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Introduction
Neurodegenerative diseases collectively represent 
disease conditions involving loss of neurons in the 
nervous systems. Progressive neurodegeneration 
processes affect movement, balancing, breathing, 
cognition and behavior. Thus, neurodegenerative 
diseases gradually increase one’s dependency 
over time, resulting in devastation for affected 
individuals and their family members. Despite 
numerous implicated underlying mechanisms 
and even known causal genetic mutations,1–5 
most neurodegenerative diseases have been defy-
ing the development of effective treatments, 
reflecting the difficulty in defining rational drug 
targets through mechanism-focused approaches. 
However, recent development of site-specific 
gene editing technologies such as CRISPR (clus-
tered regularly interspaced short palindromic 
repeats)/Cas (CRISPR-associated systems) offers 

new hope for the development of effective treat-
ments for neurodegenerative diseases with known 
causative mutations.

In the literature, applications of CRISPR/Cas 
focused on the investigation of gene function, dis-
ease modeling and preclinical studies.6–13 Of note, 
preclinical investigation or clinical use of CRISPR/
Cas for disease treatment may offer several advan-
tages over RNA-lowering approaches.14 For 
example, CRISPR/Cas strategies can overcome 
key limitations of RNAi and/or antisense oligonu-
cleotide (ASO) methods, such as a potentially 
high off-target activity14 and requirement of 
repeated treatments,15 which may increase the 
risk of complications in individuals compromised 
by chronic progressive neurodegenerative dis-
eases. By contrast, most CRISPR/Cas approaches 
generate irreversible changes (e.g. inactivation or 
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correction) in the DNA, and therefore, if a cell is 
correctly targeted, the cell does not need repeated 
treatments. In addition, demonstration of the fea-
sibility of genome editing in post-mitotic neurons 
and the mammalian brain7,12 support the poten-
tial of CRISPR/Cas strategies as a therapeutic 
route for neurodegenerative disorders. Also, 
CRISPR/Cas is highly flexible and thus applica-
ble to neurodegenerative diseases due to loss-of-
function mutations, providing advantages over 
RNA-lowering methods, which is therapeutically 
meaningful to gain-of-function mutations. In 
contrast to other gene editing techniques, site-
specificity for CRISPR/Cas is mediated by an 
interaction between guide RNA (gRNA) and tar-
get DNA. Thus, protein engineering is not 
required for CRISPR/Cas, making this approach 
highly feasible and affordable.16,17

The field has quickly applied various CRISPR/
Cas strategies to models of neurodegenerative 
diseases, and demonstrated therapeutic poten-
tial in preclinical studies. CRISPR/Cas 
approaches for neurodegenerative diseases can 
be broadly grouped into (1) correction of dis-
ease-causing mutations; (2) inactivation of gain-
of-function mutations; and (3) modulation of 
transcription. In this review article, we summa-
rize recent applications of CRISPR/Cas9 to neu-
rodegenerative diseases, focusing on describing 
intervention strategies based on CRISPR/Cas 
gene editing.

Background on the CRISPR/Cas gene editing 
system
The CRISPR/Cas system is a bacterial defense 
mechanism that inactivates foreign genetic  
material.16–20 However, its recent modification, 

fusing CRISPR RNA (crRNA) and trans-activating 
CRISPR RNA (tracrRNA) into a chimeric single 
gRNA (Figure 1(a))21,22 has facilitated site-specific 
gene editing in mammalian cells, leading to wide-
spread applications in biomedical research. Among 
three types of CRISPR, the type II system (i.e. 
CRISPR/Cas9 from Streptococcus pyogenes) is the 
most commonly utilized in the laboratories. In type 
II, the CRISPR locus is transcribed and processed, 
resulting in crRNA–tracrRNA dsRNA (double-
stranded RNA) formation to direct Cas nuclease to 
the target sequence16,17 and to generate double-
strand breaks (DSBs).21,23,24 DSBs are repaired by 
non-homologous end joining (NHEJ) repair mech-
anisms or homology-directed repair (HDR).25 
Although canonical NHEJ appears to result in con-
servative DSB repair,26 NHEJ repair involved in 
CRISPR/Cas usually leads to frameshift mutations 
and thus is likely to produce downstream premature  
stop codons, resulting in inactivation of the target 
gene through a nonsense-mediated decay path-
way16,17 (Figure 1(b)). In the following sections, we 
describe how CRISPR/Cas strategies have been 
used to address various genetic mutations that cause 
neurodegenerative diseases.

Correction of disease-causing DNA repeats 
and single-nucleotide variants
Many forms of neurodegenerative diseases are due 
to genetic mutations,1–5,27 and attempts have been 
made to correct disease-causing mutations using 
CRISPR/Cas strategies in various model systems.

Huntington’s disease
Many neurodegenerative diseases [e.g. 
Huntington’s disease (HD), spinocerebellar 
ataxias] are caused by expansions of unstable 

Figure 1.  Components and mechanisms of CRISPR/Cas-mediated gene editing.
(a) CRISPR/Cas gene editing requires target DNA (red horizontal line), gRNA (crRNA and tracrRNA fusion), Cas 
endonuclease (scissors) and a PAM site. Cas9 and NGG PAM site of S. pyogenes are shown in this illustration.
(b) A double-strand break induced by CRISP/Cas is processed by two distinct pathways. Non-homologous end joining and 
homology-directed repair lead to gene inactivation and correction, respectively.
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nucleotide repeats in certain genes.28 Reducing the 
sizes of disease-causing expanded repeats using 
CRISPR/Cas is therefore hypothesized to amelio-
rate associated disease pathogenesis. HD is a dom-
inantly inherited neurodegenerative disease, 
caused by an expansion of CAG trinucleotide 
repeat in the first exon of huntingtin gene 
(HTT).3,29 HTT CAG repeat is highly polymorphic 
in the normal population30; once their lengths 
become greater than 35, various characteristic 

neurological symptoms occur.29 The first attempt 
to reduce the size of the disease-generating CAG 
repeat in induced pluripotent stem cells (iPSCs) 
derived from an individual with HD (carrying 72 
and 19 CAGs) was based on homologous recom-
bination using a repair template of bacterial artifi-
cial chromosome (BAC) containing the entire 
HTT with a normal CAG repeat (21 CAGs).31 
Expression profiling analysis and apoptosis assays 
showed that genetically corrected iPSC clonal lines 

Figure 2.  CRISPR/Cas strategies for neurodegenerative diseases.
Broadly, three CRISPR/Cas strategies were applied to model systems of neurodegenerative diseases: gene correction; 
inactivation of mutation; and transcriptional modulation. Depending on the objective of the gene editing, Cas9 endonuclease 
((a), (c), (d)), Cas9 nickase (b), or dead Cas9 ((e), (f), (g)) were used to correct the genetic defects ((a), (b), (c)), inactivate the 
gain-of-function mutation ((d)), or modulate transcription of disease-related genes ((e), (f), (g)).
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showed normalization of various cellular patho-
genic signaling pathways (e.g. cadherin, TGF-β, 
BDNF) and disease phenotypes (e.g. susceptibility 
to cell death),31 supporting its therapeutic benefits. 
Subsequently, CRISPR/Cas9 was used to improve 
the efficiency of homologous recombination 
(Figure 2(a)) when making isogenic allelic series of 
HD cell models.32 More recently, an expanded 
HTT CAG repeat in HD patient-derived iPSC line 
was corrected using CRISPR/Cas9 in combination 
with a piggyBac transposon-based selection system 
through HDR33; neural rosette formation deficit 
and increased cell death following growth factor 
withdrawal were reversed in corrected HD iPSC 
lines.34 Contracting expanded CAG/CTG repeats 
using CRISPR/Cas9 D10A nickase without using 
a repair template was also reported. DSBs gener-
ated by CRISPR/Cas9 directly targeting the repeat 
sequence induced both expansion and contraction 
of the repeat. However, when single-strand breaks 
were produced by Cas9 D10A nickase, the repeat 
in the reporter vector tended to contract due to the 
activation of distinct DNA repair mechanisms 
(Figure 2(b)).35 CRISPR/Cas approaches directly 
targeting disease-causing repeats have to be thor-
oughly evaluated for their target gene specificities 
to avoid permanent modification of other repeat-
containing genes.

Amyotrophic lateral sclerosis/frontotemporal 
dementia
An expansion of GGGGCC hexanucleotide 
(G4C2) repeats in the C9orf72 gene is the most 
common cause of familial amyotrophic lateral 
sclerosis (ALS) and frontotemporal dementia 
(FTD).27,36 An expanded G4C2 repeat in an iPSC 
line from a subject with C9orf72 mutation was cor-
rected via homologous recombination using 
CRISPR/Cas9 and a plasmid DNA donor tem-
plate (Figure 2(a)); motor neurons differentiated 
from gene-corrected iPSC lines showed ameliora-
tion of disease-associated cellular phenotypes such 
as abnormal protein aggregation and stress gran-
ule formation.37 Applications of CRISPR/Cas to 
correct pathogenic single-nucleotide variants 
causing neurodegenerative diseases (Figure 2(a)) 
are also described in the literature. Mutations in 
several genes including SOD1 and FUS are found 
in familial cases of ALS,4,38–40 and targeted gene 
correction methods using CRISPR/Cas9 were 
able to convert pathogenic alleles such as SOD 
A272C and FUS G1566A into non-pathogenic 
normal alleles in iPSCs. The repair template was 

provided by either (1) a donor plasmid containing 
wild-type allele and homology arm or (2) a linear 
single-stranded oligodeoxynucleotide (ssODN).41 
Corrected iPSC clones maintained pluripotency 
markers and differentiation capability.

Frontotemporal dementia and Alzheimer 
disease
Similar CRISPR/Cas-mediated correction 
approaches (Figure 2(a)) were applied to cell mod-
els of FTD and Alzheimer’s disease in an effort to 
generate an isogenic cell panel of disease models. 
Briefly, R406W and P301L mutations in microtu-
bule associated protein tau (MAPT) were cor-
rected using ssODN-mediated CRISPR/Cas9 in 
iPSCs.42–44 Similarly, A79V and L150P mutations 
in presenilin 1 (PSEN1) were corrected using 
CRISPR/Cas and ssODN repair templates.45,46

Fragile X-associated tremor ataxia syndrome
A neurodegenerative disease, Fragile X-associated 
tremor ataxia syndrome (FXTAS) is caused by an 
expansion of CGG repeat in the 5′-untranslated 
region of the fragile X mental retardation gene 
(FMR1). The size of expanded repeats deter-
mines the type of disease; a full mutation (>200 
repeats) and pre-mutation (55–200 repeats) 
result in Fragile X syndrome (FXS) and FXTAS, 
respectively.47–50 Application of a CRISPR/Cas9 
strategy aiming at targeting the end of the 
upstream sequence of the CGG repeat of FMR1 
could cause large deletions of abnormally 
expanded repeats (Figure 2(c)), and reverse 
FMR1 methylation in patient-derived iPSC and 
pluripotent stem cells.51

Inactivation of gain-of-function mutation
Allele-specific CRISPR/Cas approaches to (selec-
tively) inactivate the disease allele (Figure 2(d)) 
have been tested in model systems of a domi-
nantly inherited neurodegenerative disorder.

Huntington’s disease
HD results from a CAG expansion mutation in 
HTT through gain-of-function mechanisms. 
Complete lack of Htt leads to embryo lethality in 
mice,52–54 and compound heterozygous nullifying 
variants in HTT are associated with a neurodevel-
opmental disorder in humans.55 Whether or not 
huntingtin is dispensable in the adult brain is 
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controversial.56,57 However, loss of one copy of the 
gene due to balanced translocation does not cause 
HD,58 supporting therapeutic CRISPR/Cas gene 
silencing. These reinforce that therapeutic 
CRISPR/Cas silencing strategy for HD needs to 
be mutant allele-specific to avoid adverse out-
comes due to collateral silencing of the normal 
allele. Recently, mutant allele-specific CRISPR/
Cas strategies using SNPs that create or eliminate 
PAM sites were developed.59 By mapping all 
CRISPR PAM sites on HTT gene haplotypes and 
comparing haplotypes in a pair-wise manner, the 
mutant HTT gene haplotype-specific CRISPR 
PAM sites for a given diplotype were identified. In 
a proof-of-principle experiment, two mutant 
allele-specific gRNAs whose targets encompass 
(1) important regions for gene transcription 
including promoter region and transcription start 
site and (2) the expanded CAG repeat in the first 
exon, were used to selectively inactivate the 
mutant allele. The simultaneous use of two mutant 
allele-specific gRNAs eliminated an approximately 
44 Kb DNA segment including the promoter 
region, transcription start site and expanded CAG 
repeats from the mutant allele without affecting 
the normal HTT allele in patient-derived fibro-
blast, iPS and NPC cells. This excision ultimately 
prevented the generation of mutant HTT mRNA 
and protein, indicating complete and permanent 
inactivation of the HD chromosome.

Subsequently, a similar gene silencing approach 
to inactivate the mutant allele by excising the first 
exon of HTT in an allele-specific manner was 
reported.60 Using one allele-specific and one non-
allele-specific gRNA simultaneously, the first 
exon of Htt including the CAG expansion muta-
tion was excised, leading to reduced expression 
levels of the mutant Htt in a population of cells. 
Although moderate, the normal HTT expression 
levels were also reduced by a dual gRNA CRISPR 
approach possibly due to the interference of tran-
scription of normal allele by non-allele-specific 
gRNA. Nevertheless, the delivery of dual gRNAs 
and Cas9 using a rAAV shuttle vector system into 
BACHD transgenic mice significantly lowered 
the mutant HTT mRNA levels, demonstrating 
the effectiveness of CRISPR/Cas in vivo for the 
first time.

Novel concepts such as (1) allele specificity 
using PAM-altering SNPs, (2) targeting the hap-
lotype carrying the mutation, rather than the 
mutation itself and (3) preventing transcription 
of the mutant allele to inactivate the gene were 

integrated to permanently silence the mutant 
gene in a completely allele-specific manner in 
HD. Although strategies of transcription preven-
tion by CRISPR/Cas may be less efficient com-
pared to single gRNA CRISPR/Cas approaches 
because of (1) excision of a rather larger region 
and (2) requirement of two gRNAs, haplotype-
targeting CRISPR/Cas silencing strategies are 
broadly applicable to other dominant diseases.

Transcriptional modulation of 
neurodegenerative disease-related genes
Targeting specific regions of a gene using (modi-
fied) CRISPR/Cas systems permits modulation of 
expression levels of genes that cause or are associ-
ated with neurodegenerative diseases.

Huntington’s disease
It has been recently demonstrated that the 
expression levels of HTT could be lowered by 
CRISPR/Cas approaches using a single gRNA, 
targeting non-coding regions of the gene.61 In 
mesenchymal stem cells extracted from the bone 
marrow of the YAC128 HD mouse model,62 sin-
gle gRNA-mediated CRISPR/Cas9 DNA editing 
at the 5′ untranslated region (UTR) or exon1–
intron1 junction of HTT resulted in reduced 
HTT mRNA and protein expression levels.61 A 
significant reduction of HTT mRNA expression 
levels was also achieved by targeting the tran-
scription start site of HTT using a single gRNA 
and dead Cas9 (dCas9) (Figure 2(e)).63 If genetic 
variations that permit allele-specific CRISPR/
Cas9 targeting are available in the region impor-
tant for transcriptional and/or translational regu-
lation of HTT, this approach may provide 
therapeutic benefits without producing signifi-
cant side effects in HD.

Parkinson’s disease and Alzheimer’s disease
In addition, a mutant form of Cas9 and various 
fusions were used to modulate the expression lev-
els of neurodegenerative disease-related genes. 
The use of dCas9 and a gRNA targeting the tran-
scription start sites significantly reduced the 
expression levels of disease-associated genes such 
as SNCA, MAPT and APP.63 Also, mRNA and 
protein expression levels of SNCA could be pre-
cisely up- and downregulated in the human iPSC-
derived neurons by CRISPR/Cas9 systems using 
dCas9-KRAB (Figure 2(f)) and dCas9-VPR 
effector domain fusion (Figure 2(g)).63
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Challenges and opportunities
Various CRISPR/Cas strategies tested in the model 
systems of neurodegenerative disease demon-
strated good target engagement and amelioration 
of disease-associated cellular phenotypes, support-
ing their therapeutic potential in clinical trials. 
Still, most reported CRISPR/Cas strategies in the 
scientific literature are not immediately applicable 
for treating humans with neurodegenerative dis-
eases. Various technical hurdles and biological 
questions need to be addressed before therapeutic 
use of CRISPR/Cas in humans.

Off-targeting
Most CRISPR/Cas approaches aim at generating 
permanent changes in DNA, and therefore off-
targeting is one of the major concerns of clinical 
applications of CRISPR/Cas. Cas9 requires exten-
sive homology between sequences of target DNA 
and gRNA for cleavage.17,64 Still, Cas9 can bind 
with off-targets with mismatches,64 and such tran-
sient binding may result in variable off-target 
activities.65 Thus, levels of off-targeting may vary 
widely depending on the CRISPR/Cas strategies, 
and it may be very difficult to develop ones with-
out any off-target activity. However, levels of off-
target activities of CRISPR/Cas can be significantly 
reduced by using (1) optimized gRNA design 
methods,65 (2) truncated gRNA,66 (3) Cas9 with 
increased fidelity,67,68 (4) Cas9 nickase mutant,69,70 
(5) low levels of Cas923 and (6) controllable 
Cas9.71,72 Combinatorial approaches may further 
lower off-target activity of CRISPR/Cas to the 
extent that therapeutic benefits exceed off-target-
ing-mediated side effects.

Delivery
The most promising CRISPR/Cas delivery vector 
for neurodegenerative disease is adeno-associated 
viruses (AAVs), as they are relatively safe and effi-
cient in generating a gene of interest, without 
genome integration.73,74 Due to their limited 
transgene capacities, smaller endonucleases such 
as saCas975 or Cpf176–78 may be better suited for 
AAV vectors. Nevertheless, dual AAV vector sys-
tems for spCas9 and gRNA efficiently generated 
DNA modification in mouse brains.12,60 However, 
prolonged expression of high levels of Cas9 may 
lead to increased levels of off-target activity.23 
Alternatively, Cas9 protein may be delivered for 
efficient DNA targeting with minimal off-target-
ing in the context of protein therapy.79,80

Homology-directed repair versus non-
homologous end joining
CRISPR/Cas strategies for genetic correction 
through HDR are believed to be less efficient, and 
may instead induce NHEJ, potentially resulting 
in knocking-out the target gene. In the worst-case 
scenario, CRISPR/Cas strategies aimed at cor-
recting the mutant allele may inactivate the nor-
mal allele. In preclinical studies, screening assays 
were performed to select genetically corrected cell 
clones for subsequent molecular characterization. 
Since selection is not desirable in therapeutic 
applications of CRISPR/Cas, development of 
genome editing strategies that induce high-fidel-
ity HDR with low NHEJ is critical.23,81 The use of 
mutant allele-specific CRISPR/Cas strategies 
designed for HDR of the mutant allele will also 
contribute to minimizing the levels of NHEJ of 
the normal allele.

Requirement of personalization for allele-
specific CRISPR/Cas
Allele-specific CRISPR/Cas strategies targeting 
genetic variations that are linked to the mutations 
require customized designs because each patient 
may have different combinations of mutant and 
normal allele haplotypes. Considering the cost 
associated with clinical trials, personalized allele-
specific CRISPR/Cas strategies may sound unre-
alistic. However, certain disease subjects share 
the founder mutation,82 and therefore alleles on 
the ancestral haplotype with low allele frequency 
in the normal population may allow a single 
mutant allele-specific CRISPR/Cas gene editing 
to be applicable to most patients who share the 
founder mutation. In addition, when distribu-
tions of haplotypes of mutant allele and normal 
allele are quite distinct (e.g. HD),83 a set of a 
small number of mutant allele-specific CRISPR/
Cas strategies may be developed for the majority 
of patients. Identification of broadly applicable 
allele-specific target sites will facilitate the efficacy 
testing of CRISPR/Cas strategies in humans.

Limitations of transcriptional modulation
The use of dead Cas9 would generate temporary 
effects due to the lack of DNA modification, and 
therefore it remains to be investigated whether 
CRISPR-mediated transcription modulation 
strategies using dCas9 (CRISPRi) provide advan-
tages over conventional RNA-lowering approaches 
such as ASO. Also, the likelihood of allele-specific 
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application would be variable, depending on the 
availability of human genetic variations near tran-
scription start sites of target genes. Still, transcrip-
tional activation using dCas9–VPR fusion 
indicates versatility of CRISPR approaches and 
supports its utility in treating human diseases due 
to haploinsufficiency.

Treatment window
Since the CRISPR field is actively developing 
highly efficient and gene-selective CRISPR 
genome editing methodologies and delivery 
mechanisms,12,67,68,72,84,85 many of the technical 
problems including off-targeting are expected to 
be solved in the future. With a promising forecast 
for technical aspects of CRISPR/Cas, integration 
of allele-specific strategies with efficient delivery 
methods is likely to open routes for intervening in 
neurodegenerative diseases in humans. However, 
important biological questions of neurodegenera-
tive disorders still remain to be addressed. 
Considering the nature of the disease, primary 
objectives of treatments for neurodegenerative 
disease are to prevent the loss of neurons and 
their functions, and therefore maximum thera-
peutic benefits may be achieved when the treat-
ments are applied reasonably early. Symptomatic 
interventions were able to attenuate related path-
ological markers and behavioral phenotypes in 
animal models of neurodegenerative diseases, but 
neuronal loss was not reverted.86–89 In support of 
stage-dependent therapeutic efficacy, disease was 
completely and partially reversed when the pro-
duction of mutant ataxin-1 was halted at an early 
stage and at a later stage, respectively, in a model 
system of spinocerebellar ataxia type 1 (SCA1).90 
When it comes to CRISPR/Cas therapeutics for 
chronic and progressive diseases of the nervous 
system, it is particularly important to choose an 
optimal treatment window to obtain maximum 
therapeutic benefits without generating unwanted 
side effects. For example, if CRISPR/Cas treat-
ments are delivered too late, damaged neurons 
may not be able to restore their cellular integrity 
and functions; if gene silencing CRISPR/Cas 
treatments are applied too early, unwanted 
adverse consequences may arise due to unex-
pected compromised gene functions. Despite its 
importance, the optimal treatment window for 
each neurodegenerative disease is unclear due to 
the lack of preclinical CRISPR/Cas experiments 
on relevant animal models. Thus, generation of 
genetically faithful animal models with relevant 
human genetic variations that allow tests for 

allele-specific CRISPR/Cas strategies, and subse-
quent time-series analysis, will provide valuable 
insights into temporal aspects of CRISPR/Cas 
therapeutics, facilitating the clinical application of 
powerful CRISPR/Cas genome engineering tech-
nology in treating neurodegenerative diseases.

Conclusions
The field has witnessed promises and limitations of 
CRISPR/Cas as a therapeutic means for challeng-
ing health issues such as neurodegenerative disor-
ders. Technical barriers and safety issues certainly 
must be solved before applying CRISPR/Cas strat-
egies to treat human diseases. Nevertheless, con-
ceptual foundations and key components necessary 
for the application of CRISPR/Cas to neurodegen-
erative diseases have been addressed in preclinical 
studies, and the potential of integrative approaches 
was also demonstrated. Now, personal genomics 
becomes more affordable than ever, facilitating the 
discovery of disease-causing genes and providing 
knowledge of targets for CRISPR/Cas. Conversely, 
development of broadly applicable and efficient 
therapeutic CRISPR/Cas genome engineering 
tools will permit targeting the root cause of the dis-
ease, facilitating genetic tests and the identification 
of disease-producing mutations through personal 
genomics. The synergistic interaction between two 
disciplines will eventually support widespread 
applications of CRISPR/Cas in precision medicine 
for neurodegenerative diseases and more, signifi-
cantly contributing to understanding diseases and 
improving human health.
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