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Introduction

Colorectal cancer (CRC) is one of the most common 
cancers worldwide, and its incidence and mortality have 
been increasing among individuals younger than 50 
years (1,2). Due to its metastasis propensity and gene 

heterogeneity, targeting CRC for effective prevention or 
therapeutic interventions remains challenging (3,4). This 
necessitates the development of prognostic and therapeutic 
indicators for CRC.

Recent technological advances in sequencing and 
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bioinformatics analysis have led to the identification of 
various molecular markers as predictors for tumor diagnosis, 
prognosis, and treatment. Post-translational modification 
(PTM), such as phosphorylation, acetylation, ubiquitination, 
and glycosylation, can modulate the structure and function of 
proteins (5). Several studies have demonstrated an association 
between PTM and tumor development, progression, and 
therapeutic response, with phosphorylation being one of 
the most common PTM types, primarily phosphorylating 
serine, threonine, or tyrosine residues and participating in 
signaling pathways (6-10). Abnormal phosphorylation has 
been identified as closely correlated with tumorigenesis and 
the development of CRC, showing potential as valuable 
biomarkers for early diagnosis, chemoresistance, and 
individualized treatment (6-8).

Despite the potential of PTM as a prognostic marker, 
no prognostic models based on PTM have been reported 
in colon adenocarcinoma (COAD). Nomograms have 
been recognized as excellent predictive tools for survival 
prediction that combine biological variables with clinical 
factors simultaneously (11,12). In this study, we focused 
on the PTM differences in COAD and constructed a 
nomogram model to predict CRC patients’ 1-, 3-, and 
5-year overall survival (OS), which could be beneficial for 

individual treatments and outcomes. We present this article 
in accordance with the TRIPOD and MDAR reporting 
checklists (available at https://jgo.amegroups.com/article/
view/10.21037/jgo-24-45/rc).

Methods

Acquisition and processing of data

The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.
gov/repository) was retrieved to acquire the transcriptomic, 
proteomic, and relevant clinicopathological data comprising 
316 CRC patients. Then, we randomly partitioned patients 
into training (discovery cohort, n=120) and test (validation 
cohort, n=196) groups. The data underwent background 
adjustment and normalization utilizing a style of fragments 
per kilobase million (FPKM) (13). The detailed clinical 
data are available at https://cdn.amegroups.cn/static/
public/10.21037jgo-24-45-1.xlsx. In addition, we acquired 
information on 89 PTM sites and protein expression 
by retrieving the TCGA-COAD dataset and searching 
PubMed. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Development of a risk model to analyze the risk score

Ten PTM sites closely associated with OS were selected 
through a univariate Cox regression analysis in the 
training set (P<0.10). Aided by the “glmnet” package in 
R software (version 4.1.3), a least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis was 
performed (P<0.05). The risk computing formula is as 

follows: ( ) ( )1
Risk score *n

i
Coef i Expr i

=
=∑  (14). We applied a  

10-fold cross validation with minimum criteria to obtain 
an optimal λ (15). The final value of λ yielded a minimum 
cross validation error. Consequently, 8 PTM sites, namely 
ACC_pS79, ARAF_pS299, Aurora.ABC_p288/p232/p198, 
CMET_pY1235, EGFR_pY1173, SRC_pY527, H2AX_
pS139, and PI3K_p110_b were identified. Univariate 
and multivariate Cox regression models confirmed the 
independent predictive ability of the risk score. The 
resulting median cut-off value was used to stratify patients 
into high-risk and low-risk groups. To evaluate the accuracy 
of our risk score, we analyzed the training and test groups, 
and constructed a Kaplan-Meier (K-M) survival curve, and 
the log-rank test was used to assess the survival differences 
between groups. The predictive ability of the risk score was 
evaluated by the receiver operating characteristic (ROC) 
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curve and the area under curve (AUC). 

Construction and validation of the nomogram

To improve the predictive ability of COAD patients, we 
established a prognostic nomogram to assess the survival 
probability in 1, 3, and 5 years via the “rms” R package. 
As independent parameters, age, gender, clinic stage, 
pathological stage, and risk score were all considered. The 
calibration curve displays the probability of the 1-, 3-, and 
5-year OS predicted by the nomogram. Through the use of 
the “ggDCA” package, a decision curve analysis (DCA) was 
implemented to determine the superiority of the nomogram.

Exploration of signaling pathways 

We generated enrichment plots in the TCGA COAD 
cohort by employing “gene set enrichment analysis (GSEA)” 
software with the filtering criteria of a P value less than 
0.05 (16). To identify the differentially expressed proteins 
(DEPs), the “limma” packages were used for the differential 
expression analysis [log2 fold change (FC) >0.2, false 
discovery rate (FDR) <0.05] between the training and test 
sets (17). After that, we used the “org.Hs.eg.db” package 
in R to perform both Gene Ontology (GO) functional 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analyses on the screened 26 DEPs 
(https://metascape.org/) (18).

Analysis of immune landscape and tumor 
microenvironment (TME)

Given the close relationship between immune status 
and prognosis, we used the TIMER, QUANTISEQ, 
and CIBERSORT algorithms to seek insight into any 
potential associations between the risk score and immune 
cell infiltration (19). A Mann-Whitney U-test was used 
to compare the surface markers of relevant infiltrating 
immune cells between the high- and low-risk groups 
in order to determine the immune alteration. We also 
investigated into the relationships between PTM risk 
score and microsatellite state.

Assessment of the therapeutic sensitivity 

To compare drug sensitivity in different risk score levels, 
we calculated tumor immune dysfunction and exclusion 
(TIDE, https://tide.dfci.harvard.edu/) of two risk groups. 

TIDE could evaluate immunotherapy effectiveness and 
immune evasion (20). In addition, utilizing the R packages 
“pRRophetic” (21), we computed the IC50 of several 
chemotherapy-related medications through the Wilcoxon 
signed-rank test.

Experiment in vitro

DLD-1 and HCT116 (human CRC cells) were cultured 
at 37 ℃, 5% CO2 in complete medium (RPMI DMEM 
supplemented with 100 µg/mL streptomycin, 100 IU/mL 
penicillin, and 10% fetal bovine serum). Control plasmid, 
pCMV-CMETY1235E, and pCMV-CMETY1235F, 
purchased from Miaolinbio company (Wuhan, China), 
were transfected into the cells using lipofectamine 3000 
transfection reagent (Invitrogen, USA) when the cell 
density reached 70–80%. CMETY1235E is an amino-
acid substitution mutant that mimics the phosphorylated 
state of  CMET, while CMETY1235F mimics the 
unphosphorylated form of CMET. The phosphorylation 
status of CMET in DLD1 and HCT116 was verified by 
western blotting results. Primary antibodies used in the 
western blotting assay were as follows: anti-β Tubulin 
(#M1305-2 HUABIO, Hangzhou, China), anti-CMET 
(#A0040), anti-pCMET (#AP1339) (ABclonal Technology, 
Wuhan, China). Cell viability assays were performed using 
the methyl thiazolyl tetrazolium (MTT) colorimetric assay 
(Topscience Biological Technology, Shanghai, China) at 
a wavelength of 490 nm by spectrophotometry. Colony 
formation experiments were conducted to assess cell 
proliferation. Approximately 500 cells per well were seeded 
into a 6-well culture plate and incubated for 2 weeks at 37 
℃. After 24 hours of transfection, cells were seeded into 
8-µm pore inserts (Corning, France) for transwell migration 
assays. Cell counts were obtained by ImageJ software. 
Finally, apoptosis and cell cycle assays were performed by 
NovoCyte flow Cytometer (Agilent, USA) and analyzed by 
NovoExpress software.

Statistical analysis 

With the support of Pearson analysis,  correlation 
coefficients were calculated. The K-M method, Cox 
regression model, and log-rank tests were employed to 
analyze the prognostic significance. The level of statistical 
significance was set at a P value of 0.05 or P value of 0.10 
for all statistical data analyses, which were all conducted in 
a two-sided manner. All statistical analyses were carried out 
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TCGA cohort 316 tumor tissues

Download transcriptome, proteome and clinical data of CRC patients

Classify 316 COAD patients into training cohort (n=120) and test cohort (n=196)

Distinguish 89 post-translational modifications sites

10 phosphorylation sites significantly correlated with overall survival

Experimental validation of relationship between CMET signature and CRC in vitro

Independent prognostic factor

Validation of prognostic model

Traditional clinical parameters

Survival statistics

Nomogram construction Enrichment and immunity 
analysis Drug sensitivity analysis

8 phosphorylation sites prognostic model

Significant discriminative power of the model

Univariate Cox regression analysis

LASSO Cox regression 
analysis

Kaplan-Meier analysis DCA/ROC analysis

Figure 1 Work flowchart of the study. TCGA, The Cancer Genome Atlas; CRC, colorectal cancer; COAD, colon adenocarcinoma; LASSO, 
least absolute shrinkage and selection operator; DCA, decision curve analysis; ROC, receiver operating characteristic; CMET, hepatocyte 
growth factor receptor.

throughout the procedure using R software (version 4.1.3). 
Each experiment was a composite of three independent 
studies.

Results

Construction of a PTM prognostic signatures in TCGA 
COAD cohort 

The f low diagram is  provided in  Figure  1 .  This 

study included 316 CRC patients. Demographic and 
clinical information of the patients are described 
in  ava i lab le  a t  ht tps : / /cdn.amegroups .cn/s ta t ic /
public/10.21037jgo-24-45-1.xlsx. We randomly selected 
120 samples as the training cohort from TCGA-COAD in 
R, while the other samples were defined as the validation 
group. Baseline data were not statistically different between 
the two groups (Table S1). Proteomic results of the patients 
are listed in available at https://cdn.amegroups.cn/static/

https://cdn.amegroups.cn/static/public/10.21037jgo-24-45-1.xlsx
https://cdn.amegroups.cn/static/public/10.21037jgo-24-45-1.xlsx
https://cdn.amegroups.cn/static/public/JGO-24-45-Supplementary.pdf
https://cdn.amegroups.cn/static/public/10.21037jgo-24-45-2.xlsx
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public/10.21037jgo-24-45-2.xlsx, including 89 PTM sites, 
which were all phosphorylation sites. Incorporation of 
89 PTM sites into a univariate Cox regression analysis, 
10 PTM were discovered to be significantly linked to 
OS (P<0.10) (Figure 2A). Then, LASSO regression was 
conducted to obtain an optimal λ (Figure 2B), selecting 8 

PTM sites to generate the risk score model (Figure 2C). 
Each patient was assigned a separate risk score according 
to the formula. The functions of the prognostic PTM 
signatures were involved in fatty acid metabolism, DNA 
replication, chromosomal stability, and other vital cell 
biological processes (Table S2). Patients were classified into 

https://cdn.amegroups.cn/static/public/10.21037jgo-24-45-2.xlsx
https://cdn.amegroups.cn/static/public/JGO-24-45-Supplementary.pdf


Journal of Gastrointestinal Oncology, Vol 15, No 4 August 2024 1597

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2024;15(4):1592-1612 | https://dx.doi.org/10.21037/jgo-24-45

low- and high-risk score groups according to the calculated 
median value of the PTM score. The phosphorylation level 
profiles of the prognostic risk protein between the high-risk 
group and low-risk group were compared using a heatmap 
(Figure 2D). Meanwhile, we discovered that PI3K_p110_
b was at a high phosphorylation level in the high-risk score 
group, whereas the opposite is true for ACC_pS79, ARAF_
pS299, Aurora.ABC_p288/p232/p198, CMET_pY1235, 
EGFR_pY1173, SRC_pY527, and H2AX_pS139. 

Verification of the PTM signatures and assessment of 
survival prediction

Univariate and multivariate Cox regression analyses were 
performed to evaluate the prognostic implication of the 
PTM score. In both training and test cohorts, univariate 
Cox regression analysis revealed that the PTM score, 
clinicopathologic stage, and age were significantly associated 
with OS (Figure 3A,3B). Multivariate Cox regression analysis 
proved the PTM score to be an independent prognostic 
variable (Figure 3C,3D). Additionally, in the test cohort, 
K-M analysis indicated that high phosphorylation levels of 
ACC_pS79 (P=0.01), ARAF_pS299 (P=0.03), SRC_pY527 
(P=0.001), CMET_pY1235 (P=0.007) and H2AX_pS139 
(P=0.03) were significantly related to high survival rates 
(Figure 3E-3I). On the contrary, the lower phosphorylation 
levels of EGFR_pY1173 (P=0.049) was associated with 
a higher chance of survival (Figure 3J). Furthermore, 
independent phosphorylation levels of Aurora.ABC_p288/
p232/p198 (P=0.10) and PI3K_p110_b (P=0.11) were not 
associated with survival rates (Figure 3K,3L).

Validation of the PTM signatures and assessment of 
survival prediction

The K-M curves of the training, test, and whole groups 
revealed that higher risk score denoted worse prognosis, 
validating the applicability and reliability of the PTM score 
(Figure 4A-4C). Meanwhile, the risk lines and scatterplots 
displayed the risk score distribution together with the 
correlation between risk score and survival among all 
patients (Figure 4D-4F). The risk score was proportional 
to the mortality and the proportion of patients who were 
at high risk. Besides, we performed ROC to estimate the 
accuracy of the PTM predictive model in each subset. The 
AUC of the risk score for the survival probability at 1, 3, and 
5 years respectively, were 0.602, 0.700, 0.752 in the training 

set, 0.635, 0.631, 0.706 in the test set, and 0.611, 0.574, 0.627 
in the whole set (Figure 4G-4I). These findings verified that 
our PTM signatures was an optimal prognostic indicator.

Construction of the nomogram and its link to clinical 
characteristics 

Based on the clinicopathological characteristics, there were 
significant differences of PTM score in gender (P=0.02) 
and survival state (P=0.002) (Figure 5A,5B). After that, we 
generated a nomogram combining age, gender, clinical 
stage, T stage, M stage, N stage, and PTM signatures for 
improving the accuracy of the prognostic prediction model 
(Figure 5C). Each point of the factors represents their 
corresponding contributions to the probability of survival. 
In addition, the calibration curve suggested the consistence 
of our nomogram (Figure 5D). We also conducted DCA, 
showing that our nomogram was the most optimal predictor 
(Figure 5E). 

Exploration of function and signaling pathways of PTM 
signatures

In tumor development, various regulatory factors changed. 
First, we chose the “limma” package to analyze the DEPs 
related to PTM score between training and test groups. 
Based on FDR <0.05 and |log2FC| >0.2, there were 19 
up-regulated DEPs and 33 down-regulated DEPs in 
the training group, and 39 up-regulated DEPs and 43 
down-regulated DEPs in the test group (Table S3). The 
intersection of DEPs is visualized in a Venn diagram 
(Figure 6A,6B). Enrichment analysis of 26 overlapped DEPs 
revealed a striking enrichment in the cell cycle process, 
TP53 transcriptional regulation, and apoptotic signaling 
pathway (Figure 6C,6D). According to the different levels of 
related cell cycle protein and histone H3 phosphorylation, 
high-risk score group had a higher level of cyclin D1, cyclin 
B1, cyclin E1, and phosphorylated H3 (Figure 6E,6F). 
GSEA results showed that the high-risk score group had 
a higher level of KRAS pathway (NES =1.35, P=0.01) and 
transcriptional activity of the E2Fs family (NES=1.70, 
P=0.04; NES =1.64, P=0.04; NES =1.69, P=0.01), which 
could promote the development and progression of tumors. 
Several miRNAs repressing metabolic reprogramming were 
inactive in the low-risk score group (NES =1.63, P=0.04; 
NES=1.66, P=0.04) (Figure 7A-7F). Meantime, gene set 
variation analysis (GSVA) displayed that the PTM score was 

https://cdn.amegroups.cn/static/public/JGO-24-45-Supplementary.pdf
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statistically correlated with the mitotic spindle and G2/M 
check point (Figure 7G). These results suggested that PTM 
signatures may play an essential role in regulating cancer-
related processes.
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immune landscape
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Figure 4 Assessment and confirmation of the predictive significance of the PTM signatures in the COAD TCGA cohort. (A-C) The K-M 
plots show the OS rates in relation to the risk scores for the training (A), test (B), and whole (C) groups. (D-F) The risk score distribution 
and survival status in the training (D), test (E), and whole (F) groups. (G-I) ROC calculation of survival rates in the training (G), test (H), 
and whole (I) groups. TCGA, The Cancer Genome Atlas; COAD, colon adenocarcinoma; OS, overall survival; K-M, Kaplan-Meier; PTM, 
post-translational modification; ROC, receiver operating characteristic; AUC, area under the curve.

plays a vital role of tumor development. In order to figure 
out the correlation between calculated PTM risk score and 
immune microenvironments, TIMER, QUANTISEQ, and 
CIBERSORT algorithms were used to analyze immune cell 
infiltration. Correlation analysis showed that the activation 
of M2 macrophages was positively correlated with the risk 
model score (Figure 8A). These results were also verified 

in the Radar image (Figure 8B). However, no significant 
correlations were observed in relation to macrophage 
surface markers in varied risk groups (Figure 8C).  
Gratifyingly, CCR2, MARCO, CD40, CCL2, CSF1, and 
FCGR3A, tumor-associated macrophage (TAM) surface 
markers, presented a significantly positive correlation 
with the risk model score, indicating that screened PTM 
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signatures promote tumor recruit macrophages (Figure 8D).  
Immune checkpoint blockade (ICB) has emerged as a 
promising approach to cancer treatment. To explore the 
association between immune checkpoints (ICs) and risk 

score, we compared the expression levels of ICs genes 
and found that the risk score was closely related to several 
ICs such as CD27, CD28, CD48, CD200 (Figure 9A). 
Moreover, even though there was no significance of immune 
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Figure 7 Association of PTM signatures with biological functions. (A-F) GSEA plots of hallmark pathways enriched in the low- and high-
risk groups of the PTM signatures in COAD. (G) GSVA plots of hallmark pathways enriched in the low- and high-risk groups of the PTM 
signatures in COAD. COAD, colon adenocarcinoma; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis; PTM, post-
translational modification.
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therapy between risk score groups in The Cancer Immune 
Atlas (TCIA) (Figure 9B). According to the calculated 
TIDE scores, high-risk group patients possessed stronger 
immune escape capacity (P=0.001) (Figure 9C). Changes 
in microsatellite instability (MSI) could have an evident 
impact on the effectiveness of immunotherapy. As a result 
of our investigation, we found that microsatellite stability 
(MSS) was more likely to occur in the low-risk group, and 
the proportion of MSI-H was significantly higher in the 
high-risk group than in the low-risk group (24% vs. 18%)  
(Figure 9D). Hence, PTM risk score may allow the 
assessment of the tumor immune microenvironment and 
further ascertain whether immunotherapy can be generally 
applied in COAD patients.

Sensitivity analysis of chemotherapy drugs and inhibitors

Next, predictive effect was observed with PTM risk score on 
the response to treatment through pRRophetic algorithm. 
Specifically, the low risk score indicated the decreased half-
inhibitory concentration (IC50) of doxorubicin (P=9.6e−04) 
and methotrexate (P=4e−05) but elevated IC50 of NVP-
BEZ235 (P=1.4e−05) and PF-4708671 (P=1.3e−05)  
(Figure 9E-9H). NVP-BEZ235, a selective and potent 
dual PI3K-mTOR inhibitor, could suppress the growth 
of carcinoma and has a synergistic effect with cisplatin. 
Consequently, this risk-adjusted model could be a feasible 
predictor of patient sensitivity to chemotherapy drugs and 
inhibitors.

Alteration of CMET phosphorylated state affected the 
proliferation and migration of CRC cells in vitro

Cell experiments were performed to validate the function 
of the selected PTM sites. The CMET_pY1235 site was 
chosen for verification. We constructed plasmid DNA of 
CMETY1235E-HA, CMETY1235F-HA, and empty-
plasmid transfected into CRC cells (HCT116 and DLD1), 
and CMET tyrosine residue Y1235 was replaced with 
either glutamic acid to mimic the phosphorylated state 
or phenylalanine to mimic the unphosphorylated state. 
Expression and phosphorylation status of HCT116 (P=0.01) 
and DLD1 (P=0.006) indicated proteins were monitored 
by western blotting (Figure 10A). Then, MTT (P=0.001 in 
HCT116, P=0.007 in DLD1) and colony formation assays 
(P=0.0007 in HCT116, P=0.0008 in DLD1) illustrated 
that phosphorylated CMET significantly inhibited the 
proliferation of CRC cells (Figure 10B,10C). Subsequently, 

the transwell experiment (P=0.002 in HCT116, P=0.001 
in DLD1) and wound-healing assay (P=0.004 in HCT116, 
P=0.01 in DLD1) demonstrated that the migration of 
phosphorylated CMET cells was significantly inhibited 
compared with the control group (Figure 10D,10E). After 
that, identification of phosphorylated CMET function 
in cell cycle was conducted by a flow cytometry analysis 
and we found a cell-cycle arrest at the G0/G1 phase in 
CMETY1235E group (P=0.0031 in HCT116, P=0.0021 in 
DLD1) (Figure 11A). Apoptosis flow cytometry depicted 
that phosphorylated CMET was not involved in the 
apoptosis regulation process (Figure 11B). In summary, the 
1235 site phosphorylation of CMET involved in our PTM 
prediction model could suppress proliferation, migration 
and induce cell-cycle arrest of CRC cells.

Discussion

By 2040, it is expected that there will be 3 million new 
cases of CRC and 1.6 million CRC related deaths, making 
it the leading cause of cancer-related mortality globally (1). 
There has been an alarming trend towards younger age-of-
onset (<50 years old), despite the fact that the incidence and 
mortality rates have decreased overall (22,23). Therefore, 
more research into the growth and progression of CRC 
is necessary. Our understanding of the biology of cancer 
has improved owing to proteomics techniques, which 
have also revealed a number of biomarkers with predictive 
potential for early diagnosis, accurate prognosis, and 
therapy guidance (5). Increasing evidence points to PTM’s 
potential to modify particular amino acids to affect proteins’ 
conformation, activity, interaction, stability, and spatial 
distribution as a regulatory mechanism for the majority 
of eukaryotic proteins (24). Through the alteration of 
protein function, PTM is involved in a variety of intricate 
and dynamic cellular processes. The association between 
abnormal PTM events and CRC is being supported 
by more and more evidence, even though the precise 
molecular mechanisms and therapeutic targets of PTM in 
CRC are still unknown (24,25). PTMs come in more than 
600 different varieties, including acetylation, glycosylation, 
ubiquitination, methylation, and citrullination (10). The 
frequently occurring PTM of phosphorylation, which 
typically occurs on serine, threonine, or tyrosine residues, 
acts as a molecular switch for a variety of protein functions 
and is crucial for signaling pathways (9). The cell cycle, the 
kinase family of proteins, apoptosis-related proteins, growth 
factor receptors, and other key biological processes are all 
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Figure 10 Phosphorylated CMET suppresses the viability of CRC cells. (A) Immunoblot assessment of p-met protein levels. Plasmid DNA of 
CMETY1235E-HA, CMETY1235F-HA, or empty-plasmid respectively transfected into CRC cells. The samples were derived from the same 
experiment and blots were processed in parallel.  (B-E) Growth curve (B); colony formation (C), scale bars: 2 mm; transwell experiments (D), 
scale bars: 100 μm; wound-healing assay (E), scale bars: 20 μm of CRC cells in the Control, CMETY1235E, CMETY1235F groups. Results 
are presented as mean ± SD for three independent experiments. *, P<0.05; **, P<0.01; and ***, P<0.001, compared with control. Observation 
methods: CRC cells were screened with 2 μg/mL purinomycin after transfected with plasmid 24 h. When their growth reached 80% 
confluence, we first collected cells and extracted the total cell protein using RIPA Lysis Buffer (#P0013B, Beyotime Biotechnology, Shanghai, 
China) to observe the phosphorylated state of the protein. Secondly, CRC cells were seeded into 96-well plates, 6-well plates, and 8-µm pore 
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Figure 11 Flow cytometry analysis of apoptosis and cell cycle distribution of CRC cells. (A) The cell cycle distribution was measured by 
flow cytometry in the Control, CMETY1235E, CMETY1235F groups of CRC cells, and the number of cells in each cycle was counted by 
PI for nuclear staining. (B) Apoptosis was assessed by the Annexin V-FITC/PI double staining analysis in the control, CMETY1235E, and 
CMETY1235F groups of CRC cells. Results are presented as mean ± SD for three independent experiments. **, P<0.01, compared with 
control. CRC, colorectal cancer; SD, standard deviation.

inserts for the optimal time, then we monitored their growth by methyl thiazolyl tetrazolium (Topscience Biological Technology, Shanghai, 
China). The cells were impregnated with 0.1% crystal violet staining solution (#G1062, solarbio, Beijing, China) to observe colony formation 
and migration. Meantime, CRC cells were seeded into the 2-well ibidi culture, inserted 48 h for wound healing analysis. CRC, colorectal 
cancer; SD, standard deviation.

closely correlated with abnormal phosphorylation in CRC 
(6-8). The study proposed that phosphoproteins might be 
predictive of CRC given these associations. Models for 
predicting clinical risks can help evaluate clinical decision-
making (26,27). It is reasonable and urgent to build a PTM 
prognostic model in CRC considering the critical roles of 

PTM in normal physiology and the progression of cancer, 
as well as the lack of pertinent models.

In this study, we utilized 8 PTM sites to screen 
prognostic signatures, and constructed a new nomogram 
that took both the PTM signatures and clinical factors into 
account. In order to establish a strong correlation between 
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the PTM risk score and the prognosis of CRC, as well as 
stable predictive performance in the validation dataset, 
we employed LASSO, univariate Cox regression analysis, 
and multivariate Cox regression analysis. We investigated 
various TME performances, evaluated the response of CRC 
patients to immunotherapy, and assessed the performance 
of our scoring system. While various machine learning 
techniques have been applied in previous studies, we 
selected the LASSO method due to its universality and 
wide usage across disciplines (28). Robert Tibshirani first 
introduced the LASSO method in 1996, and it has remained 
prevalent ever since (28). It is typical for many features with 
small coefficients that may not be significant to be gathered 
in high-dimensional datasets. The LASSO method reduces 
the dimensionality of the data while also achieving more 
accurate parameter estimation, whereas other algorithms, 
like ridge regression, may include these unimportant 
variables (28,29). Our study effectively identified PTM 
signatures and used a variety of ROC, AUC, DCA, and 
calibration curves to stratify patient outcomes in the COAD 
cohort. These analyses in both the training and validation 
cohorts showed how well our model predicted the outcomes 
for COAD patients.

Eight phosphorylation sites (ACC_pS79, ARAF_pS299, 
Aurora.ABC_p288/p232/p198, CMET_pY1235, EGFR_
pY1173, SRC_pY527, H2AX_pS139, and PI3K_p110_b) 
that were most likely to have an impact on the outcomes 
of TCGA COAD patients were eliminated from further 
analysis. The biotin-containing enzyme acetyl-CoA 
carboxylase (ACC) is essential for the production of fatty 
acids (30). Apoptosis is triggered by the phosphorylation of 
ACC at Ser79, Ser1200, and Ser1215, which is primarily 
carried out by AMP-activated kinase (AMPK) (31). In 
agreement with our discovery that ACC phosphorylation 
is advantageous for cancer patients, Lally et al. showed that 
reduced ACC phosphorylation accelerates the development 
of human liver cancer cells and hepatocellular carcinoma in 
mice (32). Proto-oncogene A-raf serine/threonine kinase 
(ARAF) is thought to play a role in cell development and 
growth. In human breast tumors, Huang et al. discovered 
an aberrant ARAF pS299 phosphosite, which may serve as 
“proteomic drivers” of tumorigenesis and potential drug 
targets (33). CMET, as an oncogenic receptor tyrosine 
kinase (RTK) needs to be phosphorylated on Tyr1234/5 in 
order for the kinase to become active. A growing body of 
research suggests that CMET plays a role in the cellular 
control, development, and migration of various tumors (34).  
A crucial part of transcriptional control, DNA repair, 

DNA replication, and chromosomal stability is played by 
the DNA damage marker H2AX. According to Akcora-
Yildiz et al., elevated H2AX phosphorylation is a sign of 
greater DNA damage and improved effectiveness (35). A 
significant portion of human cancers exhibit dysregulation 
of the RTK known as the epidermal growth factor receptor 
(EGFR). Numerous pieces of evidence, including various 
phosphorylated forms, demonstrated that aberrant EGFR 
activation is a known factor in the development and 
progression of cancer (36). A better prognosis is indicated 
by EGFR phosphorylation in our prediction model. Similar 
to this, Endoh et al. gathered 97 NSCLC patients with 
tumors that were positive for phospho-EGFR and showed 
prolonged survival (37). Numerous findings suggest that 
SRC plays a dual role in activating pro- and antiapoptotic 
pathways (38). The SRC protein is a tyrosine-protein 
kinase whose activity can be suppressed by c-SRC kinase 
phosphorylation. Additionally, Nishida et al. demonstrated 
that SRC drives cell proliferation and death in a coercively 
coupled manner via parallel MAPK pathways (39). The 
serine/threonine kinases Aurora-A, Aurora-B, and Aurora-C 
are members of the aurora kinase subfamily and are essential 
regulators of mitosis (40). PI3K_p110_b namely PIK3CB 
or PI3KB, this gene encodes an isoform of the catalytic 
subunit of phosphoinositide 3-kinase (PI3K). These kinases 
are important in signaling pathways involving receptors on 
the outer membrane of eukaryotic cells and are named for 
their catalytic subunit (41). Alterations in the PI3K pathway 
are the most common causes of tumor deterioration, disease 
progression, and development of treatment resistance (42). 
Dbouk et al. found PTEN-deficient tumors were found to 
be reliant on p110_b activity to sustain transformation (43).  
In several in vitro studies, PI3K_p110_b was shown to 
play a role in DNA synthesis or cell proliferation, and 
also promote oncogenic transformation (44,45). All these 
studies showed that PIK3CB is a pro-cancer gene that 
harms patient health, consistent with our analysis. The 
bioinformatics analysis results showed that CMET_pY1235 
had the highest risk coefficient and contributed the most to 
the construction of the prediction model. Thus, we finally 
chose the CMET_pY1235 site for the wet experiment 
verification. 

A novel model based on gene pairs related to ubiquitin 
was developed by Liang et al. in a prior study to forecast 
prognosis and treatment outcomes in CRC, and it 
demonstrated excellent predictive value (46). In the 
current study, we sought to assess the correlation between 
phosphorylation-related protein and COAD patient 
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prognosis. We created a new nomogram that combined the 
clinical parameters and phosphorylated signatures. As the 
best tool for predicting outcomes in oncology, a nomogram 
incorporates potential risk factors and determines the 
contribution of each risk factor, offering individualized 
and visual prognostic capabilities for clinical outcomes 
(47,48). We used ROC curves and calibration curves, 
following Liang et al., to show that our nomogram had high 
prognostic accuracy (46). Additionally, DCA was used in the 
current study to further and thoroughly validate the model, 
which could determine whether the model is worthwhile to 
use and has clinical value (49). Overall, our study provided 
a thorough assessment of the prognostic significance of 
COAD phosphorylation-related proteins.

In addition, we divided the patients into high- and 
low-risk groups based on the median PTM score values. 
Enrichment analyses were carried out to clarify the 
survival differences between various groups. The KRAS 
signaling pathway was enriched in the high-risk group, 
according to GSEA. The high-risk group mainly enriched 
in cancer-related pathways, such as the cell cycle, TP53 
signaling pathway, and higher transcriptional activity of the 
E2Fs family, in line with prior research (46,50), We also 
investigated differences in the immune microenvironment 
between high- and low-risk groups. In contrast to Liang 
et al.’s research (46), we employed multiple algorithms 
concurrently so as to ensure the accuracy of the analysis. 
The immune landscape showed notable differences between 
the high- and low-risk groups, including IC expression, 
immune cell activity, varying TIDE scores, and the high-
risk group appearing to have an elevated immune escape 
capacity.

We randomly selected one signature from the model, 
CMET, and performed cell experiments on it in order 
to further improve the reliability of our nomogram. 
The cell viability of CRC cells was reduced and the cell 
cycle was arrested at the G0/G1 phase as a result of the 
phosphorylation of CMET at its 1235 site. Multiple 
cancer entities’ drug resistance, tumor metastasis, and 
cell proliferation have all been shown to be significantly 
associated with aberrant activation of CMET signaling (51). 
Matte et al. discovered, in contrast to our findings, that 
CMET phosphorylation was connected to Akt and EKR1/2 
phosphorylation for promoting ascites-induced ovarian 
cancer migration (52). The experimental settings or the 
cancer cell model may be responsible for these variations.

Despite the clinical implications of our results, there are 
a few restrictions that must be taken into consideration as 

well. First and foremost, we only constructed training and 
validation cohorts in the TCGA-COAD database without 
an external database for the reason of the incompleteness 
and small scale of phosphorylation protein data in the 
open public database, which may introduce some biases in 
the analyzed profile. It is essential to evaluate it regarding 
other models. Second, the prognostic model developed 
throughout this study can only be further validated with 
independent prospective cohorts as our analysis was 
a retrospective analysis of publicly available datasets. 
Further research is also indispensable into the purpose and 
mechanism of those phosphorylation sites.

Conclusions

Based on the TCGA database, we looked into the prognostic 
value of PTM in COAD patients in this study. We developed 
a new nomogram that combined phosphorylated signatures 
and clinical parameters to predict individualized prognosis 
after opting for the 8 phosphorylation sites that had the 
strongest impact on patient outcomes. When high- and low-
risk groups were divided based on PTM scores, enrichment 
analyses revealed differences in immune microenvironments 
and cancer-related pathways. Additionally, using one 
signature, CMET, we performed cell experiments to show 
the validity of our nomogram. Our research demonstrates 
the potential of proteins involved in phosphorylation as 
trustworthy prognostic markers and potential COAD 
therapeutic targets. As a retrospective analysis, there are some 
drawbacks in the present study such as lacking protein data, 
further analysis of the underlying molecular mechanisms of 
PTM in COAD is hence required in the future.
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