
 Intrinsic  dynamic  shapes  responses  to  external  stimulation 
 in the human brain 

 Maximilian  Nentwich  1  ,  Marcin  Leszczynski  2,3,4  ,  Charles  E.  Schroeder  2,3  ,  Stephan  Bickel  1,5,6  , 
 Lucas C. Parra  7 

 1  The Feinstein Institutes for Medical Research, Northwell  Health, Manhasset, NY, USA; 
 2  Departments  of  Psychiatry  and  Neurology,  Columbia  University  College  of  Physicians  and  Surgeons, 
 New York, NY, USA; 
 3  Translational  Neuroscience  Lab  Division,  Center  for  Biomedical  Imaging  and  Neuromodulation,  Nathan 
 Kline Institute, Orangeburg, NY, USA; 
 4  Cognitive Science Department, Institute of Philosophy,  Jagiellonian University, Kraków, Poland; 
 5  Departments  of  Neurology  and  Neurosurgery,  Zucker  School  of  Medicine  at  Hofstra/Northwell, 
 Hempstead, NY, USA; 
 6  Center for Biomedical Imaging and Neuromodulation,  Nathan Kline Institute, Orangeburg, NY, USA; 
 7  Department of Biomedical Engineering, The City College  of New York, New York, NY, USA 

 Summary 

 Sensory  stimulation  of  the  brain  reverberates  in  its  recurrent  neuronal  networks.  However, 
 current  computational  models  of  brain  activity  do  not  separate  immediate  sensory  responses 
 from  intrinsic  recurrent  dynamics.  We  apply  a  vector-autoregressive  model  with  external  input 
 (VARX),  combining  the  concepts  of  “functional  connectivity”  and  “encoding  models”,  to 
 intracranial  recordings  in  humans.  We  find  that  the  recurrent  connectivity  during  rest  is  largely 
 unaltered  during  movie  watching.  The  intrinsic  recurrent  dynamic  enhances  and  prolongs  the 
 neural  responses  to  scene  cuts,  eye  movements,  and  sounds.  Failing  to  account  for  these 
 exogenous  inputs,  leads  to  spurious  connections  in  the  intrinsic  “connectivity”.  The  model  shows 
 that  an  external  stimulus  can  reduce  intrinsic  noise.  It  also  shows  that  sensory  areas  have 
 mostly  outward,  whereas  higher-order  brain  areas  mostly  incoming  connections.  We  conclude 
 that  the  response  to  an  external  audiovisual  stimulus  can  largely  be  attributed  to  the  intrinsic 
 dynamic of the brain, already observed during rest. 

 Keywords 

 Connectivity,  Granger  analysis,  VAR,  recurrent  networks,  encoding  models,  intracranial  EEG, 
 eye movements, naturalistic 
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 Introduction 

 The  primate  brain  is  highly  interconnected  between  and  within  brain  areas.  This  includes  areas 
 involved  in  sensory  processing  1  .  Strikingly,  most  computational  models  of  brain  activity  in 
 response  to  external  natural  stimuli  do  not  take  the  recurrent  architecture  of  brain  networks  into 
 account.  "Encoding"  models  often  rely  on  simple  input/output  relationships  such  as  general 
 linear  models  in  fMRI  2  ,  or  temporal  response  functions  in  EEG/MEG  3  .  Interactions  between 
 brain  areas  are  captured  often  just  as  instantaneous  linear  correlations  that  are  referred  to  as 
 "functional  connectivity"  when  analyzing  fMRI  activity  4  .  Others  capture  synchronous  activity  in 
 different  brain  areas  by  measuring  phase  locking  of  electrical  neural  signals  5  .  However,  these 
 measures  of  instantaneous  correlation  do  not  capture  time  delays  inherent  in  recurrent 
 dynamics.  By  taking  temporal  precedence  into  account  with  recurrent  models  the 
 "Granger-causality"  formalism  can  establish  directed  "connectivity".  This  has  been  used  to 
 analyze both fMRI and electrical activity  6–11  . 

 The  concept  of  functional  connectivity  was  first  developed  to  analyze  neural  activity  during  rest, 
 where  there  are  no  obvious  external  signals  to  stimulate  brain  activity.  But  it  is  now  also  often 
 used  during  passive  exposure  to  a  stimulus,  such  as  watching  movies  12–15  .  A  general 
 observation  of  these  studies  is  that  a  portion  of  the  functional  connectivity  is  preserved  between 
 rest  and  stimulus  conditions,  while  some  aspects  are  altered  by  the  perceptual  task,  e.g.  12,16  . 
 This  should  be  no  surprise,  given  that  an  external  stimulus  can  drive  multiple  brain  areas  and 
 thus  induce  correlations  between  these  areas  17  .  Removing  such  stimulus-induced  correlations 
 by  controlling  for  a  common  cause  is  standard  practice  in  statistical  modeling  and  causal 
 inference  18  .  However,  in  studies  that  focus  on  functional  connectivity  in  neuroscience, 
 stimulus-induced  correlations  are  often  ignored  when  analyzing  the  correlation  structure  of 
 neural  signals.  A  notable  exception  is  “dynamic  causal  modeling”  19  .  In  this  modeling  approach 
 the  “input”  can  modulate  functional  connectivity.  This  is  particularly  important  in  the  context  of 
 active  behavioral  tasks,  where  the  common  finding  is  that  correlation  structure  changes  with 
 task states  20  . 

 In  this  study  we  are  interested  in  “passive”  tasks  such  as  rest  and  movie  watching.  We  will  ask 
 here  whether,  after  removing  stimulus-induced  correlations,  the  intrinsic  dynamic  itself  is 
 preserved.  Attempts  to  factor  out  the  effects  of  the  stimulus  come  from  work  on  response 
 variability.  For  instance,  fMRI  shows  that  variability  across  trials  in  motor  cortex  is  due  to  an 
 intrinsic  “noise”  which  is  linearly  superimposed  on  a  more  reliable  response  to  a  simple  motor 
 action  21  .  Stimulus-response  variability  in  the  visual  cortex  has  been  attributed  to  variability  of 
 ongoing  dynamic  22,23  .  Some  studies  of  electrical  recordings  from  the  visual  cortex  show  that 
 correlations  of  spiking  activity  between  different  recording  locations  are  largely  unaffected  by 
 visual  stimulation  24  .  Yet,  other  studies  show  that  visual  input  affects  local  correlation  in  the 
 visual cortex  25–27  and across the brain  28  . 

 The  technical  challenge  when  addressing  these  questions  is  to  separate  the  direct  effect  of  the 
 stimulus  from  the  intrinsic  recurrent  dynamic.  Here  we  propose  to  separate  these  effects  by 
 modeling  them  simultaneously  with  the  simplest  possible  model,  namely,  linear  intrinsic  effects 
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 between  brain  areas  and  linear  responses  to  extrinsic  input.  A  mathematical  model  that 
 implements  this  is  the  vector-autoregressive  model  with  external  input  (VARX).  This  model  is 
 well  established  in  the  field  of  linear  systems  29  and  econometrics  30  ,  where  it  is  used  to  capture 
 intrinsic  dynamics  in  the  presence  of  an  external  input.  The  VARX  model  is  an  extension  of  the 
 VAR  model  that  is  routinely  used  to  establish  "Granger-causality"  in  neuroscience  (cited  above). 
 In  the  VARX  model,  Granger  analysis  provides  a  measure  of  statistical  significance  for  the 
 intrinsic  dynamic  as  well  as  the  external  input,  in  addition  to  directionality  for  the  intrinsic  effects, 
 all as part of a single model  31  . 

 While  linear  systems  are  an  inadequate  model  of  neuronal  dynamics,  they  remain  an  important 
 tool  to  understand  neural  representations  because  of  their  conceptual  simplicity.  They  are 
 routinely  used  for  event-related  fMRI  analysis  but  also  for  “encoding  models”  to  link  non-linear 
 features  of  continuous  stimuli  to  neural  responses.  They  have  been  used  to  analyze  responses 
 to  video  in  fMRI  32  ,  to  speech  in  EEG  33  or  to  audio  in  intracranial  EEG  34  .  They  are  even  used  to 
 analyze  the  encoding  in  deep-neural  network  models  35  .  Here  we  use  a  classic  linear  model  to 
 combine  two  canonical  concepts  in  neuroscience,  which  have  thus  far  remained  separated, 
 namely,  that  of  “encoding  models”  32  and  “functional  connectivity”  models  6  .  We  will  use  this  to 
 analyze  whole-brain,  intracranial  EEG  in  human  subjects  at  rest,  and  while  they  watch  videos. 
 Our  main  finding  is  that  the  recurrent  dynamic  observed  during  rest  is  only  minimally  altered  by 
 watching  videos.  Instead,  the  brain's  response  to  naturalistic  stimulus  appears  to  be 
 substantially shaped by the same endogenous dynamic of the brain observed during rest. 

 Methods 

 The  vector-autoregressive  model  with  external  input  (VARX)  falls  within  a  group  of 
 well-established  linear  models  used  in  neuroscience  (see  Table  1).  Prominent  examples  in  this 
 group  are  the  generalized  linear  model  (GLM),  dynamic  causal  model  (DCM)  and  temporal 
 response  functions  (TRF).  While  these  models  have  been  extensively  used  for  neural  signal 
 analysis,  the  VARX  model  has  not.  We  start  therefore  with  a  brief  introduction.  For  more  details 
 please refer to  31 

 VARX model 

 The  VARX  model  explains  a  time-varying  vectorial  signal  as  the  result  of  an  intrinsic 
 autoregressive feedback driven by an innovation process  and an extrinsic  1  input  : 

 1  We adopt here the terminology of “Intrinsic” and “extrinsic” as it is commonly used in neuroscience and 
 psychology. In system modeling and econometrics, where the VARX model is prevalent, the more 
 common terminology is “endogenous” and “exogenous”, meaning effectively the same thing. 
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 represent  convolutions  with  appropriately  sized  matrices  of  causal  filters  with 
 lengths  and  respectively.  The  innovation  is  assumed  to  be  uncorrelated  in  time  and  has 
 therefore  a  uniform  spectrum.  The  recurrence  in  modifies  this  spectrum  to  match  the  spectrum 
 of  ,  thereby  capturing  the  intrinsic  recurrent  dynamic.  The  filter  injects  a  filtered  version 
 of  the  extrinsic  input  into  this  recurrent  dynamic.  The  role  of  each  of  these  terms  for  brain 
 activity is explained in Fig. 1. 

 Figure  1:  VARX  model  of  the  brain:  A)  Block  diagram  of  VARX  model.  represents  observable 

 neural  activity  in  different  brain  areas,  are  observable  features  of  a  continuous  sensory  stimulus, 
 represent  the  recurrent  connections  within  and  between  brain  areas  (intrinsic  effect),  and  captures  the 
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 transduction  of  the  sensory  stimuli  into  neural  activity  and  transmission  to  different  brain  areas  (extrinsic 

 effect).  The  diagonal  term  in  captures  recurrent  feedback  within  a  brain  area.  Finally,  is 
 unobserved  intrinsic  “random”  brain  activity.  B)  Example  of  input  stimulus  features  x(t).  C)  Single  channel 
 examples  of  neural  signal  y(t).  D)  Examples  of  moving-average  response  filters  .  E)  Effect  size  for 
 the “connections” captured by auro-regresive filters  . 

 Filter  matrices  and  are  unknown  and  can  be  estimated  from  the  observed  history  of 
 and  using  ordinary  least  squares  (OLS).  The  objective  for  the  optimal  model  is  to  minimize 
 the power of the unobserved innovation process  : 

 . 

 Granger analysis 

 The  innovation  is  also  the  prediction  error,  for  predicting  from  the  past  and  input 
 .  In  the  Granger  formalism  the  prediction  error  is  calculated  with  all  predictors  included 

 (error  of  the  full  model,  )  or  with  individual  dimension  in  or  omitted  (error  of  the 
 reduced  models,  )  36  .  To  quantify  the  "effect"  of  the  specific  dimension  one  can  take  the  ratio 
 of  these  errors  37  leading  to  the  test  statistic  known  as  the  "deviance".  When  the  number  of 
 samples  is  large,  the  deviance  follows  the  Chi-square  distribution  with  cumulative  density  , 
 from which one can compute a p-value: 

 The  p-value  quantifies  the  probability  that  a  specific  connection  in  or  is  zero.  The 
 "generalized"  38  serves  as  a  measure  of  effect  size,  capturing  the  strength  of  each 
 connection  (  D  ,  p  and  R  can  be  computed  for  each  connection  in  matrix  or  ).  While  this 
 Granger  formalism  is  well  established  in  the  context  of  estimating  ,  i.e.  VAR  models,  to  our 
 knowledge, it has not been used in the context of estimating  , i.e. VARX or TRF models. 

 Overall system response 

 The  overall  brain  response  to  the  stimulus  for  the  VARX  model  is  given  by  the  system  impulse 
 response (written here in the  -domain, or Fourier  domain): 

 . 
 What  we  see  here  is  that  the  system  response  is  factorized  into  an  autoregressive  (AR)  filter 

 and  a  moving  average  (MA)  filter  .  When  modeled  as  a  single  MA  filter,  the  total  system 
 response  has  been  called  the  “multivariate  Temporal  Response  Function”  (mTRF)  in  the 
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 neuroscience  community  39  .  We  found  that  the  VARX  estimate  of  is  nearly  identical  to  the 
 estimated  mTRF  31  .  In  other  words,  and  are  a  valid  factorization  of  the  mTRF  into 
 immediate extrinsic versus recurrent intrinsic effects. 

 Note  that  the  extrinsic  effects  captured  with  filters  are  specific  (every  stimulus  dimension  has 
 a  specific  effect  on  each  brain  area),  whereas  the  endogenous  dynamic  propagates  this  initial 
 effect  to  all  connected  brain  areas  via  matrix  ,  effectively  mixing  and  adding  the  responses  of 
 all  stimulus  dimensions.  Therefore,  this  factorization  separates  stimulus-specific  effects  from  the 
 shared endogenous dynamic. 

 Relation to common neural signal models 

 The  VARX  model  fits  naturally  into  the  existing  family  of  models  used  for  neural  signals  analysis 
 (Table  1).  While  they  differ  in  the  formulation  and  statistical  assumptions,  their  defining 
 equations have a similar general form with the following attributes: 

 Table 1: Models commonly used in neural signal analysis 
 Model  Intrinsic 

 effect  A 
 Extrinsic 
 effect  B 

 Interact  Delay 
 n  a  ,  ,  n  b 

 Estimation 
 speed 

 Reference,  with  code  where 
 available 

 GLM  no  yes  no  =1  medium  40  , SPM, FSL 
 DCM  yes  yes  yes  2  =1  3  slow  19  , no code 
 VAR  yes  no  no  >1  fast/slow  41 

 mTRF  no  yes  no  >1  fast  39 

 VARX  yes  yes  no  4  >1  fast  31 

 An  important  simplifying  assumption  for  the  mTRF,  VAR,  and  VARX  models  is  that  y  (  t  )  is 
 observable  with  additive  normal  distributed  innovation.  As  a  result,  parameter  estimation  can 
 use  ordinary  least  squares,  which  is  fast  to  compute.  In  contrast,  GLM,  DCM,  and  some  variants 
 of  VAR  models  assume  that  y  (  t  )  is  not  directly  observable,  and  needs  to  be  estimated  in  addition 
 to  the  unknown  parameters  or  .  The  same  is  true  for  the  basic  “output  error”  model  in 
 linear  systems  theory  29  .  This  requires  slower  iterative  algorithms,  such  as  expectation 
 maximization.  As  a  result,  these  models  are  often  limited  to  small  networks  5  of  a  few  nodes  to 
 test  specific  alternative  hypotheses  42  .  In  contrast,  here  we  will  analyze  100-200  channels  per 
 subject to draw general conclusions about overall brain organization. 

 5  The original DCM proposed for fMRI included an added complication of modeling the hemodynamic 
 response, which amounts to adding a temporal filter to each output node and prior to adding observation 
 noise. 

 4  It is straightforward to add an interaction term to the VARX model and maintain fast OLS estimation. 
 3  The DCM is defined in terms of the first derivative of  y  (  t  )  , which in discret time is the same as  n  a  =1. 

 2  “Interact” refers to an additional bilinear interaction term of the form  x C y  that allows for a modulation  of 
 intrinsic effect by the external input. 
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 Validation of connectivity estimate on whole-brain neural mass model 

 To  validate  the  interpretation  that  is  a  model  of  “connectivity”,  we  simulated  neural  activity  for 
 a  whole-brain  neural  mass  model  43  .  We  used  the  default  model  of  the  neurolib  python  library 
 (“ALNModel”),  which  is  a  mean-field  approximation  of  adaptive  exponential  integrate-and-fire 
 neurons.  This  model  can  generate  simulated  mean  firing  rates  in  80  brain  areas  based  on 
 connectivity  and  delay  matrices  determined  with  diffusion  tensor  imaging  (DTI).  We  used  5  min 
 of  “resting  state”  activity  (no  added  stimulus,  simulated  at  0.1ms  resolution,  subsequently 
 downsampled  to  100Hz).  The  true  connectivity  matrix  from  DTI  (Fig.  2A)  appears  to  be  similar  to 
 the  effect  size  estimate  R  for  the  recurrent  connections  in  the  VARX  model  with  no  input  (Fig. 
 2B).  Following  44  we  compare  the  two  as  a  scatter  plot  (Fig.  2C)  and  observed  a  Spearman 
 correlation  of  0.69.  For  comparison,  we  also  used  the  sparse-inverse  covariance  method  to 
 recover  structural  connectivity  from  functional  connectivity.  This  method  is  more  sensitive  than 
 others  in  detecting  network  connections  45  and  uses  the  graphical  lasso  algorithm  46  .  The 
 resulting  connectivity  estimate  (Fig.  2D)  only  achieves  a  Spearman  correlation  of  0.52.  We  note 
 that  the  structural  connectivity  determined  with  DTI  is  largely  symmetric.  When  enhancing  the 
 asymmetry  the  VARX  model  is  not  as  accurate,  but  correctly  recovers  the  direction  of  the 
 asymmetry (Fig. S1). 

 Figure  2:  Connectivity  of  stimulated  neural  mass  model  for  the  whole  brain,  and  estimated  VARX 
 model.  A)  True  structural  connectivity  used  to  simulate  neural  activity  using  a  neural  mass  model  with  the 
 neurolib  python  toolbox.  Connectivity  is  based  on  diffusion  tensor  imaging  data  between  80  brain  areas 
 (called  Cmat  in  neurolib).  Here  showing  the  square  root  of  the  “Cmat''  matrix  for  better  visibility  of  small 
 connectivity  values.  B)  Effect  size  estimate  R  for  the  matrix  of  the  VARX  model  on  the  simulated  data. 
 C)  Comparison  of  true  and  VARX  estimate  of  connectivity.  D)  Absolute  value  of  the  sparse-inverse 
 functional connectivity (estimated using graphical lasso  47  ). 

 Intracranial EEG recordings and stimulus features 

 We  analyzed  intracranial  EEG  and  simultaneous  eye-tracking  data  recorded  from  patients 
 (N=21,  mean  age  37.81  years,  age  range  19-58  years,  9  female,  Table  S1)  during  rest  and 
 while  they  watched  various  video  clips.  Three  patients  underwent  two  implantations  and 
 recordings  at  different  times  resulting  in  a  total  of  24  recording  sessions  with  a  total  of  4,962 
 recording  channels.  The  video  clips  included  animations  with  speech  (‘Despicable  Me’,  two 
 different  clips,  10  min  each,  in  English  and  Hungarian),  an  animated  short  film  with  a  mostly 
 visual  narrative  and  music,  shown  twice  (‘The  Present’,  4.3  min),  and  three  clips  of 
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 documentaries  of  macaques  (‘Monkey’,  5  min  each,  without  sound)  48  .  In  addition  to  the  clips 
 from  the  previous  analysis,  we  included  a  movie  clip  of  abstract  animations  (‘Inscapes’,  10  min) 
 49  ,  and  an  eyes-open  resting  state  with  maintained  fixation  (‘Resting  state’,  5  min).  In  total,  we 
 recorded  up  to  59.3  minutes  of  data  for  each  patient  (Table  S1).  Two  patients  did  not  complete 
 both  movie  watching  and  resting  state  (Pat_5  &  Pat_16)  and  were  not  included  in  the  analysis 
 that compares the two conditions. 

 Neural  signals  were  preprocessed  as  previously  described  to  reduce  noise  48  .  We  re-reference 
 signals  in  a  bipolar  montage  to  ensure  analysis  of  local  activity.  We  analyze  local  field  potentials 
 (LFPs)  and  broadband  high-frequency  activity  (BHA)  power.  BHA  is  the  power  of  the  signal 
 bandpass  filtered  between  70-150Hz.  We  perform  analysis  on  both  signals  after  downsampling 
 to 60Hz. Example traces of y(t) for LFP and BHA are shown in Fig. 1B&C. 

 We  extract  three  features  of  the  movies  that  serve  as  external  inputs  for  the  VARX  model: 
 fixation  onset,  film  cuts  and  sound  envelope  (Fig.  3G).  Fixation  onset  and  film  cuts  are 
 represented  in  x(t)  as  pulse  trains  with  pulses  occurring  at  the  time  of  these  events  48  .  Sound 
 envelope  is  computed  as  the  absolute  value  of  the  Hilbert  transform  of  the  sound  from  the 
 movie  files  and  varies  continuously.  The  envelope  is  downsampled  to  60  Hz.  All  videos  and 
 resting  state  include  fixations.  The  video  ‘Inscapes’  and  resting  state  do  not  include  film  cuts  as 
 external  input.  The  ‘Monkey’  video  clips  and  resting  state  do  not  include  the  sound  envelope  as 
 input  features,  but  do  include  fixation  onsets.  When  a  feature  is  not  available  it  is  replaced  with 
 features  from  a  different  recording.  Therefore,  the  statistics  of  the  feature  are  consistent,  but  not 
 aligned  to  the  neural  recording.  When  comparing  models  with  different  features  we  always  keep 
 the  number  of  input  variables  consistent  between  models  to  avoid  a  bias  by  the  number  of  free 
 parameters  of  the  model.  Features  that  are  not  considered  in  the  analysis  are  shuffled  in  time  by 
 a circular shift by half the duration of the signals. 

 The  VARX  models  were  fitted  to  data  with  the  matlab  version  of  the  code  31  .  For  all  analyses  we 
 use  filters  of  600  ms  length  for  inputs  (  n  b  =36  samples  for  VARX  models,  L  =36  samples  for 
 mTRFmodels).  Delays  for  connections  between  channels  are  set  to  100ms  (  n  a  =6  samples)  for 
 both  LFP  and  BHA  signals.  Increasing  the  number  of  delays  n  a  ,  increases  estimated  effect  size 

 ,  however,  larger  values  lead  to  overfitting,  i.e.  less  significant  connections  (Fig.  S1).  Values 
 around  n  a  =6  samples  achieve  a  balance  between  goodness  of  fit  and  overfitting  (Fig.  S2).  The 
 regularization parameter was set to 𝜆=0.3. 

 Connectivity  plots  are  created  with  nilearn’s  plot_connectome()  function  (Fig.  4)  50  .  We  plot  only 
 significant  connections  (p<0.001).  Surface  plots  of  T1w/T2w  ratios  and  directionality  of 
 connections  are  created  using  the  field-echos  repository  51,52  .  T1wT2w  maps  53  are  obtained 
 from  the  neuromaps  repository  54,55  ,  and  transformed  to  the  freesurfer  surface  using  the 
 fslr_to_fsaverage() function  56,57  . 

 The  length  of  responses  for  Fig.  5  is  computed  as  the  ‘peak  widths’  argument  of  Matlab's 
 findpeaks()  function.  Power  is  computed  as  the  average  of  the  instantaneous  power,  i.e.  the 
 square of the weight at each delay of the filters. 
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 Data and code availability 

 The  raw  data  reported  in  this  study  cannot  be  deposited  in  a  public  repository  because  of 
 patient  privacy  concerns.  To  request  access,  contact  The  Feinstein  Institutes  for  Medical 
 Research,  through  Dr.  Stephan  Bickel.  In  addition,  processed  datasets  derived  from  these  data 
 have  been  deposited  at  https://doi.org/10.17605/OSF.IO/VC25T  and  are  publicly  available  as  of 
 the date of publication. 

 All  original  code  has  been  deposited  at  https://github.com/MaxNentwich/varx_demo  and  is 
 publicly available at [DOI to be created with final version of code] as of the date of publication. 

 Results 

 Extrinsic input leads to spurious intrinsic connectivity 

 To  determine  the  effect  of  the  extrinsic  inputs  on  connectivity  estimates  we  either  fit  a  VARX 
 model  or  a  VAR  model  (i.e.  a  VARX  model  with  no  external  input).  We  analyze  LFP  data  on  all 
 available  recordings,  movies  and  resting  state  for  all  N=24  recording  sessions.  As  extrinsic 
 inputs  we  included  film  cuts,  fixation  onset,  and  sound  envelope.  VAR  models  contain  the  same 
 external  inputs  as  the  VARX  model,  but  the  time  alignment  is  disrupted  by  a  circular  shuffle.  This 
 keeps  the  number  of  parameters  in  different  models  constant  and  ensures  the  inputs  have  the 
 same  covariance  structure.  We  found  a  similar  connectivity  structure  for  the  estimated  VAR  and 
 VARX  models  (Fig.  3A  and  3B).  However,  they  vary  systematically  in  the  number  of  significant 
 recurrent  connections  (those  with  p<.0001,  Fig.  3D),  which  drops  when  adding  inputs 
 (median=-8.7*10  -4  ,  p<.0001,  N=24,  Wicoxon).  The  effect  sizes  also  significantly  decreases  in 
 the  VARX  model  (Fig.  3E,  median=-1.9*10  -5  ,  p<.0001,  N=24,  Wicoxon).  Therefore,  accounting 
 for  the  external  input  removes  spurious  “connections”.  We  also  analyzed  how  much  each  of 
 these  inputs  contributed  to  this  effect  (Fig.  3F).  Out  of  the  three  input  features  considered, 
 models  including  fixations  and  cuts  decrease  effect  size  more  than  models  with  sound  envelope 
 (fixations  vs.  sound,  medianΔR=-1.0*10  -5  ,  p<.0001,  N=24;  cuts  vs.  sound:  median  ΔR=-3.8*10  -6  , 
 p<.0001,  N=24;  Wilcoxon,  uncorrected).  The  model  including  the  combination  of  all  three 
 features  has  a  smaller  effect  size  for  than  models  with  any  individual  input  feature  (all  vs. 
 fixations:  median  ΔR=-6.5*10  -6  ,  p<.0001,  N=24;  all  vs.  cuts:  medianΔR=-1.2*10  -5  ,  p<.0001, 
 N=24;  all  vs.  sound:  medianΔR=-1.9*10  -5  ,  p<.0001,  N=24;  Wilcoxon,  uncorrected).  Thus,  adding 
 more  input  features  further  reduces  the  strength  of  intrinsic  “connections”.  These  results  are 
 also reflected in the analysis of BHA signals (Fig. S3). 
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 Figure  3:  Spurious  intrinsic  connectivity  in  is  removed  when  modeling  the  effect  of  exogenous 
 input  with  .  Comparison  of  VARX  model  with  and  without  inputs.  A)  -values  for  each  connection  in 

 for  VARX  model  with  inputs  on  one  subject  (Pat_1);  B)  for  VARX  model  without  inputs;  C)  difference. 
 Both  models  are  fit  to  the  same  data.  D)  Difference  of  fraction  of  significant  recurrent  connections 
 between  VARX  models  with  and  without  inputs.  E)  Mean  difference  in  over  all  electrodes  between 
 VARX  models  with  and  without  inputs.  Each  point  is  a  subject.  Dashed  line  is  the  median  across  subjects. 
 F)  Difference  between  the  VARX  models  with  different  input  combinations  and  the  VARX  model  without 
 inputs.  Red  line  shows  mean  across  patients,  black  lines  the  95%  confidence  interval.  Negative  values 
 indicate a decrease in connectivity strength when exogenous input is accounted for. 

 Recurrent connectivity unchanged during movies and rest 

 Next  we  compared  intrinsic  “connectivity”  between  movie  watching  and  rest  (Fig.  4A-D).  In  the 
 rest  condition  subjects  have  a  fixation  cross  on  a  gray  background.  This  obviously  reduces  the 
 size  and  number  of  saccades  as  compared  to  movie  watching,  but  does  not  abolish  them  (Fig. 
 S4).  We  therefore  use  a  VARX  model  including  fixation  onset  as  extrinsic  variable  in  both  cases. 
 Movies  include  film  cuts  and  the  sound  envelope  as  external  inputs.  To  control  for  the  number  of 
 free  parameters,  we  include  copies  of  the  film  cut  and  sound  envelope  features  from  the  movies 
 to  the  resting  state  model.  Remarkably,  the  number  of  significant  recurrent  connections  in 
 were  not  detectably  different  between  movie  watching  and  rest  (Fig.  4C,  median=-0.0019, 
 p=0.19,  N=22,  Wilcoxon),  as  is  the  effect  size  (Fig.  4D,  median=-9*10  -5  ,  p=0.14,  N=22, 
 Wilcoxon).  One  caveat  to  this  conclusion  is  that  the  signal  we  analyzed  was  only  5  minutes  long 
 for  the  movie  and  rest  conditions,  and  longer  records  may  have  revealed  small  differences. 
 However,  even  on  5  minutes  of  data  we  observe  a  decrease  in  R  values  when  including  external 
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 inputs  (Fig.  S5).  Connectivity  of  BHA  between  movie  and  rest  does  also  not  differ  significantly 
 (Fig.  S6).  Using  different  segments  of  movies,  in  some  cases  we  find  a  small  reduction  of 
 significant  connections  in  movie  watching  compared  to  resting  state  conditions  (Fig.  S7). 
 However,  overall,  differences  in  the  intrinsic  connectivity  between  movie  and  rest,  if  they  exist, 
 are less systematic than the effect of the stimulus. 

 Figure  4:  Recurrent  connectivity  during  movies  does  not  detectably  differ  from  rest.  Effect  size 
 for  each  connection  in  .  A)  VARX  model  of  5  minutes  of  LFP  recordings  during  movie  watching,  with 

 sound  envelope,  fixation  onsets  and  film  cuts  as  input  features.  B)  VARX  model  during  resting  fixation 
 with  fixation  onset  as  input  feature.  C)  Difference  in  the  number  of  significant  connections  (p<.0001) 
 between  movie  and  rest.  D)  Difference  in  mean  effect  size  across  all  channels  between  movie  and  rest. 
 Dots  represent  subjects,  dashed  line  the  median  across  subjects.  Axial  view  of  significant  connections  in 
 E)  the  movie  task,  F)  resting  state,  and  G)  the  difference  between  movies  and  resting  state.  Dots  show 
 the  location  of  contacts  in  MNI  space.  Lines  show  significant  connections  between  contacts.  For  plotting 
 purposes  connections  in  the  upper  triangle  are  plotted  and  asymmetries  ignored.  Only  channels  with 
 p-values < 0.001 in both conditions are plotted. 

 Recurrent dynamic enhances and prolongs stimulus responses 

 We  also  compared  the  immediate  exogenous  effect  with  the  total  system  response  ,  which 
 includes  the  additional  effect  of  the  recurrent  dynamic  .  We  estimate  with  the  VARX  model 
 (Fig.  5A)  on  data  during  video  watching,  and  estimate  the  total  response  directly  using 
 temporal  response  functions  (Fig.  5B).  Both  models  include  fixation  onset,  film  cuts  and  sound 
 envelope  as  external  inputs.  We  compare  the  power  and  length  of  filters  from  both  models  (Fig. 
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 5C-D).  We  compare  responses  in  channels  with  significant  effects  of  (FDR  correction, 
 ɑ=0.05).  We  see  that  the  total  response  fixation  onset  is  significantly  stronger  (Fig.  5C, 
 medianΔ=-5.4*10  -5  ,  p<.0001,  N=23,  Wilcoxon)  and  longer  than  the  immediate  effect  (Fig. 
 5D,medianΔ=-21.72ms,  p<.0001,  N=23,  Wilcoxon).  The  same  effect  is  observed  for  other  input 
 features  and  for  BHA  responses  (Fig.  S8).  This  suggests  that  the  total  response  of  the  brain  to 
 these external inputs is dominated by the recurrent dynamic of the brain. 

 Figure  5:  Impulse  response  models.  A)  Immediate  responses  to  fixation  onset  are  weaker  and 
 shorter  than  B)  the  overall  system  response  .  Significant  responses  of  select  channels  in  for  one 
 example  patient.  C)  Power  and  D)  mean  length  of  responses  in  significant  channels  for  all  patients.  Each 
 line  is  a  patient.  Channels  with  the  strongest  responses  are  shown  in  panels  A&B.  Responses  to  fixation 
 onset in all significant channels, as well as auditory envelope and film cuts are shown in Figure S9. 

 Results are similar for VARX models of BHA and LFP 

 We  repeated  the  same  analyses  of  Figures  3-5  with  broadband  high  frequency  activity  (BHA). 
 While  LFP  are  thought  to  capture  dendritic  currents,  BHA  is  correlated  with  neuronal  firing  rates 
 in  the  vicinity  of  an  electrode.  Generally  we  find  a  more  sparse  recurrent  connectivity  for  BHA  as 
 compared  to  LFP  (compare  Fig.  3&4  with  Fig.  S3&S6).  Perhaps  this  is  expected,  given  that  LFP 
 covers  a  broader  frequency  range.  Regardless  of  this  overall  difference,  we  find  similar  results 
 when  analyzing  BHA  with  the  VARX  model.  Namely,  taking  the  extrinsic  input  into  account 
 removed  stimulus-induced  intrinsic  “connections”  (Fig.  S3);  the  resulting  model  of  the  recurrent 
 dynamic  is  indistinguishable  between  watching  movies  and  rest  (Fig.  S6);  and  responses  to  the 
 stimulus  are  stronger  and  more  prolonged  when  separately  modeling  the  effect  of  recurrent 
 connectivity  (Fig.  S8).  In  the  Discussion  section  we  will  argue  that  some  of  these  results  are 
 expected  in  general  when  decomposing  the  total  system  response  into  extrinsic  and  intrinsic 
 effects.  What  we  did  not  necessarily  expect  is  that  the  intrinsic  dynamics  is  similar  during 
 movies and rest for both LFP and BHA. 
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 Intrinsic “noise” in BHA is reduced by external stimulus 

 So  far  we  have  discussed  the  mean  response  captured  by  and  the  recurrent  activity 
 mediated  by  .  We  now  want  to  analyze  whether  the  external  input  modulates  the  variability  of 
 the  internal  dynamic.  As  a  metric  of  internal  variability  we  measured  the  power  of  the  intrinsic 
 innovation  process  .  For  the  LFP  signal  we  see  a  drop  in  power  during  movies  as 
 compared  to  rest,  for  both  the  original  signal  (Fig.  S10A)  and  the  model’s  innovation 
 process  (Fig.  S10B).  Notable  is  the  stronger  oscillatory  activity  during  rest  (Fig.  S10A).  In 
 this  example  we  see  a  drop  in  power  in  the  theta/alpha  band  (5-11  Hz)  during  movie  watching 
 across  all  electrodes  (Fig.  S10A,  dotter  lines).  We  observe  similar  narrow-band  drop  in  power  in 
 most  patients,  albeit  at  different  frequencies  (not  shown).  When  analyzing  BHA,  we  find  no 
 difference  in  power  of  the  innovation  process  between  movie  and  rest,  but  we  do  find  a  drop  in 
 power  relative  to  the  overall  BHA  signals  for  some  channels  (Fig.  6B).  These  channels  seem  to 
 coincide  with  channels  that  responded  to  the  external  stimuli,  i.e.  channels  with  a  significant 
 effect  in  (Fig.  6A).  If  we  take  for  each  subject  the  median  relative  power  for  responsive 
 channels  (median  among  those  with  p<0.0001),  then  we  find  that  relative  power  drops  for  nearly 
 all  subjects  (Fig  6D,  Wilcoxon  rank  sum  test,  p=2.6e-06,  N=21).  The  motivation  for  analyzing 
 only  responsive  channels  comes  from  a  simple  gain  adaptation  (Fig.  S11).  Gain  adaptation 
 keeps  the  power  of  constant,  so  that  the  extra  power  injected  by  the  stimulus  implicitly 
 reduces  the  relative  power  of  the  innovation  process.  This  effect  is  specific  to  channels  receiving 
 external  input  (Figl.  S11D)  and  absent  in  a  linear  system  without  gain  adaptation  (Fig.  S11C).  To 
 demonstrate  that  this  simple  gain  adaptation  can  explain  the  noise  quenching  in  the  neural  data, 
 we  simulated  data  with  the  gain  adaptation  model  (Fig.  6C)  using  parameters  estimated  for  the 
 example subject of Fig. 6A/B. 
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 Figure  6:  For  BHA,  relative  power  of  innovation  vs  signal  drops  during  movies  as  compared  to 
 rest  in  responsive  channels.  A)  Effect  size  for  extrinsic  effect  in  all  channels  for  3  input  features 
 (scene  cuts,  fixation  onset,  sound  envelope).  In  this  example  15  electrodes  had  significant  responses  to 
 one  of  the  three  inputs  (Bonferroni  corrected  at  p<0.01).  B)  Change  in  relative  power  of  innovation 
 (dB(innovation  power  /  signal  power),  then  subtracting  movie  -  rest).  C)  Change  in  relative  power  of 
 innovation  in  a  simulation  of  a  VARX  model  with  gain  adaptation.  Here  we  are  using  the  and  filters 
 that  were  estimated  on  BHA  on  the  example  from  panel  A  and  B.  D)  Median  of  power  ratio  change  across 
 all subjects, contrasting responsive vs non-responsive channels. 

 Direction of connectivity differs with cortical hierarchy 

 Finally,  we  measured  the  directionality  of  the  recurrent  connections  in  the  LFPs  by  analyzing  the 
 structure  of  the  resulting  matrices  of  all  subjects.  Columns  in  represent  outgoing 
 connections,  while  rows  are  incoming  connections.  Therefore,  the  difference  of  (Fig. 
 7A)  averaged  along  a  column  has  positive  values  if  a  node  has  overall  stronger  outgoing 
 connections,  and  negative  values  if  it  has  stronger  incoming  connections.  We  measured  this 
 directionality  for  each  channel  across  all  subjects  and  averaged  also  across  channels  within 
 parcels  of  the  Desikan-Killiany  atlas  (N=35  regions  of  interest,  Fig.  7B)  58  .  We  expected  this  to 
 co-vary  with  “cortical  hierarchy”.  To  test  this,  we  compared  this  asymmetry  metric  with  the 
 T1w/T2w  ratio,  which  captures  gray  matter  myelination  and  is  used  as  an  indirect  measure  of 
 cortical  hierarchy  51,59  .  We  also  average  T1w/T2w  ratio  in  the  same  parcels  of  the 
 Desikan-Killiany  atlas  (Fig.  7B).  Cortical  areas  showing  more  outgoing  connections  (  > 
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 0)  have  lower  T1w/T2w  ratio,  which  are  located  higher  on  the  cortical  hierarchy  (Pearson’s  r  = 
 0.39, p = 0.023, Fig. 7C). BHA analysis shows the same trend (Fig. S12). 

 Figure  7:  Recurrent  connectivity  of  LFP  is  directed  from  sensory  to  higher-order  areas.  A) 
 Difference  of  showing  asymmetric  directed  effects.  Dashed  lines  indicate  regions  of  interest  in 
 the  Desikan-Killiany  atlas.  B)  Mean  directionality  across  patients  and  T1w/T2w  ratio  are  averaged  in 
 parcels  of  the  Desikan-Killiany  atlas.  C)  Mean  directionality  is  correlated  with  cortical  hierarchy,  estimated 
 with the T1w/T2w hierarchy. 

 Discussion 

 Our  results  suggest  that  intrinsic  dynamics  are  not  substantially  altered  during  watching  movies 
 as  compared  to  rest.  Instead,  the  external  stimulus  reverberates  in  the  recurrent  network  with 
 the  same  dynamic  as  during  rest.  The  duration  and  magnitude  of  response  is  in  large  part  a 
 result of this recurrent dynamic. 

 Response to extrinsic input versus intrinsic dynamics 

 Previous  literature  does  often  not  distinguish  between  intrinsic  connectivity  and  extrinsic  effects. 
 As  a  result,  similarities  and  differences  between  rest  and  stimulus  conditions  reported 
 previously,  do  not  draw  a  firm  conclusion  as  to  whether  “functional  connectivity”  is  preserved, 
 e.g.  12,16  .  By  systematically  factoring  out  the  effect  of  the  external  input  we  conclude  here  that 
 the  intrinsic  dynamic  is  unaltered.  If  one  fails  to  factor  out  the  effect  of  the  stimulus,  one  may 
 mistake the stimulus-induced correlations for changes in “functional connectivity”. 

 In  this  work  we  focused  on  "passive"  tasks,  i.e.  resting  with  gaze  on  a  fixation  point,  versus 
 watching  movies  without  any  associated  tasks.  We  did  not  analyze  data  during  an  active  task 
 requiring  behavioral  responses.  The  literature  on  active  tasks  emphasizes  "state  change"  in 
 functional  connectivity.  14,20,60  Efforts  to  factor  out  task-evoked  activity  when  computing  functional 
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 connectivity  concord  with  our  conclusions  that  connectivity  is  inflated  by  a  task  17  .  Nevertheless, 
 we hesitate extrapolating our findings to active tasks, as we have not analyzed such data. 

 Conventional  “encoding”  models,  such  as  temporal  response  functions,  capture  the  total 
 response  of  the  brain  to  an  external  stimulus.  Here  we  factored  this  into  a  moving  average 
 filter  ,  followed  by  and  autoregressive  filter  .  The  important  observation  is  that  this  intrinsic 
 dynamic  governed  by  does  not  change  during  stimulus  processing.  Arguably  then,  the  role  of 
 the  initial  responses  is  to  shape  the  input  to  be  processed  by  the  existing  intrinsic  dynamic. 
 This  interpretation  is  consistent  with  the  view  of  “the  brain  from  the  inside  out”  advocated  by 
 György  Buzsáki  61  .  In  this  view,  learning  of  a  stimulus  representation  consists  in  learning  a 
 mapping of the external stimulus to an existing intrinsic dynamic of the brain. 

 Similar findings for LFP and BHA 

 We  found  a  more  sparse  recurrent  connectivity  for  BHA  as  compared  to  LFP.  This  may  be 
 expected  because  correlations  in  lower  frequencies  (that  dominate  LFPs)  reaches  over  longer 
 distances  compared  to  correlations  in  higher  frequencies  (e.g.  Muller  et  al.,  2016).  BHA  has 
 been  linked  to  a  mixture  of  neuronal  firing  and  dendritic  currents  62  ,  in  contrast  to  LFP,  which  is 
 thought  to  originate  from  widespread  dendritic  currents.  Despite  the  observed  differences  in 
 sparsity,  for  both  LFP  and  BHA  we  found  that  modeling  the  recurrent  dynamic  removed  spurious 
 intrinsic  connections.  Removal  of  spurious  effects  when  controlling  for  a  common  cause  is  a 
 generic  finding  in  multivariate  statistical  models.  We  also  found  for  both  LFP  and  BHA  that  the 
 duration  and  strength  of  stimulus  responses  can  be  largely  attributed  to  the  recurrent  dynamic. 
 Arguably,  this  is  a  generic  feature  of  an  autoregressive  model,  as  it  more  readily  captures  longer 
 impulse  responses.  However,  the  extrinsic  filters  in  principle  have  an  advantage  as  they  can 
 be  fit  to  each  stimulus  and  brain  location.  In  contrast,  the  recurrent  filters  are  constrained  by 
 having  to  capture  a  shared  dynamic  for  all  stimulus  dimensions.  Thus,  the  predominance  of  the 
 recurrent  dynamic  in  the  total  system  response  is  not  a  trivial  result  of  the  factorization  into 
 intrinsic  and  extrinsic  effects.  Finally,  we  did  not  necessarily  expect  that  the  intrinsic  connectivity 
 is  preserved  between  movie  and  rest  in  both  LFP  and  BHA.  This  consistency  may  be  due  to  a 
 variety  of  processes  that  are  constant  across  conditions,  such  as  internal  thought,  body  and  eye 
 movements.  Active  sensing  through  eye  movements,  for  example,  influences  activity  in  a  global 
 network  63,64  ,  and  likely  accounts  for  part  of  the  common  source  of  correlations  across 
 conditions. 

 Stimulus-induced reduction of noise in the intrinsic activity 

 One  difference  we  did  find  between  LFP  and  BHA  is  the  intrinsic  innovation  process,  i.e.  the 
 internal  sources  of  variability  or  “noise”.  For  both  BHA  and  LFP  we  saw  a  drop  in  the  magnitude 
 of  signal  fluctuations  during  the  movie  watching  condition.  For  the  BHA  but  not  the  LFP,  this  was 
 explained  as  a  drop  in  intrinsic  noise.  Specifically,  for  BHA  there  was  less  relative  power  in  the 
 intrinsic  “noise”  for  channels  that  are  responsive  to  the  stimulus.  This  is  consistent  with  the 
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 notion  that  response  variability  is  due  to  variability  of  intrinsic  activity  22  which  is  found  to 
 decrease  across  the  brain  with  the  onset  of  an  external  stimulus  65  .  This  type  of  noise  quenching 
 has  been  associated  with  increased  attention  66  and  improved  visual  discrimination  performance 
 67  .  The  effect  we  found  here  can  be  explained  by  a  VARX  model  with  the  addition  of  a  divisive 
 gain  adaptation  mechanism  that  keeps  the  total  power  of  brain  activity  constant.  When  the  input 
 injects  additional  power,  this  nonlinear  gain  adaptation  implicitly  reduces  the  contribution  of  the 
 intrinsic noise to the total power. 

 We  also  observed  an  overall  drop  in  LFP  power  during  movie  watching.  This  phenomenon  was 
 strongest  in  oscillatory  bands,  with  frequencies  in  theta  to  beta  band  differing  across  subjects.  In 
 scalp  EEG,  noise  quenching  is  associated  with  a  similar  overall  drop  in  power  with  the  stimulus 
 66  .  This  quenching  of  neural  variability  was  also  found  to  reduce  correlation  between  brian  areas 
 for  fMRI  and  neural  spiking  26  .  Both  fMRI  and  neural  spiking  correlated  with  BHA  68  .  This  is  at 
 odds  with  our  finding  that  intrinsic  connectivity  in  BHA  does  not  change  significantly  between 
 movie and rest. However, we can not rule out such differences on longer recordings. 

 Stimulus features 

 During  the  movie  and  rest  periods,  we  utilized  fixation  onset  to  capture  activity  that  is 
 time-locked  to  visual  processing  because  subjects  move  their  eyes  even  during  rest.  We  also 
 incorporated  the  sound  envelope,  a  prominent  feature  known  for  capturing  the  dominant 
 audio-induced  variance  in  scalp  EEG  33  .  In  addition,  we  included  film  cuts  as  features,  as  we 
 had  previously  demonstrated  that  they  dominate  the  response  in  the  BHA  across  the  brain  48  . 
 While  other  basic  visual  features  such  as  overall  optic  flow  or  fixations  on  faces  elicited 
 responses  in  the  BHA,  their  contribution  was  relatively  smaller.  The  analysis  is  not  limited  to 
 these  few  features,  and  future  research  should  explore  which  stimulus  features  capture  variance 
 in  the  data  and  how  they  affect  the  apparent  intrinsic  connectivity.  There  is  a  substantial  body  of 
 literature  on  encoding  models  of  semantic  features,  where  nonlinear  features  of  a  continuous 
 natural  stimulus  are  extracted  and  then  linearly  regressed  against  fMRI  69,70  or  EEG  71  .  This  work 
 can be directly replicated with the VARX model which further models the intrinsic connectivity. 

 Alternative approaches 

 The  traditional  VAR  model  has  been  used  extensively  in  neuroscience  to  establish  directed 
 “Granger  causal”  connections  41  .  This  approach  has  been  very  fruitful  and  found  numerous 
 extensions,  e.g.  10,11  .  However,  these  model  implementations  do  not  specifically  account  for  an 
 external input. 

 A  few  methods  have  attempted  to  model  the  effect  of  varying  task  conditions  on  functional 
 connectivity,  mostly  in  the  analysis  of  fMRI.  One  approach  is  to  first  model  the  task-evoked 
 responses,  equivalent  to  estimating  B  alone,  and  then  compute  the  conventional  “functional 
 connectivity”,  i.e.  the  correlation  matrix,  on  the  residuals  e  (  t  )  72  .  Others  suggested  to  estimate  B 
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 in  multiple  time  windows  and  then  estimate  a  “task  related  functional  connectivity”  by  correlating 
 the  multiple  B  over  time  windows  73  .  It  is  not  clear  that  these  ad-hoc  methods  systematically 
 separate intrinsic from extrinsic factors. 

 A  more  principled  modeling  approach  is  “dynamic  causal  modeling”  (DCM)  19  and  extensions 
 thereof  74  .  Similar  to  the  VARX  model,  DCM  includes  intrinsic  and  extrinsic  effects  A  and  B  . 
 However,  the  modeling  is  limited  to  first-order  dynamics  (i.e.  n  a  =  n  a  =1).  Instead,  the  DCM 
 includes  a  multiplicative  interaction  of  extrinsic  input  x  (  t  )  on  the  connectivity  A  ,  which  does  not 
 exist  in  the  VARX  model.  This  interaction  has  been  used  to  explicitly  model  a  change  in  intrinsic 
 connectivity  with  task  conditions.  Here  we  found  that  this  may  not  be  necessary  for  intracranial 
 EEG.  A  practical  advantage  of  the  VARX  model  is  the  assumption  that  the  neural  activity  is 
 directly  observed.  Instead,  many  existing  models  assume  an  error  in  the  observations,  which 
 triggers  computationally  intensive  estimation  algorithms,  typically  the  expectation  maximization 
 algorithm.  The  same  is  true  for  the  “output  error”  model  in  linear  systems  theory  29  .  As  a  result, 
 these  models  are  often  limited  to  small  networks  6  to  test  specific  alternative  hypotheses  42  .  In 
 contrast,  here  we  have  analyzed  100-200  channels  per  subject  across  the  brain,  and  have 
 drawn more general conclusions about whole-brain activity. 

 Caveats 

 The  lack  of  a  significant  difference  in  recurrent  connectivity  between  stimulus  and  rest  should  be 
 interpreted  with  care.  As  usual,  lack  of  evidence  is  not  evidence  for  the  lack  of  an  effect.  We 
 saw  no  change  in  the  number  of  recurrent  connections  between  movie  and  rest,  either  for  the 
 LFPs  or  BHA  activity.  However,  in  individual  movie  segments  small  differences  were  observed 
 (Fig.  S7).  It  is  possible  that  regressing  out  a  richer  stimulus  characterization  would  have 
 removed  additional  stimulus-induced  correlation,  only  enhancing  this  small  difference  between 
 movie  and  rest.  We  were  also  limited  to  5  minutes  of  data  in  the  direct  comparison  of  movie  and 
 resting  state  data.  Longer  recordings  might  further  enhance  differences.  Higher  recurrent 
 connectivity  in  the  LFP  during  rest  would  be  consistent  with  the  more  synchronized  state  we 
 saw in rest, as reflected by larger oscillatory activity. 

 We  find  a  correlation  of  DTI  structural  connectivity  used  in  a  model  with  a  VARX  estimate  of 
 0.70.  That  is  considered  a  relatively  large  value  compared  to  other  studies  that  attempt  to 
 recover  DTI  connectivity  from  the  correlation  structure  of  fMRI  activity  44  .  A  Caveat  is  that  this 
 was  done  on  a  biophysical  model  of  firing  rate,  not  fMRI,  and  we  have  not  explored  the 
 parameters of the model that might affect the results. 

 We  used  fixation  onsets  as  external  input,  but  it  should  be  noted  that  they  are  tightly  correlated 
 in  time  with  saccade  onsets  (there  is  only  about  a  30  ms  jitter  between  the  two,  depending  on 
 saccade  amplitude).  While  saccades  are  driven  by  visual  movement,  they  are  generated  by  the 

 6  The original DCM proposed for fMRI included an added  complication of modeling the 
 hemodynamic response, which amounts to adding a temporal filter to each output node and 
 prior to adding observation noise. 
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 brain  itself  and  arguably  could  also  be  seen  as  intrinsic.  The  same  is  true  for  all  motor 
 behaviors,  most  of  which  cause  a  corresponding  sensory  response,  similar  to  the  visual 
 response  following  a  saccade.  Including  them  as  external  input  is  a  modeling  choice  we  have 
 made  here,  but  it  is  important  to  acknowledge  that  fixation  onsets  can  therefore  have  “acausal” 
 components  48  .  By  “acausal”  we  mean  a  fixation-locked  response  that  precedes  the  fixation 
 onset  and  is  due  to  the  neural  activity  leading  up  to  the  saccade  and  subsequent  fication.  Such 
 acausal  responses  can  be  captured  by  the  VARX  Granger  formalism  by  delaying  the  input 
 relative to the neural activity, which we have not done here. 

 The  correlation  between  the  average  incoming  and  outgoing  connections  and  cortical  hierarchy 
 (Fig.  7)  is  not  significant  when  normalizing  for  the  number  of  electrodes  in  each  region  of 
 interest.  Regions  in  the  temporal  lobe  with  a  large  number  of  electrodes  might  drive  this 
 correlation. A more fine grained analysis in these regions could be the goal of future analysis. 

 Conclusion 

 We  analyzed  whole-brain  intracranial  recordings  in  human  subjects  at  rest  and  while  they 
 watched  videos.  We  used  a  model  that  separates  intrinsic  dynamics  from  extrinsic  effects.  We 
 found  that  the  recurrent  dynamic  observed  during  rest  is  largely  unaltered  when  watching 
 movies.  Instead,  the  brain's  response  to  the  audiovisual  stimuli  appears  to  be  substantially 
 shaped  by  its  endogenous  dynamic.  The  reduction  in  intrinsic  variance  observed  during  an 
 extrinsic stimulus may be the result of neuronal gain adaptation. 
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