFC Assay. After 5 d of culture, nonadherent cells were removed from macrocuhure 
wells, washed in Hanks' balanced salt solution (HBSS; Gibco), and resuspended in HBSS 
at appropriate dilutions for plaque assay. Cultures were assesed for direct (IgM) and 
indirect (IgG1, IgG2, and IgA) anti-SRBC PFC responses as previously described (35, 36). 
In addition, IgGs anti-SRBC PFC responses were determined using an optimal concentra- 
tion of goat anti-mouse ms antisera (Litton Bionetics). For microplate bioassay, triplicate 
cultures were assessed on day 5 for either IgM or IgA anti-SRBC PFC by the Cunningham- 
Szenberg modification of the hemolytic plaque technique (43). 

Statistics. Values for the PFC assay are expressed as the mean PFC response per culture 
+ SEM. The significance of difference between means was determined by the Student's 
t-test. 

Resul ts  

PP Th A Cells Collaborate with Surface IgA Bearing B Cells from Peyer's Patches for 
In Vitro IgA Responses. PP T h  A clones have been propagated in culture for ~2 
years and the cells have maintained their ability to provide preferential IgA anti- 
SRBC PFC responses in B cell cultures. We have maintained four clones contin- 
uously, two (PP Th  A #1 and #18) that promote  some IgM and high IgA, and 
two (PP T h  A #9 and #19) that support low, but significant IgM, IgGl, IgG2, 
IgG3, and high IgA anti-SRBC PFC responses (reference 36, and data not shown). 
For convenience, we present data only for PP Th  A #1 and #9 in this paper. 
Other  experiments indicate that  clones # 18 and # 19 exhibit identical properties 
to those reported here. 

Previously we have shown that PP Th  A cells support comparatively higher 
IgA anti-SRBC PFC responses in PP, than with splenic, B cell cultures (36). In 
this regard, PP contain a higher frequency of  sIgA + B cells, and the simplest 
explanation for higher IgA isotype responses with cloned PP Th  A cells would 
be that the Th  cell collaborates selectively with postswitched (sIgA +) B cells for 
isotype-specific responses. To  test this, PP B cells were separated into sIgA- and 
sIgA + populations before culture with cloned PP T h  A cells and SRBC. 

In the first experiments,  PP B cells were treated with FITC-anti-a antibodies 
and sorted into sIgA ÷ and sIgA- subpopulations by automated flow cytometry. 
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When sIgA- B cells were incubated with PP T h  A cells and antigen, the IgA 
response was greatly reduced  in comparison with the nonsor ted  B cell populat ion 
(Table I). In contrast,  sIgA + B cells and PP T h  A cells gave an elevated IgA 
response to SRBC. T h e  al tered response pat tern  was isotype-specific since sIgA- 
B cells and unsor ted  PP B cells gave similar IgM responses, while sIgA ÷ B cell 
subpopulations suppor ted  high IgA, but  low IgM, PFC responses. These  results 
suggest that PP T h  A cells preferential ly collaborate with commit ted  sIgA + B 
cells for  IgA isotype responses and that IgM responses are induced in the sIgA- 
B cell population. 

This  premise was fu r the r  tested using a second method  for B cell separation 
according to surface Ig isotype; PP B cells were separated into nonadheren t  
(sIgA-) and adheren t  (sIgA ÷) populations by panning. Again, PP T h  A cells 
suppor ted  normal  IgM and low IgA responses in the sIgA- B cell culture,  
whereas the enr iched  sIgA + (>95%) cultures with PP T h  A cells and SRBC gave 
few IgM and elevated IgA PFC responses (Table II). Thus ,  two separate methods 
for separation o f  B cell subpopulations gave essentially identical results indicating 
that the cloned PP T h  A cells preferential ly collaborate with mature  B cells for  
isotype-specific responses. 

Evidence that PP Th A Cells Collaborate with Splenic B Cells Committed to IgA. O u r  
previous studies showed that vigorous IgA anti-SRBC responses were obtained 
in splenic B cell cultures with cloned PP T h  A cells (36). In the present  
experiments,  splenic B cells were t reated with FITC-ant i -a  and sIgA ÷ cells were 
depleted by FACS. This t rea tment  significantly reduced  IgA anti-SRBC PFC 
responses, but  did not  alter the IgM response induced with PP T h  A cells and 
antigen (Table III). Since this t rea tment  did not  significantly al ter  the IgM 
response pat tern,  the results again suggest that PP T h  A cells collaborate with B 
cells expressing surface IgA for  IgA responses (Table III). 

TABLE ] 

PP Th A Cell Help in slgA ÷ and slgA- Peyer's Patch B Cell Cultures 
Separated by Flow Cytometry* 

PP Th A cells 
added to B cell B cell preparation 

cultures (clone no.) 

Anti-SRBC PFC/cuhure* 

IgM IgA 

Total B cells 69 :t= 2 182 _ 7 
slgA- B cells 57 + 8 28 + 2 
slgA + B cells 11 + 1 308 + 65 

Total B cells 30 _+ 3 97 + 13 
slgA- B cells 27 + 2 17 :t= 2 
slgA + B cells 8 + 2 234 + 84 

* Peyer's patch B cell preparations were incubated with FITC-labeled anti-a 
antibody and cells sorted by FACS into sIgA- and sIgA + populations. B cells 
were cultured (1 x 105 cells/well) with the appropriate PP Th A clone (1 x 
l0 s cells) and SRBC (5 x 104). IgM and IgA anti-SRBC responses were assessed 
on day 5 of culture. 

* Values are the mean anti-SRBC PFC responses per culture + SEM from 
duplicate cultures per experiment and three separate experiments. B cell 
cultures immunized with SRBC did not support anti-SRBC PFC responses. 
Nonimmunized control cultures gave less than 2 anti-SRBC PFC/culture. 
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TABLE II 

PP Th A Cell Help in slgA + and slgA- Peyer's Patch B Cell Cultures 
Separated by Panning* 

803 

PP T h  A cells Anti-SRBC PFC/Culture~ 
added to B cell B cell preparation 

cultures (clone no.) IgM IgA 

Total B cells 203 4- 27 671 __. 71 
slgA- B cells 233 4- 16 131 4- 15 
sIgA ÷ B cells 63 4- 4 1,173 __. 94 

Total B cells 113 4- 14 372:1:28 
slgA- B cells 102 4- 6 92 4- 13 
sIgA ÷ B cells 41 4- 5 987 + 76 

* Peyer's patch B cell preparations were treated with goat IgG anti-mouse a 
antibody and cells were incubated in rabbit  anti-goat IgG coated petri dishes. 
Panned B cells (sIgA- or sIgA +) were cultured (4 x 10" cells) with the PP T h  
A cells (4 X l0  s) and SRBC (2 x 10n). IgM and IgA anti-SRBC PFC responses 
were assessed on day 5 of culture. 

* Values are the mean anti-SRBC PFC responses per  culture 4- SEM from 
duplicate cultures per experiment and two separate experiments. B cell cultures 
immunized with SRBC did not support anti-SRBC PFC responses. Nonimmu- 
nized control cultures gave less than 3 anti-SRBC PFC/culture. 

TABLE I I I  

Evidence That PP Th A Cells Provide Help for Splenic slgA + B Cells for IgA 
Responses* 

PP T h  A cells 
added to B cell 

cultures (clone no.) 
B cell preparation 

Anti-SRBC PFC/culture* 

IgM IgA 

Total B cells 304 4- 15 736 4- 17 
1 sIgA- B cells 291 4- 21 162 4- 19 

(FACS) 

Total B cells 213 4- 16 553 4- 32 
9 sIgA- B cells 906 + 18 119 4- 14 

(FACS) 

* Splenic B cells were incubated with FITC-labeled anti-a antibody and slgA + 
cells removed by FACS. B cells were cultured (1 x l0  s cells/well) with the 
appropriate cloned PP T h  A cells (1 x 104 cells) and SRBC (5 X 105). IgM and 
IgA anti-SRBC PFC responses were assessed on day 5 of  culture. 

* Values are the mean anti-SRBC PFC responses per culture 4- SEM from 
triplicate cultures per  experiment and four separate experiments. B cell cultures 
immunized with SRBC gave <5 anti-SRBC PFC/culture.  Nonimmunized con- 
trol cultures gave <9 anti-SRBC PFC/culture.  

The finding that both splenic and PP B cell populations depleted of  sIgA ÷ 
cells by either flow cytometry or panning give rise to limited numbers of  IgA 
PFC suggests the PP Th A cells either (a) induce a switch step or (b) support IgA 
responses in B cell subpopulations with insufficient sIgA for their separation. In 
the latter case, B cells may appear in an earlier stage of  differentiation, but are 
nevertheless committed to IgA expression. To examine this point more closely, 
splenic B cell cultures were incubated with PP Th A cells (clone #1 or #9) and 
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SRBC for  2 d in culture.  N o n a d h e r e n t  cells were removed ,  T cells depleted with 
a n t i - T  cell ant ibodies and rabbi t  C, and sIgA + B cells r emoved  by FACS and 
s IgA-  B cells recul tured  with PP T h  A cells and antigen. T h e  data presented  in 
Tab le  IV indicate that  s I g A -  B cell cultures gave rise to low IgA and normal  
IgM anti-SRBC PFC responses (Table  IV). PP T h  A clone #9 also suppor ted  low 
IgGl ,  IgG2, and  IgG~ ant i-SRBC PFC responses in both  normal  and  s IgA-  B cell 
cultures (data not  shown). These  results suppor t  the conclusion that  PP T h  A 
cells preferent ia l ly  help in the induction o f  IgA plasma cell different iat ion by 
col laborat ion with p recursor  cells which express sIgA. 

Ontogeny of B Cells Helped by PP Th A Clones. It  is well established that  young 
mice have an immatu re  B cell populat ion,  and more  ma tu re  B cells (sIgM ÷, 
sIgD +, and  those commi t t ed  to o the r  isotypes) accumula te  over  the first few 
weeks o f  life (44-46) .  I t  was the re fo re  of  interest  to examine  the ability o f  PP 
T h  A cells to suppor t  ant i-SRBC responses in splenic B cell cu l tu re sde r ived  f rom 
mice of  varying ages as shown in Fig. 1. Both PP T h  A #1 and  #9 suppor t  low 
but  signfiicant IgM responses by 14 d o f  age. Interestingly,  clone #9 supports  
IgGl ,  IgG2, and  IgGs responses beginning  at 3 wk of  age. Nei ther  clone suppor ted  
IgA anti-SRBC responses until ~28  d o f  age, and  maximal  IgA responses were 
only seen in splenic B cell cultures der ived f rom young  adult  mice (Fig. 1). These  
results indicate that  relatively ma tu r e  IgA B cells are the targets  o f  PP T h  A 
cells and unde r  the influence o f  the lat ter  are  directed to final differentiat ion 
with IgA synthesis and  secretion. 

TABLE IV 
Removal of slgA + B Cells from Ongoing Spleen Cell Cultures Abrogates PP 

Th A Help* 

PP Th A cells 
added to B cell 

cultures (clone no.) 
B cell preparation 

Anti-SRBC PFC/culture* 

IgM IgA 

Total B cells 219 3:13 471 3:22 
(48-h culture) 
sIgA- B cells 192 3:11 98 3:9 
(48-h culture) 

Total B cells 98 3:4 251 3:17 
(48-h culture) 
sIgA- B cells 101 3:5 63 3:8 
(48-h culture) 

* Splenic B cells (2.5 x I0 e cells/well) were incubated with cloned PP Th A cells 
(2 x 104) and SRBC (1-2 x 106) for 48 h, and nonadherent cells removed. T 
cells were depleted with anti-Thy-l.2 and C, B cells were mixed with FITC- 
labeled anti-a, and slgA + ceils were removed by FACS. Cells were recultured 
(5 x 10b/well) with appropriate cloned PP Th A cells (5 x 10 s) and SRBC (2- 
3 x 10s). IgM and IgA anti-SRBC PFC responses were assessed on day 5 of 
culture. 

* Values are the mean anti-SRBC PFC responses per culture 3: SEM from 
triplicate cultures per experiment and two separate experiments. B cell cultures 
immunized with SRBC gave 0-3 anti-SRBC PFC/culture. Nonimmunized 
controls gave less than 6 anti-SRBC PFC/culture. 
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FIGURE 1. B cell maturational requirements for PP Th A isotype-specific help. PP Th A #1 
(-O-) or #9 (-0-) cells were added (2 x 104) to splenic B cell cultures (2.5 x 10°). The isotype 
(IgM, IgGh IgGt, IgGs and IgA) of the anti-SRBC PFC response was determined on day 5 of 
culture. Values are expressed as the mean PFC response/culture -4- SEM from triplicate 
cultures/experiment and two separate experiments. Control (B cells incubated with SRBC) 
responses ranged from 0-12 anti-SRBC PFC/cuhure. Nonimmunized control cultures gave 
less than 15 anti-SRBC PFC/cuhure. 

D i scus s ion  

B cells expressing surface IgM may switch to express other isotypes, and two 
opposing views o f  this heavy chain isotype switching have been presented. In the 
first model,  it was concluded that B cells undergo early intraclonal switching 
from IgM to the expression o f  other isotypes independently  of  antigen and T 
cell influences; the latter were envis ioned as clonal selective forces governing 
growth and terminal differentiation o f  precommitted B cells (47)'. In keeping 
with this idea, class-specific T cells may recognize surface Ig on committed B 
cells and select from this populat ion for isotype-specific help (28, 32, 34). 
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Alternatively, heavy chain isotype switches have been considered to be antigen- 
induced events (48, 49) directed by helper T cells (38, 39, 50-52) or their 
soluble factors (53). The two hypotheses imply very different mechanisms by 
which T cells may influence the immunoglobulin isotype produced in an antibody 
response. For T cells to preferentially enhance differentiation of isotype-precom- 
mitted B cells, the T cell would presumably require an isotype-specific receptor. 
On the other hand, for T cells or their soluble factors to induce an sIgM + B cell 
to switch to the expression of another isotype, a mechanism for inducing selective 
CH gene expression, probably by rearrangement, would appear to be necessary. 

In the present studies we have used clones of antigen-specific T helper cells to 
examine this issue. The results suggest that PP Th A cells can recognize and 
provide help for B cells already committed to IgA expression. First, depletion of 
either splenic or PP B cell cultures of sIgA + cells markedly diminish PP Th A 
supported IgA anti-SRBC responses. Conversely, enrichment of sIgA + B cells 
from PP, either by fluorescence-activated cell sorting or panning with anti-~ 
antibodies, greatly enhances IgA anti-SRBC responses in cultures containing 
sIgA + B cells and PP Th A cells. The latter result provides direct evidence that 
isotype-specific responses are dependent upon IgA-committed B cells and isotype- 
specific T cells, since cultures contained only antigen, cloned PP Th A helper 
cells and sIgA + B cells (>95% purity). 

It should be noted that in addition to high IgA responses, the individual PP 
Th A clones supported either limited IgM or low IgM, IgGl, IgG~, and IgGs 
anti-SRBC PFC responses. Depletion of sIgA + B cells from either splenic or PP 
B cell cultures did not alter IgM responses and, with the second PP Th A clone 
group, IgG1, IgG2, and IgG3 anti-SRBC PFC responses. This result suggests that 
the limited help provided by the PP Th A cells for IgM and IgG precursors is 
independent of the help delivered to sIgA + precursors. Our failure to detect 
significant IgA responses in sIgA- B cell cultures also suggests that these clones 
of  PP Th A cells do not direct class switching to IgA. 

Although splenic B cell populations contain a relatively low percentage of 
sIgA + B cells (46, 54), vigorous IgA responses were elicited in the presence of 
PP Th A cells. This result could suggest that the T cells directed switching of B 
cells or that the spleen contains B cells in different stages of isotype expression, 
including those committed to IgA, but which express insufficient surface IgA 
for their detection. We observed, however, that removal of sIgA + B cells from 
spleen significantly depleted IgA responses (Table III). Moreover, incubation of 
PP Th A cells with splenic B cells and antigen for 48 h, followed by removal of 
sIgA + B cells, also reduced IgA responses (Table IV), but did not alter the IgM 
response pattern. If switches of sIgM + B cells to sIgA ÷ B cells were frequent 
occurrences in SRBC-responsive clones, we would expect the precursor sIgM + B 
cells to be diminished in a 48-h culture. To the contrary, removal of sIgA + B 
cells from spleen or PP cultures was without effect on IgM responses and only 
reduced the IgA response to the antigen. 

Our studies with splenic B cells from young mice indicate that PP Th A cells 
act on a relatively mature subpopulation of  B cells. B cells bearing IgG or IgA 
isotypes are generated over the first few weeks of life (46). Our studies with PP 
Th A clone #9 and sheep erythrocyte-specific B cells from mice of different ages 
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demonstrate that the inducible IgM precursors precede the development of IgG 
and IgA precursors. If T cell switch influences were required for commitment 
to IgA, one would expect IgA responses in cultures of spleen cells from newborn 
mice. On the contrary, the IgA-responsive cells were the last to develop, and a 
normal IgA response was not seen until the donor mice reached the age of 7 wk. 
These results suggest that the isotype-specific T helper cells collaborate with a 
mature, surface IgA-bearing population of B cells for the induction of IgA 
responses. 

Cultures of newborn mouse liver containing/~÷ pre-B cells and slgM ÷ B cells 
gave rise to IgG (3'1, ~,2a, ~'2b, and ~3 subclass representation) and IgA B cells 
(55, 56). Isotype switching by the immature B cells occurred during the first 4 d 
of culture, and the switch frequency was normal in cultures of liver cells from 
athymic n u / n u  newborns (56). These results support the hypothesis that T cells 
are not essential for the initiation of isotype switching. Our present results would 
suggest that immature IgA B cells later acquire the capacity to respond to help 
provided by PP Th A cells. Preferential T cell help for B cells committed to the 
expression of the different IgG subclasses has also been shown in human (57, 
58) and in mouse model systems (59). 

The PP Th A clones used in the present studies have been shown to express 
Fca receptors (36). Others have provided evidence indicating that a subpopula- 
tion of human T cells bearing Fca receptors can preferentially enhance IgA 
synthesis in PWM-stimulated cultures (60). Human T cell hybridomas have been 
described that produce soluble factors capable of selectively enhancing differ- 
entiation of IgA-bearing leukemia cells and tonsillar B cell precursors of IgA- 
secreting cells (37). A possible mechanism by which PP Th A cells could recognize 
and help IgA-bearing B cells is via the production of Fca receptors. A precedent 
for such a mechanism is the demonstration of  soluble IgE-binding factors that 
can either enhance or suppress IgE responses depending upon the degree of 
glycosylation (32). Moreover, in recent studies, we have obtained evidence 
indicating that monoclonal IgA molecules can selectively inhibit the IgA response 
promoted by our PP Th  A clones (manuscript in preparation). 

Finally, it should be mentioned that our studies do not preclude the possibility 
that T cells may induce isotype switching of B cells in some instances. Support 
for a switch T cell for IgA expression has come from studies of T cell clones 
derived from concanavalin A-stimulated murine PP. These cloned T cells appear 
to promote switching o f  slgM ÷ B cells to the expression of slgA (38, 39). In 
addition, a T cell hybridoma and two T cell lines have been shown to produce 
lymphokines that can preferentially direct LPS-stimulated slgG- B cells to 
differentiate into cells producing IgG~ (53). Elucidation of the nature of these 
class-specific differentiation factors should help to resolve this issue. 

S u m m a r y  
The nature of the IgA B cell precursors that receive preferential help from 

selected clones of T helper cells from mouse Peyer's patches (PP Th A) were 
studied. Activation of the PP Th A clones required the presence of antigen, 
sheep erythrocytes (SRBC), in a culture system supporting development of 
antibody-secreting plasma cells. Two types of PP Th A cells were used. Both 
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gave vigorous IgA responses; the first also supported low IgM, and the second 
low IgM and IgG subclass antibody responses. Removal of  sIgA + B cells from 
either splenic or PP B cell cultures selectively depleted precursors of  IgA antibody 
producers. Cultures of  purified sIgA + B cells, cloned PP Th  A cells and SRBC, 
selectively yielded IgA antibody producers. Finally, PP T h  A cells did not support 
IgA responses in B cell cultures derived from spleens of  young mice (days 1-25), 
and full IgA responses were not seen until the donor  mice were 6-7  wk of  age. 
These results suggest that cloned T helper cells can recognize and collaborate 
with mature,  IgA commit ted B cells. 

The authors are deeply indebted to Dr. Larry Gartland for his help with the cell sorting, 
Drs. Loren Clement and Charles A. Janeway, and Dawn E. Coiwell for critical assessment 
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