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Abstract
Objective To develop and evaluate a radiomics signature based on magnetic resonance imaging (MRI) frommulticenter datasets
for identification of invisible basal cisterns changes in tuberculous meningitis (TBM) patients.
Methods Our retrospective study enrolled 184 TBM patients and 187 non-TBM controls from 3 Chinese hospitals (training
dataset, 158 TBM patients and 159 non-TBM controls; testing dataset, 26 TBM patients and 28 non-TBM controls). nnU-Net
was used to segment basal cisterns in fluid-attenuated inversion recovery (FLAIR) images. Subsequently, radiomics features
were extracted from segmented basal cisterns in FLAIR and T2-weighted (T2W) images. Feature selection was carried out in
three steps. Support vector machine (SVM) and logistic regression (LR) classifiers were applied to construct the radiomics
signature to directly identify basal cisterns changes in TBM patients. Finally, the diagnostic performance was evaluated by the
receiver operating characteristic (ROC) curve analysis, calibration curve, and decision curve analysis (DCA).
Results The segmentation model achieved the mean Dice coefficients of 0.920 and 0.727 in the training and testing datasets,
respectively. The SVM model with 7 T2WI–based radiomics features achieved best discrimination capability for basal cisterns
changes with an AUC of 0.796 (95% CI, 0.744–0.847) in the training dataset, and an AUC of 0.751 (95% CI, 0.617–0.886) with
good calibration in the testing dataset. DCA confirmed its clinical usefulness.
Conclusion The T2WI–based radiomics signature combined with deep learning segmentation could provide a fully automatic,
non-invasive tool to identify invisible changes of basal cisterns, which has the potential to assist in the diagnosis of TBM.
Key Points
• The T2WI–based radiomics signature was useful for identifying invisible basal cistern changes in TBM.
• The nnU-Net model achieved acceptable results for the auto-segmentation of basal cisterns.
•Combining radiomics and deep learning segmentation provided an automatic, non-invasive approach to assist in the diagnosis
of TBM.
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Abbreviations
AUC Area under the curve
CSF Cerebrospinal fluid
DCA Decision curve analysis
DWI Diffusion-weighted imaging
FLAIR Fluid-attenuated inversion recovery
GLCM Gray-level co-occurrence matrix
GLDM Gray-level dependence matrix
GLRLM Gray-level run length matrix
GLSZM Gray-level size zone matrix
LoG Laplacian of Gaussian
LR Logistic regression
MRI Magnetic resonance imaging
NGTDM Neighboring gray tone difference matrix
PCC Pearson correction coefficient
RFE Recursive feature elimination
ROC Receiver operating characteristic
ROI Region of interest
SVM Support vector machine
T2W T2-weighted
TB Tuberculosis
TBM Tuberculous meningitis

Introduction

Tuberculosis (TB) is still one of the top ten causes of death
globally, and before the coronavirus (COVID-19) pandemic,
it was the leading cause of death from a single infectious agent
[1]. Tuberculous meningitis (TBM) is the most serious form
of TB, accounting for about 5–10% of extrapulmonary TB [2].
In the early stage, non-specific prodromal symptoms are typ-
ically of insidious onset, and then slowly progress to menin-
gitis, causing enormous difficulty in the early diagnosis and
subsequently the treatment of the disease [3]. Even after re-
ceiving anti-TB drug treatment, the mortality rate of TBM is
still as high as 10.0–36.5% [4]. The clinical outcome mainly
depends on the initial stage of treatment. Therefore, early di-
agnosis and treatment are of great significance for improving
the prognosis of TBM patients.

Magnetic resonance imaging (MRI) is the most useful and
widely available imaging method for the diagnosis and manage-
ment of TBM and the affiliated complications [5]. Basal menin-
geal enhancement is the most consistent neuroradiological find-
ings in TBM [6]. It shows a distinctive tendency to involve the
basal cisterns in TBM, especially the suprasellar, prepontine,
crural, and ambient cisterns [7]. However, the imaging finding
can hardly be detected by conventional radiological examina-
tions before advanced stages [8]. In a previous study, basal cis-
terns were used as region of interest (ROI) to quantitatively mea-
sure the destruction of blood-brain barriers in TBM through dy-
namic contrast-enhanced MR perfusion. However, in cases with
low levels of blood-brain barrier disruption and minor

inflammatory changes that occur in early stages, the role of dy-
namic contrast-enhanced MR perfusion was limited [9].
Therefore, it is still difficult to detect intracranial lesions timely,
especially the invisible pathological changes of basal cisterns,
which are closely associated with poor outcomes.

As a quantitative analysis approach, radiomics can convert
image data of ROI into high-resolution, discoverable feature
space data using automated data characterization algorithms,
and finally achieves deeper analysis and application of infor-
mation [10]. It has been widely used in oncologic imaging,
including differential diagnosis, tumor staging, genotyping,
treatment response, and patient survival prediction [11–13]. It
is worth mentioning that due to the qualitative and quantitative
problems in the conventional imaging diagnosis of non-
neoplastic lesions, radiomics researches of non-neoplastic dis-
eases also have important clinical value. For instance, Kassner
et al demonstrated that texture analysis may identify acute is-
chemic stroke patients who are most likely to undergo hemor-
rhagic transformation with a greater accuracy than visual in-
spection of gadolinium enhancement [14]. Using the venous
sinuses and basal cisterns as ROIs, Arnold et al achieved a high
diagnostic accuracy in separating spontaneous intracranial hy-
potension patients and healthy controls with a fully automatic
algorithm. And least axis length and volume were the best
discriminating radiomics features in the suprasellar cistern [15].

To extract features from images, ROIs should be delineated
first. Convolutional neural networks have been extensively ap-
plied in the medical image segmentation [16, 17]. nnU-Net is a
newly proposed model for medical segmentation tasks [18], and
its core design idea is to obtainmore reliable segmentation results
for various datasets through adaptive preprocessing and model
training strategies, rather than manual parameter tuning [18, 19].
Owing to its unique advantages, it has been broadly utilized in
medical image segmentation, such as coronavirus disease 2019
segmentation [20], kidney and kidney tumor segmentation [21],
and breast and fibroglandular tissue segmentation [22]. Until
now, no relevant research has been conducted to apply nnU-
Net for the segmentation of basal cisterns.

Therefore, the present study first aimed to assess the applica-
tion of nnU-Net for automatic segmentation of basal cisterns.
Then, radiomics features were extracted from nnU-Net segment-
ed ROIs and a radiomics signature was constructed to explore
changes of basal cisterns in TBM patients, which might be un-
detectable by the naked eye on conventional MR images.

Materials and methods

Patients and MR acquisition

The retrospective study was approved by the institutional re-
view board in all participating centers, and the requirement for
written informed consent was waived. Patients with TBMwere
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enrolled from 3 Chinese hospitals, which consisted of the
Shanghai Public Health Clinical Center (SPHCC; Shanghai,
China), Guangxi Zhuang Autonomous Region Chest Hospital
(GZAR-CH; Liuzhou, China), and Liuzhou People’s Hospital
(LPH; Liuzhou, China) from January 2015 to December 2020.
The inclusion criteria were as follows: (1) patients who were
diagnosed with definite or probable TBM according to Marais
et al’s criteria [5] and (2) patients with no definite lesions in
conventional cranial MR images on admission. The exclusion
criteria were as follows: (1) patients who were co-infected with
other pathogens in the central nervous system; (2) patients with
poor-quality MR images; and (3) patients who underwent

cranial surgery or chemo-radiotherapy. The control group
consisted of patients admitted in the same period with normal
cranial MRI and no final clinical diagnosis involving TB infec-
tion. A total of 184 TBM patients and 187 age- and gender-
matched non-TBM controls were included. The dataset was
divided into training dataset (n = 317 [SPHCC (61 TBM pa-
tients + 69 non-TBM controls); GZAR-CH (97 TBMpatients +
90 non-TBM controls)]) and testing dataset (n = 54 [LPH (26
TBM patients + 28 non-TBM controls]). The study flowchart is
shown in Fig. 1.

All patients received conventional cranial MRI via differ-
ent 1.5-T scanners. We only retrieved T2-weighted (T2W)

Fig. 1 Flowchart of our study
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and FLAIR images from the picture archiving and communi-
cation system. The detailed parameters of three scanners and
the MRI protocols are summarized in Table 1.

Basal cisterns segmentation

The basal cisterns were defined as ROI, including the
suprasellar cistern, crural cisterns, ambient cisterns,
quadrigeminal corpus cisterns, prepontine cisterns, and
sylvian cisterns (Fig. 2). Manual segmentation was performed
by a radiologist with 2 years of experience in neuroradiology,
and the results were confirmed by another radiologist with 28
years of experience in neuroradiology using an open-source
ITK-SNAP software version 3.6.0 (www.itksnap.org). The
ROIs were delineated on each slice of the FLAIR images
containing basal cisterns, using the corresponding T2W
images as visual guidance.

To implement a fully automatic radiomics pipeline, nnU-
Net was used to train a segmentation model. We utilized the
two-dimensional nnU-Net [18], which is based on U-Net ar-
chitecture [23], and provided as part of nnU-Net for the

automated design of medical segmentation models. The input
image size was set to 320 × 320 with a batch size of 32. A total
of 6 down-sampling operations were performed. Leaky recti-
fied linear unit was used as activation function, and instance
normalization was employed for feature map normalization.
The loss function was the sum of Dice loss and cross-entropy
loss. Stochastic gradient descent with an initial learning rate of
0.01 was used for training. Five-fold cross-validation was uti-
lized to avoid overfitting. T2W images were resampled with
FLAIR images as a reference, and the resample method was
sitkBSpline. Finally, automatically segmented ROIs were em-
ployed to extract radiomics features.

Feature extraction

Radiomics features were extracted from segmented ROIs in
FLAIR images and T2W images which aligned to FLAIR
images (normalized to the range of [0, 100]). The pixel-
voxel resampling method was sitkBSpline. For Laplacian
of Gaussian (LoG) filters, λ = 5.0 was used. For texture fea-
ture extraction, a fixed bin width 5 was used. In our study, the

Table 1 CranialMRI protocols of
different scanners in three
hospitals

Hospital MRI model Sequence TR/TE
(ms)

FOV
(mm)

Matrix
(mm)

Slice thickness
(mm)

GZAR-CH Siemens Avanto 1.5 T T2W 4000/89 240 384*241 5

FLAIR 6000/92 240 384*224 5

SPHCC Philips Achieva 1.5 T T2W 4000/110 240 256*256 5

FLAIR 6000/120 240 256*256 5

LPH GE HDe 1.5 T T2W 3000/105 240 320*224 6

FLAIR 8400/145 240 320*192 6

FLAIR fluid attenuated inversion recovery, FOV field of view, GZAR-CH Guangxi Zhuang Autonomous Region
Chest Hospital, LPH Liuzhou People’s Hospital, SPHCC Shanghai Public Health Clinical Center, TE echo time,
TR repetition time, T2W T2-weighted

Fig. 2 Placement of the basal
cisterns as ROIs on axial FLAIR
images. Red color denotes the
prepontine cistern (a). Orange,
yellow, blue, green, and purple
colors denote the suprasellar
cistern, crural cisterns, ambient
cisterns, quadrigeminal cistern,
and sylvian cisterns, respectively
(b). ROI, region of interest;
FLAIR, fluid-attenuated inver-
sion recovery
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following features were extracted: (1) shape-based features;
(2) first-order features; (3) texture features: gray-level co-oc-
currence matrix (GLCM), gray-level dependence matrix
(GLDM), gray-level run length matrix (GLRLM), gray-level
size zone matrix (GLSZM), and neighboring gray tone differ-
ence matrix (NGTDM). We used the up-sampling to balance
positive and negative samples in the training dataset. All fea-
tures were normalized to the range of [−0.5, 0.5] before further
use.

Feature selection and radiomics signature
development

To reduce overfitting or bias in the radiomics features, three
steps were considered for feature selection. Firstly, the
independent-sample t test was used for preliminary feature
screening, and the features without significant difference be-
tween the TBM and non-TBM groups in the training dataset
were removed. Secondly, the Pearson correction coefficient
(PCC) analysis was employed to eliminate redundancy and
to maintain independency among the features. One of the
features with a high correlation (PCC > 0.90) was removed.
The final step for feature selection was bound with the model
building, as described below.

Support vector machine (SVM) and logistic regression
(LR) were used to construct the radiomics signature, and their
combinations with two feature selection algorithms, namely
recursive feature elimination (RFE) and relief, were explored.
For each combination, we built the model using five-fold
cross-validation on the training dataset. To determine the
number of features retained in the final model, the number
of features was iterated from 1 to 30 using either RFE or relief,
and the averaged cross-validation AUC values were plotted
against the number of features. Then, the 1-SE rule was used
to find the best number of features in the model; that is, the
model with the smallest number of features and a cross-
validation AUC within one standard error from the highest
AUC was chosen as the best model.

The above-mentioned processes were undertaken using an
open-source free software, Feature Explorer version 0.5.0
[24], which used PyRadiomics version 3.0 [25] and scikit-
learn version 0.22.2 in the back for feature extraction and
subsequent signature developing.

Validation of the radiomics signature

To evaluate the discrimination competence of the radiomics
signatures, the receiver operating characteristic (ROC) curve
was plotted to obtain the values of AUC in the training and
testing datasets. The specificity, sensitivity, and accuracywere
also calculated using a threshold value maximizing Youden
index on the training and testing datasets. DeLong’s test was
used to compare different AUCs of radiomics signatures.

Subsequently, the calibration curve was plotted to evaluate
the calibration ability. Decision curve analysis (DCA) was
employed to estimate the clinical usefulness of the radiomics
signatures.

Statistical analysis

The statistical analyses were performed with the SPSS 22.0
software, R software version 3.6.3, and SciPy version 1.7.0 or
scikit-learn version 0.24.2 on Python version 3.7.1. Features
were compared by the independent-sample t test or the Mann-
WhitneyU test. In statistical tests of characteristics of patients,
the Mann-Whitney U test was used for numerical variables,
and the chi-square test or fisher’s exact test was used for cat-
egorical variables. p < 0.05 indicated a statistical significance.

Results

Patient characteristics

In this study, there were 184 patients in the TBM group (male
(129) vs. female (55); mean age, 39.57 ± 16.26 years old) and
187 individuals in the non-TBM group (male (121) vs. female
(66); mean age, 39.75 ± 13.97 years old). The clinical charac-
teristics of the patients are given in Table 2.

nnU-Net-based segmentation performance

The mean Dice coefficient and the 95-percentile of the aver-
age symmetric Hausdorff distance were used to evaluate the
segmentation model. The mean Dice coefficient was 0.920 in
the training dataset and 0.727 in the testing dataset. The
Hausdorff distance values of the segmentation were 0.216
and 1.449 in the training and testing datasets, respectively.
The results of manual and automatic segmentation are shown
in Fig. 3.

Radiomics feature selection and radiomics signature
developing

A total of 200 features were extracted from the automatically
segmented basal cisterns in T2W and FLAIR images, respec-
tively. We initially used the independent-sample t test to re-
move features whose distributions in the TBM and non-TBM
groups exhibited no significant difference. The remaining fea-
tures were used in further signature developing, where PCC
analysis was employed for dimensionality reduction and RFE
or relief for feature selection. In total, 7 T2W features were
retained in the SVM model (linear kernel with C-parameter =
1.0), and 13 FLAIR features were retained in the LR model
(Table 3).
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Performance and validation of the radiomics
signature

The results of the two radiomics signatures are shown in
Fig. 4 and Table 4. Using 7 selected optimal features, the
T2WI–based radiomics signature derived from the SVM
classifier achieved an AUC of 0.796 (95% CI, 0.744–
0.847) in the training dataset, and was then confirmed in
the testing dataset with an AUC of 0.751 (95% CI, 0.617–
0.886), the result of which showed a better performance
compared with that of the FLAIR–based radiomics signature
in the testing dataset (AUC = 0.676; 95% CI, 0.529–0.823).
However, DeLong’s test showed no significant difference
between the above two radiomics signatures (p = 0.152).

In the training datasets, the calibration curves of the two
radiomics signatures demonstrated good agreement between
prediction and observation (Fig. 5a, c). In the testing datasets,

the calibration curve of the T2WI–based radiomics signature
exhibited better consistency than that of the FLAIR–based
radiomics signature, with a mean absolute error of 0.033 and
0.047, respectively (Fig. 5b, d). The DCA is depicted in Fig. 6.
The curve analysis showed that T2WI–based and FLAIR–
based radiomics signature offered certain high overall net ben-
efits, while the performance of T2WI–based was better.

Discussion

In the present study, we first proposed a nnU-Net–based deep
learning network for the segmentation of basal cisterns in a
multicenter dataset. The mean Dice coefficient in the testing
dataset was 0.727, indicating that the segmentation model
achieved acceptable results for the basal cistern segmentation.
Then, we developed a radiomics signature based on the

Table 2 Characteristics of patients in the training and testing datasets

Training dataset = 317 Testing dataset = 54

TBM (n = 158) Non-TBM (n = 159) p value TBM (n = 26) Non-TBM (n = 28) p value

Age, y 0.526a 0.993a

Mean 39.29 39.47 41.42 41.39

Range 18.00–79.00 18.00–81.00 18.00–77.00 24.00–72.00

Sex (n, %) 0.210b 0.586c

Male 108 (68.35%) 98 (61.64%) 21 (80.77%) 23 (82.14%)

Female 50 (31.65%) 61 (38.36%) 5 (19.23%) 5 (17.86%)

Symptoms (n, %)

Fever 121 (76.58%) 17 (65.38%)

Headache 93 (58.86%) 13 (50.00%)

Dizziness 16 (10.13%) 1 (3.85%)

Vomiting 24 (15.19%) 1 (3.85%)

Cough 19 (12.03%) 2 (7.69%)

Convulsion 8 (5.06%) 3 (11.54%)

Visual disorders 4 (2.53%) 0 (0.00%)

Hearing disorder 1 (0.63%) 0 (0.00%)

Consciousness disorders 18 (11.39%) 4 (15.38%)

CSF tests (mean ± SD)

White blood cell counts (n/μL) 143.08 ± 245.32 169.19 ± 214.48

Protein (mg/L) 1259.41 ± 1356.07 1531.56 ± 1568.74

Chloride (mmol/L) 115.93 ± 7.58 115.01 ± 8.70

Glucose (mmol/L) 2.74 ± 1.61 2.20 ± 0.75

TBM category (n, %)

Definite 44 (27.85%) 9 (34.62%)

Probable 114 (72.15%) 17 (65.38%)

not measured, CSF cerebrospinal fluid, SD standard deviation, TBM tuberculous meningitis
aMann-Whitney U test
b Chi-square test
c Fisher’s exact test
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segmentation of basal cisterns by nnU-Net using the same
dataset. The T2WI–based radiomics signature developed
using the SVM classifier showed a certain diagnostic signifi-
cance for TBM, which might be unnoticeable by the naked
eye on conventional MR images. Therefore, automatic seg-
mentation of basal cisterns and the developed radiomics sig-
nature might provide supplemental data to assist in the

diagnosis of TBM in a fully automatic manner, before the
appearance of lesions with visible characteristics.

The pathology of TBM was found to be primarily caused
by the host inflammatory response [26]. During the dissemi-
nation of Mycobacteria to the brain, some pro- and anti-
inflammatory cytokines are induced [27]. Subsequently, gran-
ulomatous inflammation occurs in the subarachnoid space,

Fig. 3 Results of manual label
and automatic segmentation of
the basal cisterns. FLAIR images
imposed with the manual label (a,
b); FLAIR images imposed with
automatic segmentation (c, d);
T2W images imposed with
automatic segmentation (e, f).
FLAIR, fluid-attenuated inver-
sion recovery; T2W, T2-weighted
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mainly influencing the basal cisterns [28]. Besides, inflamma-
tory exudates in basal cisterns can block the flow of cerebro-
spinal fluid (CSF), leading to hydrocephalus [28], and can also
cause vasospasm and compression or strangulation of vessels
[29]. Thus, basal meningeal enhancement is the primary ra-
diologic feature of TBM, reflecting microabscess and intense
inflammation of basal meninges. In our study, we used
radiomics analysis to compare the deep image information
of basal cisterns between the TBM and non-TBM groups.
The results showed that there were certain differences between

the two groups that could not be observed by the naked eye,
which were significant to suggest the possibility of TBM.

To reduce the operator-dependent segmentation deviation
and improve the work efficiency, an automatic segmentation
model of basal cisterns was established using nnU-Net in the
present study. It exhibited a high performance in the segmen-
tation of basal cisterns in FLAIR images, as well as an accept-
able capability to generalize by an external testing dataset. In
addition, the automatic segmentation of basal cisterns should
not be limited to the stage without lesions. The segmentation
at different stages of TBM is also valuable for the assessment

Table 3 Coefficients of features in the radiomics signatures

Features Coefficients

T2W Original_firstorder_10Percentile 3.252

Shape_MajorAxisLength 2.258

Shape_SurfaceVolumeRatio −1.941
LoG-sigma-5-0-mm-3D_glszm_LowGrayLevelZoneEmphasis −1.919
LoG-sigma-5-0-mm-3D_firstorder_Skewness 1.904

LoG-sigma-5-0-mm-3D_glcm_ClusterShade 0.748

Shape_MinorAxisLength 0.302

FLAIR Shape_SurfaceVolumeRatio −0.957
LoG-sigma-5-0-mm-3D_glrlm_GrayLevelNonUniformity 0.835

Shape_MeshVolume −0.747
LoG-sigma-5-0-mm-3D_glszm_SizeZoneNonUniformityNormalized 0.589

Original_glszm_SizeZoneNonUniformity 0.523

LoG-sigma-5-0-mm-3D_gldm_SmallDependenceEmphasis 0.450

Original_firstorder_TotalEnergy 0.416

LoG-sigma-5-0-mm-3D_gldm_DependenceNonUniformity 0.383

LoG-sigma-5-0-mm-3D_glszm_GrayLevelNonUniformity −0.381
Shape_MajorAxisLength 0.369

LoG-sigma-5-0-mm-3D_glszm_SizeZoneNonUniformity 0.291

LoG-sigma-5-0-mm-3D_firstorder_TotalEnergy −0.263
Shape_Maximum2DDiameterColumn −0.037

FLAIR fluid-attenuated inversion recovery, T2W T2-weighted

Fig. 4 ROC curves for T2WI–
based radiomics signature (a) and
FLAIR–based radiomics signa-
ture (b) in the training and testing
datasets, respectively. In the test-
ing dataset, the AUC of the
T2WI–based radiomics signature
reached 0.751, and the AUC of
the FLAIR–based radiomics sig-
nature reached 0.676. AUC, area
under the curve; FLAIR, fluid-
attenuated inversion recovery;
ROC, receiver operating charac-
teristic; T2WI, T2–weighted
imaging
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of response to therapy and disease prognosis. Further studies
are therefore required to improve the quality of pixel-level
segmentation and spatial-level detection.

The high-throughput extraction of large amounts of features
from radiographic images possesses the advantages of objectiv-
ity, comprehensiveness, and repeatability, which may be

significant for prediction of clinical results [10]. The selection
of more features is associated with a higher dimen-
sionality of input data, and the likelihood of overfitting
consequently increases, resulting in a lower classification
accuracy [30]. Our radiomics signature using the SVM
classifier exhibited the best discrimination capability after

Fig. 5 Calibration curves for T2WI–based radiomics signature (a, b) and FLAIR–based radiomics signature (c, d) in the training and testing datasets,
respectively. FLAIR, fluid-attenuated inversion recovery; T2WI, T2-weighted imaging

Table 4 Performance of the
radiomics signatures Metrics (95% CI) T2WI–based FLAIR–based

Training dataset AUC 0.796 (0.744–0.847) 0.806 (0.759–0.853)

Accuracy 0.748 (0.710–0.804) 0.735 (0.700–0.795)

Sensitivity 0.829 (0.642–0.881) 0.797 (0.582–0.925)

Specificity 0.667 (0.621–0.855) 0.673 (0.546–0.875)

Testing dataset AUC 0.751 (0.617–0.886) 0.676 (0.529–0.823)

Accuracy 0.741 (0.648–0.870) 0.648 (0.574–0.815)

Sensitivity 0.731 (0.429–0.960) 0.808 (0.233–0.950)

Specificity 0.750 (0.514–1.000) 0.500 (0.435–1.000)

AUC area under the curve, CI confidence interval, FLAIR fluid-attenuated inversion recovery, T2W T2-weighted
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selection of 7 T2WI features. Among these features,
T2_shape_MajorAxisLength, T2_shape_SurfaceVolumeRatio,
and T2_shape_MinorAxisLength were related to the shape and
size of basal cisterns. Compared with the non-TBM group, the
T2_shape_SurfaceVolumeRatio value was lower, and the values
of the other two features were higher in the TBM group, which
showed that the shape and size of basal cisterns were associated
with the occurrence of intracranial TB infection. This might be
related to the formation of thick exudates from basal cisterns in
the early stage of TBM, which blocks subarachnoid and ventric-
ular CSF pathways, resulting in communicating hydrocephalus
[31]. T2_original_firstorder_10Percentile was the feature with
the highest weight, and its value was higher in the TBM group,
indicating hyperintense, which might be related to the accumu-
lation of thick gelatinous exudates in basal cisterns [28]. T2_log-
sigma-5-0-mm-3D_glszm_LowGrayLevelZoneEmphasis, a
higher-order feature used to measure the distribution of lower
gray-level size zones, further supported the significance of the
above first-order features. Its negative higher value indicated that
in the basal cisterns images of the non-TBM group, the propor-
tion of lower gray-level values and size zones was greater.
Notably, LoG filters were mainly used to suppress the image
noise and to enhance the textural details, leading to the increased
efficiency of capturing heterogeneity-associated features [32].
T2_log-sigma-5-0-mm-3D_firstorder_Skewness mainly repre-
sented the asymmetry of distribution. Similarly, the higher
T2_log-sigma-5-0-mm-3D_glcm_ClusterShade value in the
TBM group indicated that the GLCM lacked symmetry.
Although these first-order or high-order features were difficult
to identify by the human visual system, those all indicated the
non-uniformity of the underlying tissue in the setting of basal
cisterns from different dimensions.

In the current study, we attempted to perform manual and
automatic segmentation of basal cisterns on FLAIR images.
FLAIR sequences can better display lesions on the brain sur-
face, the semi-oval area, and the brain tissue–CSF junction area
by suppressing the signal intensity of CSF. In TBM, sulcal
hyperintensity in basal cisterns can be observed on FLAIR
images, which could be related to CSF protein concentration
and effective echo time [33]. Therefore, FLAIR images assist
clinicians to indicate whether there were lesions in the basal
cisterns of TBM patients, and to reduce the interference of
CSF and vascular signals during segmentation. However, the
results showed that the radiomics signature developed based on
T2W images had a greater diagnostic performance compared
with the signature developed based on FLAIR images. This
might be due to the circulatory disturbance of the CSF protein
concentration in basal cisterns and the involvement of local
cerebrovascular dysfunction during TBM; T2W images, which
were sensitive to water in the tissue, were more suitable for
radiomics feature extraction and signature construction.

There are some limitations to this study. First, this retro-
spective study involved only a single infectious agent, and its
practical performance in the real clinical scenario needs to be
verified by prospective study. In addition, the inclusion of
other central nervous system infectious diseases for multi-
classification research will help to improve the diagnostic sys-
tem. Second, owing to the low sensitivity of etiological exam-
ination as the gold standard, we used a diagnostic scoring
system to enroll TBM patients. Some subjective factors in
the scoring system may also cause false-positive results. We
could not completely eliminate the influence of such situation
on the results. Finally, although we have used automatic seg-
mentation based on nnU-Net to improve the reproducibility of
the model, we should compare the influence of different har-
monization schemes on the generalization of the model in
large-scale multi-institutional studies.

In conclusion, our study proposed a fully automatic deep
learning–based radiomics pipeline to identify invisible chang-
es of basal cisterns in TBM. This strategy can warn radiolo-
gists about the elevated probability of occurrence of TBM and
help improve its diagnosis.
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Fig. 6 Decision curve analysis for T2WI–based radiomics signature and
FLAIR–based radiomics signature in the testing datasets. The y-axis rep-
resents the net benefit. The x-axis represents the threshold probability.
The red line represents the net benefit of the T2WI–based radiomics
signature. The blue line represents the net benefit of the FLAIR–based
radiomics signature. FLAIR, fluid-attenuated inversion recovery; T2WI,
T2-weighted imaging
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Statistics and biometry No complex statistical methods were necessary
for this paper.

Informed consent Written informed consent was waived by the
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