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Abstract: Advanced diagnostics are enabling cancer treatments to become increasingly tailored to
the individual through developments in immunotherapies and targeted therapies. However, long
turnaround times and high costs of molecular testing hinder the widespread implementation of
targeted cancer treatments. Meanwhile, gold-standard histopathological assessment carried out by a
trained pathologist is widely regarded as routine and mandatory in most cancers. Recently, methods
have been developed to mine hidden information from histopathological slides using deep learning
applied to scanned and digitized slides; deep learning comprises a collection of computational
methods which learn patterns in data in order to make predictions. Such methods have been reported
to be successful in a variety of cancers for predicting the presence of biomarkers such as driver
mutations, tumour mutational burden, and microsatellite instability. This information could prove
valuable to pathologists and oncologists in clinical decision making for cancer treatment and triage for
in-depth sequencing. In addition to identifying molecular features, deep learning has been applied
to predict prognosis and treatment response in certain cancers. Despite reported successes, many
challenges remain before the clinical implementation of such diagnostic strategies in the clinical
setting is possible. This review aims to outline recent developments in the field of deep learning for
predicting molecular genetics from histopathological slides, as well as to highlight limitations and
pitfalls of working with histopathology slides in deep learning.

Keywords: histopathology; deep learning; cancer; molecular diagnostics

1. Introduction

A large number of cancer treatments such as chemotherapies and radiotherapies are
characterised by adverse side-effects, largely due to targeting both cancerous and healthy
cells. Recent research into novel treatment strategies such as immunotherapies and tar-
geted therapies aims to reduce severe side-effects while improving treatment response
and quality of life. Immunotherapeutic drugs are designed to stimulate or suppress the
patient’s immune response, while targeted therapies aim to interrupt specific genes or
proteins which drive cancer development. Successfully applying these precision cancer
treatments is often dependent on tumour-specific molecular features. Therefore, accurate
biomarker testing is crucial in identifying patients with a favourable response to treatment.
For example, in lung cancer, the genotype of epidermal growth factor receptor (EGFR)
guides the use of treatment with multiple tyrosine-kinase inhibitors targeted to the mutated
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EGFR protein [1]. In melanoma, mutated BRAF is directly targetable with the drug vemu-
rafenib [2], among others. These predictive oncogenic mutations are typically referred to
as clinically actionable mutations. Gene expression is also known to play an important role
as a predictive biomarker in certain treatments. For example, non-small-cell lung cancer
(NSCLC) patients with high TP53 expression have been found to have greater survival
benefit from adjuvant cisplatin [3], while PD-L1 protein expression has demonstrated
utility in patient selection for treatment with immune checkpoint inhibitors [4]. However,
PD-L1 expression has been criticised as an imperfect predictive biomarker due to intra-
tumoural and intertumoural heterogeneity [5], leading to the investigation of numerous
other biomarkers including tumour mutational burden (TMB) and microsatellite instability
(MSI) as surrogate biomarkers for tumour antigenicity and/or PD-L1 expression [6,7].

Patient stratification for treatment is critical given the significant cost and risk associ-
ated with modern cancer therapies. Such therapies aim to improve patient survival rates
while also enabling an acceptable quality of life during and after treatment. Despite the
advantages of precision oncology, limitations in molecular assays remain an obstacle to
their wide-spread adoption. Molecular tests rely on obtaining tissue samples with high
tumour purity, and often come at high cost and turnaround time. In contrast, histopatho-
logical assessment of tumour slides is considered routine, and in many cases mandatory,
in cancer diagnosis. It has been shown that molecular biomarkers are sometimes asso-
ciated with morphological alterations in certain cases, for example, BRAF mutations in
melanoma cases have been associated with larger, rounder and more pigmented tumour
cells [8], while EGFR-mutant lung adenocarcinomas have been found to be characterised
by hobnail cell types [9]. Such histopathological biomarkers, assessed by a trained patholo-
gist, could prove critical in designing treatment strategies as well as determining tumour
subtypes and predicting prognosis. However, inter-pathologist variation, the need for
objective and quantitative assessments in diagnosing cancer cases, as well as staff shortages
in histopathology departments and increased workloads, motivates research into new
diagnostic strategies [10,11].

Deep learning is well established in image classification and has seen a number of
successful use-cases in medical imaging, both in a research and real-world setting [12].
While advances in computing capabilities have substantially contributed to the escalating
potential of deep learning, the role of massive data curation initiatives, often undertaken by
collaborations between researchers, cannot be overstated. Notably, the Imagenet database,
first presented in 2009, has provided researchers around the world with the capability
to train deeper, and more sophisticated, neural networks, in less time and with limited
computing power, through what has become known as transfer learning [13]. Transfer
leaning typically involves pre-training a state-of-the-art neural network on a specific
problem before applying the trained network as a starting point when training for a new
domain. Despite decreasing costs of computing power available through cloud providers,
transfer learning remains common practice in many deep learning applications, particularly
when curating massive data sets is impractical or costly.

1.1. Deep Learning

Machine learning can be described as a set of computational algorithms that can detect
and leverage patterns in data for predictive applications. Machine learning approaches can
be broadly categorised as supervised or unsupervised. In supervised learning, models are
trained using ground truth labels, whereby the distance of the prediction from this label,
represented by an objective cost function, is used to update the weights that describe the
inputs’ relationships with the output. Examples of supervised machine learning algorithms
include support vector machines, random forest classifiers, and elastic net regression
models. Alternatively, unsupervised learning algorithms attempt to detect patterns in data
without using ground truth data labels, and often operate via a set of rules that describe
similarity between individual instances. Therefore, a common application of unsupervised
learning is clustering, in which a model groups instances into discrete categories based
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on their similarity to each other. In the case of imprecise data labelling, a third approach
termed multiple-instance learning (MIL) may also be implemented. A MIL scheme is
arranged such that collections of data examples, termed bags, constitute a number of
unlabelled instances and there is one label per bag. The objective of a MIL model is to
predict the label of unseen bags.

Unlike traditional machine learning approaches, deep learning models differ in their
architectural details. Deep learning models are comprised of an arbitrary number of layers
of list based vectors, or neurons, which connect inputs to subsequent layers sequentially
via weights vectors. In fully-connected architectures, the value of a particular neuron at a
given layer is determined by the sum-weighted multiplication of all values at the previous
layer by their respective weights. These sequential sum-weighted multiplications can
transform inputs in a non-linear fashion, as each subsequent layer will be the sum-weighted
combination of iterative transformed data representations. Each layer can be thresholded
by an activation function, such as the rectified linear unit, to further transform the output
passed to subsequent layers. For supervised applications, the final layer output is evaluated
by a loss function that describes the distance from the ground truth label to the prediction.
This loss quantity can then be used to update all weights in the model via backpropagation,
which makes use of the gradient of the output with respect to the weights at each layer. This
backpropagation procedure is carried out iteratively until the loss function is minimised
and predictive performance is maximised. A more detailed discussion of backpropagation
can be found in LeCun et al. [14]. These aforementioned non-linearities allow deep learning
models and neural networks to capture abstract mathematical relationships between input
features and labels. The neural network architecture refers to the organisation of layers
and hidden units and plays an important role in the performance and computational cost
of deep learning models. A number of other subjective neural network hyperparameters
exist, which, unlike the weights vectors, are not learned directly from the data and must be
initially chosen by the researcher, such as activation function, learning rate and batch size.
These factors can also impact model performance and can be optimised during the course
of training [15].

In order to assess model performance, data sets are commonly partitioned into train-
ing, validation and testing sets before model training. To further validate claims of model
performance, external validation on separate data sets is often recommended. While the
training data set is used to initially fit the deep learning model, the validation data set is
used to obtain an unbiased evaluation of model performance during hyperparameter opti-
misation. The final model fit is then evaluated on a held-out test set and the performance
of the model on this data set is usually the final reported quantity.

1.1.1. Convolutional Neural Networks

Convolutional neural networks (CNN) are a specific class of neural network most
commonly applied to imaging data, in which the general framework is similar to the
previously described procedure. CNNs apply convolutional operations by sliding a filter
of a specified size across an input feature and performing matrix multiplication at each
location resulting in an output feature map. These feature maps mean that weights (per
map) are shared across the entire image, meaning that individual feature maps, with their
own convolutional weights vectors, can recognise data patterns regardless of their position
in the image. This confers a useful spatial invariance property. In addition to convolutional
layers, CNNs are also composed of pooling layers which reduce the dimensionality of
features. Consequently, low-level features, such as edges and basic shapes, detected by
early layers in the neural network can be aggregated into higher-level image features.
CNNs usually flatten the transformed image features into a list based vector which can
then be passed into a standard neural network architecture without spatial invariance as
described previously to obtain a final prediction output [16].
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1.1.2. Generative Adversarial Networks

Generative adversarial networks (GAN) are a class of deep learning algorithm which
implements two competing neural networks. One neural network, termed the generator,
produces synthetic examples of the input data while the second neural network, termed the
discriminator, attempts to evaluate whether or not a given example was generated by the
generator. The objective of the GAN is to generate synthetic examples of data which appear
to be drawn from the same distribution as the input data. This is achieved by minimising
the classification error of the discriminator, forcing the generator to learn the structure of
the input data.

1.2. Deep Learning Workflow in Digital Pathology

Deep learning has seen numerous successes in digital pathology, in applications
ranging from tumour grading in prostate cancer [17] to survival prediction in colorectal
cancer [18]. In recent years, researchers have increased their focus on using deep learning
to recognise morphological patterns in histopathology images associated with molecular
genetics. Given the routine availability of histopathology slides in cancer cases, this
approach promises both cost- and time-effective solutions to treatment selection for cancer
patients. However, considering the high dimensionality of whole-slide images (WSIs) and
non-standardised approaches to sample preparation, systematic pre-processing of data is
required. A summary of a typical deep learning workflow in digital pathology is shown in
Figure 1.

a. b. c.

d. e. f.

Figure 1. Summary of deep learning workflow in digital pathology. (a) Histopathology slides are scanned at various
magnifications to generate WSI. (b) Tumour region is located and divided into tiles. (c) WSI tiles are colour normalised
and desired augmentations are carried out. (d) Neural network is trained using tiles and corresponding labels. (e) Tile-
level predictions are returned by the neural network. (f) Patient-level predictions are determined by aggregating tile-
level predictions.

1.2.1. Sample Preparation and Annotation

Routine histopathological assessment of tumour tissue is typically undertaken on
formalin-fixed paraffin-embedded (FFPE) tissue specimens. FFPE preservation has several
advantages over frozen tissue samples, such as superior conservation of cellular morphol-
ogy and less costly storage [19]. However, FFPE preservation can result in cross-linking,
degradation, and fragmentation of DNA, making it less preferable than frozen alterna-
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tives for molecular testing [19]. Both FFPE and frozen specimens have been used in deep
learning applications to histopathology; however, greater availability of FFPE samples
and their suitability to long-term storage may increase their popularity with deep learning
researchers. Following slide preparation and staining, histopathology slides are typically
scanned at various magnifications using brightfield illumination, resulting in giga-pixel
size WSIs. In order to overcome the high dimensionality of WSIs, small square regions,
often referred to as tiles or patches, are extracted and tiles containing a specified proportion
of background pixels are removed from the data set. Gold-standard annotation of data
remains a major challenge for deep learning training data sets, and is often carried out
manually. For example, the 14 million images contained in the Imagenet database were
annotated through crowd-sourcing; however, in domains such as medical imaging, annota-
tion must be carried out by trained professionals, often increasing the cost of such projects.
Furthermore, WSIs typically contain both tumour and normal tissue, which may reduce
the performance of deep learning models. Consequently, tumour tissue is often delineated
by a trained pathologist in order to achieve tile-level annotation. The high cost and time
associated with WSI segmentation has motivated research into deep learning methods to
obtain automatic pixel-level annotations from slide-level labels. It has been shown that
ensemble segmentation models composed of multiple fully convolutional architectures
achieve superior segmentation performance compared to models composed of a single
neural network [20], while other deep learning based segmentation methods have already
seen use as decision support tools for pathologists [21]. In addition to tumour/normal seg-
mentation, in deep learning applications to predicting molecular genetics, molecular assays
must be undertaken on large data sets to ascertain the correct labels required for training.

1.2.2. Colour Normalisation and Augmentation

The requirement of large data sets for training deep learning models in digital pathol-
ogy often results in WSIs collected across multiple research centres being integrated into
a single data set. However, variations in WSI preparation may result in batch effects
across images which must be mitigated to reduce bias and improve the generalisability
of models [22]. For example, varying concentrations and volumes of stain used in slide
preparation, as well as exposure to light during storage, may result in biases between
WSIs. Additionally, inter-scanner variability may further exacerbate such biases. Recent
research also suggests that WSIs preserve site-specific information which can be learned by
a deep learning algorithm, resulting in overestimation of model performance [23]. Stain
colour normalisation aims to mitigate such batch effects by transforming pixel values from
different WSIs within a data set to a common distribution. On the other hand, colour aug-
mentation attempts to improve a model’s ability to generalise to unseen data by simulating
realistic colour variations. Greater validation accuracies have been reported after applying
normalisation and augmentation to WSIs [24].

1.2.3. Transfer Learning and Tile Aggregation

Around the same time that the Imagenet database was released, the annual competi-
tion known as the ImageNet Large Scale Visual Recognition Challenge was formed [25].
This challenge encouraged teams of researchers from all over the world to push the bound-
aries of deep learning models by developing more sophisticated and efficient models,
resulting in a number of architectures which have been re-purposed to a diverse range of
imaging problems, including digital pathology. In addition to repurposing robust model
architectures, researchers can make use of existing model parameters that were trained on
data from a different dataset or domain, such as the Imagenet data set, to initialise other
models and speed up training processes. These existing model parameters can be frozen,
meaning that they will not be updated during backpropagation. This method, termed
transfer learning, is a flexible approach to reducing compute time and making use of weight
space solutions that have already shown promise in other pattern recognition tasks. For ex-
ample, all ImageNet layers except the final output layer may form the basis of a predictive
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model in a different domain and undergo freezing, with an additional randomly initialised
softmax layer providing the output for the target domain. This allows the training process
to tune the weights of just one layer as opposed to a large and arbitrary number of layers.
This has the useful property of mitigating sample size requirements in the target domain
by using existing model parameters trained on larger data sets. Such practices are common
in digital pathology due to the high cost and time involved in curating large training data
sets. A more detailed discussion of transfer learning can be found in Tan et al. [26]. Deep
learning models in digital pathology return predictions at the tile-level; therefore, it is
necessary to implement a strategy of aggregating per-tile predictions in order to obtain
a per-slide prediction. Methods of tile aggregation range from majority voting to MIL
approaches [27,28].

1.2.4. Model Interpretation

Lack of interpretability remains a major obstacle to the widespread adoption of deep
learning systems in healthcare [22]. Meaningful understanding of deep learning predictions
is crucial in healthcare in order to instil trust from both a clinician and patent’s perspective,
and hence enable clinical translation. Deep learning models are often scrutinised to remove
the "black-box" label typically associated with such methods, and mitigate the risk of
artefacts in the data being exploited by models to make predictions. Various methods have
been developed to dissect the predictions of deep learning models into human-interpretable
features, such as class activation mapping [29], layer-wise relevance propagation [30] and
saliency maps [31]. These methods help identify the degree to which regions of input
images contribute to a model’s prediction, however, such regions may not necessarily
correspond to human-interpretable features.

2. Materials and Methods

The search was carried out on the PubMed and Scopus Web of Science electronic
databases, and included studies retrieved as secondary documents by Scopus Web of
Science. The search strategy combined terms referring to “histopathology/whole slide
image”, “deep learning/neural network”, “cancer/tumour” and “mutation/genetic al-
teration/burden/TMB/expression/microsatellite instability”. Only publications released
between 1 January 2018 and 30 April 2021 were considered for selection. Following the
removal of duplicates, abstracts were retrieved and reviewed for relevance using the
following inclusion criteria:

1. Full-text available in English.
2. Not a review article, commentary or editorial.
3. Digitised whole-slide images are used as an input to a neural network.
4. The neural network is used to predict the presence of a molecular feature, namely,

mutations, mutated genes, gene expression, hormone receptor status, TMB, or MSI.

The described search strategy resulted in a total of 31 studies which met the inclusion
criteria. These studies were classed into four categories based on the type of molecular
feature, which was predicted. Namely, studies were categorised as either predicting (1)
mutations or mutated genes, (2) gene expression or hormone receptor status, (3) TMB, or
(4) MSI.

3. Results
3.1. Predicting Mutations

The landscape of somatic mutations across different types of cancer can vary vastly,
however, cancers of the same type are often characterised by specific mutations. For ex-
ample, up to half of melanoma cases have been found to harbour activating mutations
at BRAF V600 [32], while EGFR mutations have been found to be present in over 30%
of NSCLCs [33]. As previously described, the genotype of specific genes in cancers can
play a large role in influencing the course of treatment for patients. Identification of these
clinically actionable mutations typically involves gene panel testing, in which specific
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genomic locations are assayed. However, such comprehensive genetic tests require rel-
atively large amounts of tissue with high tumour purity and often come at significant
cost. Therefore, researchers have focused on predicting genetic alterations from readily
available haematoxylin and eosin (H&E)-stained WSIs using deep learning. This section
summarises recent literature concerned with identifying mutations and mutated genes in
cancer using deep learning applied to histopathology slides. Identified studies concerned
with predicting mutations from WSIs using deep learning are summarised in Table 1.

The first peer-reviewed study which attempted to predict the mutation status of se-
lected genes using deep learning applied to WSIs was published by Coudray et al. in
2018 [34]. In this study, the genotype of ten commonly mutated genes in lung adenocarci-
noma was estimated using an Inception-v3 neural network, six of which could be predicted
with AUCs greater than 0.7. Interestingly, the authors found that random classification
was achieved by the model when using images tiled at 5× magnification, while accurate
genotype predictions could be made at 20× magnification. Furthermore, while the deep
learning model was trained using scanned frozen tissue slides, a reasonable level of gener-
alisability was observed when applying the model to predict EGFR status in FFPE lung
adenocarcinoma slides. Multiple studies have extended these findings to other cancer
types using a range of methods.

For example, Chen et al. predicted the mutation status of four genes from H&E
histopathology slides in liver cancer [35], while Yang et al. predicted the presence of
mutations in immune-related genes in lung cancer [36]. Wu et al. applied a unique
approach of integrating a tumour classification score derived by one neural network and
a mutation classification score derived by a second neural network to generate a final
prediction regarding the mutation status of a given tile [37]. This approach was trained
using papillary thyroid carcinoma cases to predict BRAF V600E mutation status, achieving
a reported AUC of 0.88. In order to better facilitate the identification of muscle-invasive
bladder cancer patients with favourable outcomes to treatment with FGFR inhibitors,
Loeffler et al. showed that FGFR3 mutation status could be accurately predicted from
H&E slides [38]. However, a substantial decrease in AUC was observed during external
validation.

Jang et al. addressed the question of how a deep learning model trained using frozen
WSIs would perform compared to a model trained using FFPE WSIs [39]. Applied to
five clinically actionable genes in colorectal cancer, the authors found that the difference
in performance of the model trained on frozen and FFPE WSIs varied across the genes.
For example, higher AUCs were achieved for APC and KRAS using frozen WSIs over
FFPE WSIs, while frozen WSIs resulted in a poorer performance for SMAD4 than FFPE
slides. This result may be attributable to the manner in which tissue specimens of the
The Cancer Genome Atlas (TCGA) were collected, since frozen tissue samples are cut
directly from the same specimen used for molecular testing, while FFPE samples are cut
from a separate tissue specimen. Therefore, frozen WSIs of the TCGA may provide the
best representation of the tissue used for molecular testing, despite FFPE methods better
preserving cellular morphology and producing less artefacts. Furthermore, the authors
showed that a model trained using only TCGA data had poor generalisability to an external
data set of South Korean patients. Further studies would be necessary to better understand
whether this poor generalisability is attributable to batch effects in sample preparation or
ethnic differences between the cohorts.
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Table 1. Comparison of studies aimed at predicting mutations from digitised histolpathology slides using deep learning.

Reference Description Cohorts Num. of Samples
(ext. Validation)

External
Validation

Neural
Network Outcome Measures

Coudray, 2018
[34]

Predicted the mutation
status of 6 of 10 selected

genes in lung cancer.
TCGA-LUAD 567 (1) Yes Inception-v3 AUC range 0.73 (KRAS)

to 0.85 (STK11)

Tsou, 2019
[40]

Predicted BRAF V600E
or RAS mutant in

papillary thyroid carcinoma.
TCGA-PTC 103 No Inception-v3 AUC 0.951

Liu, 2020
[41]

GAN-based data augmentation
to improve prediction of IDH

mutation status in glioma.

TCGA-GBM, -LGG,
internal data set 266 No ResNet50 AUC 0.927

Chen, 2020
[35]

Predicted the mutation
status of 4 of 10 selected

genes in liver cancer.

TCGA-HCC,
internal data set 387 (101) Yes Inception-v3 AUC range 0.71 (ZFX4)

to 0.89 (CTNNB1)

Fu, 2020
[42]

Predicted a number of
mutations across 28 cancers.

TCGA,
METABRIC,

BASIS
17,355 (622) Yes Inception-v4 AUC 0.73 (WGD)

Kather, 2020
[43]

Predicted mutations and
gene expression signatures

across 14 cancers.

TCGA,
DACHS >5000 (408) Yes ShuffleNet AUC 0.77 (BRAF in CRC);

AUC 0.66 (CIMP-high in CRC)

Jang, 2020
[39]

Predicted the mutation status
of 5 genes in colorectal cancer.

TCGA-READ, -COAD,
internal data set 629 (142) Yes Inception-v3

AUC range 0.693 (SMAD4)
to 0.809 (TP53) on frozen;
AUC range 0.645 (KRAS)
to 0.783 (TP53) on FFPE

Noorbakhsh, 2020
[44]

Predicted TP53 mutation
status across cancer types.

TCGA-BRCA,
-LUAD, -STAD,
-COAD, -BLCA

27,815 (2115) Yes Inception-v3 AUC range 0.65 to 0.80

Wu, 2020
[37]

Predicted BRAF V600E status in
papillary thyroid carcinoma.

Internal data set,
PCam-BRCA,
PAIP-LIHC

439 Yes DenseNet-121 AUC 0.884

Yang, 2021
[36]

Predicted mutation status of
immune-related genes

in lung cancer.
TCGA-LUAD, -LUSC 180 No ResNet AUC range 0.71 to 0.87

Loeffler, 2021
[38]

Predicted mutation status of
FGFR3 in bladder cancer.

TCGA-BLCA,
Aachen cohort 327 (182) Yes ShuffleNet AUC 0.70 (TCGA-BLCA);

AUC 0.62 (ext. validation)
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In addition to applying deep learning to a single cancer type, researchers have shown
that a single neural network may be applied across different tissues. Noorbakhsh et al.
trained a neural network to predict the mutation status of TP53 using patients with a single
cancer type, and showed that the model could generalise to other tissues with comparable
results to self-cohort models [44]. For example, a model trained on breast cancer data
achieved AUCs of 0.72, 0.71 and 0.67 on lung adenocarcinoma, stomach adenocarcinoma
and bladder urothelial carcinoma test sets, respectively, while also achieving similar per-
formance on the lung adenocarcinoma cases to Coudray et al. [34]. However, the authors
found a lower performance of the model when applied to colon adenocarcinoma, suggest-
ing that mutated TP53 may confer a different histomorphological alteration in this tissue
than in lung, stomach and breast. It is also worth noting that, in the same study, fully
training the deep learning model yielded an improvement in AUC of 0.12 in the TCGA’s
lung adenocarcinoma cohort when compared with using a transfer learning approach.

Larger-scale, pan-cancer, studies have also attempted to predict a myriad of genomic
alterations across cancer types using the TCGA. Kather et al. trained a single ShuffleNet
neural network using WSIs from over 5000 patients across 14 major tumour types in the
TCGA [43]. It was found that at least one mutated gene could be significantly inferred
from WSIs in 13 of the 14 cancer types. The authors also compared a model trained
using all mutations to a model where variants used to label samples were restricted to
known oncogenic drivers. Restricting variants to putative oncogenic drivers improved
model performance in a number of cases, such as predicting EGFR mutation status in
lung adenocarcinoma. Comparing the performance of the neural network trained on
frozen slides and FFPE slides, the authors found that molecular inference using deep
learning generally worked better on frozen slides. Furthermore, the authors report that
removing tiles containing non-tumour tissue did not drastically reduce model performance
compared with a weakly-supervised approach. In addition to predicting genetic variants,
the neural network was applied to predict MSI, consensus molecular subtypes and CpG
island methylator phenotype in colorectal cancer as well as hormone receptor status and
gene expression signatures in breast cancer.

Published around the same time, Fu et al. showed that a fine-tuned Inception-v3
model trained on on 17,355 H&E-stained frozen WSIs from the TCGA could be used to
predict whole-genome duplications (WGDs), chromosome arm gains and losses, focal
amplifications and deletions, as well as point mutations in driver genes [42]. WGD status
could be predicted for 19 of the 27 cancer types studied. It was also found that tiles
predicted as WGD had larger mean nucleus size and intensity than those predicted to
be near-diploid. In total, 151 driver gene-cancer pairs were tested for histopathology
associations, 43 of which could be accurately predicted. Notably, TP53 mutation status
could be predicted in 12 of the 27 cancer types, while BRAF mutation status could be
predicted in thyroid tumours with a reported AUC of 0.92. Both Kather et al. and Fu
et al.’s results indicate that in certain cases, gnomic alterations can result in the same
histomorphological alterations across tissues.

Collecting sufficient data to train such deep learning models in histology comes at
significant financial investment and researchers often rely on large consortia such as the
TCGA. For this reason, researchers have investigated augmenting relatively small training
data sets using a GAN. Using a combined TCGA and internal data set of 266 glioma
patients, Liu et al. sought to investigate how GAN-generated images could be used to
improve the performance of predicting isocitrate dehydrogenase mutation status [41].
It was found that augmenting the resulting 24,000 tiles with just 3000 GAN-generated
images yielded an improvement in AUC of 0.07. However, a decrease in performance was
observed as greater numbers of GAN-generated images were included in the training data
set and the GAN-augmented data set fell short of the AUC achieved when including all
921 patients in the TCGA cohort.

Researchers have also shown that image-based mutation classification may correlate
with gene expression data. In a study which predicted papillary thyroid carcinomas
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as BRAF or RAS mutated, Tsou et al. found that mRNA-derived expression patterns
correlated with the deep learning model’s predictions, enabling the classification of tumours
harbouring neither BRAF nor RAS mutations to be classified as BRAF- or RAS-like [40]. The
authors propose that driver mutations in BRAF and RAS dictate downstream signalling
cascades which is reflected in both the histopathological features and molecular genetics of
the tumour.

3.2. Predicting Gene Expression and Hormone Receptor Status

Cancers are known to be characterised by massive transcriptional dysregulations re-
sulting from epigenomic modifications. Despite its potential as a prognostic and predictive
biomarker in cancer, gene expression is not routinely assayed due to costs associated with
transcriptome profiling as well as high technical and sampling variability [45]. On the other
hand, hormone receptor status is routinely assayed in breast cancer cases through molec-
ular immunohistochemistry (IHC) and serves as an important biomarker for endocrine
therapy response as well as prognosis. For example, progesterone receptor (PR)-positive
patients are found to have a better survival rates than PR-negative patients [46], while
breast cancers with human epidermal growth factor receptor 2 (HER2) overexpression
may be treated with US Food and Drug Administration (FDA)-approved targeted therapy
trastuzumab [47]. However, IHC has several limitations such as potential variation in
tissue specimen preparation as well as the subjective interpretation of IHC-stained slides
by pathologists. Recently, researchers have begun investigating alternative methods of
estimating gene expression and assaying hormone receptor status directly from digitised
histopathology slides. This section summarises recent literature concerned with estimating
gene expression and hormone receptor status in cancer using deep learning applied to
histopathology slides. Identified studies concerned with estimating gene expression and
hormone receptor status from WSIs using deep learning are summarised in Table 2.

The outcome of measuring gene expression in precision oncology is generally a
decision as to whether or not to administer a drug to a patient. Therefore, early efforts
to estimate gene expression from WSIs using deep learning applied a binary prediction
approach, in which the status of a selected gene was predicted to be over-expressed or
under-expressed. For example, Sha et al. applied a multi-field-of-view deep learning model
to predict PD-L1 expression status in non-small cell lung cancer [48]. The proposed multi-
field-of-view method integrates tiles of different sizes to account for the fact that both large
tissue structures and nuclear morphology may be affected by PD-L1 expression. Using a
relatively shallow ResNet18 deep learning architecture, an AUC of 0.80 was achieved

BRCA1-associated protein 1 (BAP1) expression is predictive of metastasis in uveal
melanoma [49]. One study showed that deep learning could be used to predict BAP1
expression status in H&E-stained uveal melanoma WSIs with near ophthalmic pathologist
performance on an internal test cohort [50]. In this study, a DenseNet neural network
architecture outperformed three other state-of-the-art neural network architectures, as well
as a support vector machine. A later study by Zhang et al. reportedly outperformed these
results using a larger data set [51]. Here, a ResNet18 model was used to extract feature
vectors from tiles before assembling a set of feature vectors corresponding to a single slide
into a feature map according to their spatial locations. A U-Net auto-encoder-decoder was
then used to output a probability map on which an element-wise product with the original
tumour mask could be applied, resulting in a tumour probability heat map.

In an effort to go beyond binary predictions of single-gene expression, researchers
have recently attempted to quantify the expression of genes using H&E-stained WSIs.
Schmauch et al. developed a deep learning framework based on ResNet classifications
to quantify the expression of over 17,000 genes across 28 tumour types in the TCGA [52].
Although no genes could be significantly predicted in all 28 cancer types, the expression of
several genes could be accurately predicted in multiple cancers, indicating that altered gene
expression in certain cases confers the same histomorphological changes across tissues.
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Schmauch et al. also showed that spatial gene expression information for certain genes
could be derived from bulk RNA-seq profiles using their methods.

He et al. advanced these results by integrating spatial gene expression data and
tumour morphology in breast cancer using a deep learning model termed ST-Net [53].
Reportedly, the methods developed in this study were successful in determining the spatial
variation in the expression of 102 genes, including several breast cancer biomarkers such
as GNAS, FASN, and DDX5. External validation carried out on the TCGA-BRCA cohort
showed that the trained deep learning model could predict bulk expression profiles for
55 genes by averaging ST-Net’s predictions. Furthermore, the authors showed that ST-
Net-derived expression profiles had similar performance to real bulk RNA-seq data in
distinguishing histological subtypes. In efforts to elucidate the histopathological features
which influenced the deep learning model’s predictions, the authors found that enlarged
and less-elongated nuclei tended to correlate with higher expression levels.

Levy-Jurgenson et al. trained deep learning models to spatially resolve bulk mRNA
and miRNA expression levels in 10 breast and 5 lung cancer traits [54]. Molecular heat maps
could then be generated for each trait from which a heterogeneity score could be derived.
Notable results include the model’s performance at predicting mi-R-17-5p expression with
AUCs of 0.87 and 0.95 in breast and lung samples, respectively. Additionally, the authors
found that patients with high derived heterogeneity scores were significantly linked to
poor survival in breast cancer, despite no association existing between the molecular traits
and the heterogeneity scores.

In a study predicting PAM50 expression-based molecular subtypes from breast cancer
WSIs, Jaber et al. were able to show that tumours predicted as heterogeneous had survival
intermediate between Luminal A and Basal patients, as well as more varied levels of
hormone receptor expression patterns [55].

Naik et al. utilised a combined data set of the TCGA and Australian Breast Cancer
Tissue Bank (ABCTB) to train and validate a deep learning model to predict estrogen
receptor (ER) status as well as PR status and HER2 status [56]. Following a manual
evaluation of the histomorphological patterns which were associated with ER-status, the
authors found that low mitotic rate and uniform cells with small nuclei, among other
features, were more likely to be associated with tiles predicted as ER-positive. In contrast,
tiles predicted to be ER-negative by the deep learning model contained necrotic debris with
reactive lymphoid cells and macrophages removing the debris. Meanwhile, low attention
weights were assigned by the model to tiles with fat tissue, connective tissue, and tiles with
macrophages laden with debris and fat, demonstrating that the model learned that these
features are uninformative when predicting ER status.

In a study by Anand et al., HER2 overexpression was predicted from H&E-stained
histopathology slides with an AUC of 0.76 on an independent test set from the TCGA [57].
Three separate neural networks were used in the approach described in this study. The first,
a pretrained U-Net based nucleus detector, was used to sample tiles with high numbers of
nuclei. The second neural network consisted of a custom CNN to classify nuclei as tumour
or non-tumour, while the third neural network consisted of a custom HER2 status classifier.

Rawat et al. employed two neural networks for the prediction of ER, PR, and HER2
status from WSIs [58]. Using the ABCTB as an independent test set, AUCs of 0.89, 0.81 and
0.79 were achieved for ER-status, PR-status, and HER2-status, respectively. Interestingly,
the authors found that GAN-based stain normalisation almost doubled the accuracy to the
deep learning model, highlighting the role that variations in sample preparation may play
when generalising deep learning models in digital pathology.
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Table 2. Comparison of studies aimed at predicting gene expression/hormone receptor status from digitised histopathology slides using deep learning.

Reference Description Cohorts Num. of Samples
(ext. Validation)

External
Validation

Neural
Network Outcome Measures

Sha, 2019
[48]

Predicted PD-L1 expression
status in lung cancer. Internal data set 130 No ResNet18 AUC 0.80

Sun, 2019
[50]

Predicted BAP1 expression
status in uveal melanoma. Internal data sets 17 (30) Yes DenseNet-121 AUC-positive 0.99;

AUC-negative 0.98

Jaber, 2020
[55]

Predicted PAM50 gene expression-
based subtypes in breast cancer. TCGA-BRCA 1142 No Inception-v3 AUC 0.82

(Basal/non-Basal)

Rawat, 2020
[58]

Predicted hormone receptor
status in breast cancer.

TCGA-BRCA,
ABCTB 939 (2351) Yes ResNet34

AUC 0.89 (ER);
AUC 0.81 (PR);

AUC 0.79 (HER2)

He, 2020
[53]

Predicted spatial gene expression
profiles in breast cancer.

Internal data set,
10x Genomics BC,

TCGA-BRCA
23 (1094) Yes DenseNet-121 Pearson’s R range for

top 5 genes 0.43–0.54

Anand, 2020
[57]

Predicted HER2 overexpression
in breast cancer.

Warwick,
TCGA-BRCA 52 (45) Yes U-Net and custom

architecture AUC 0.76

Schmauch, 2020
[52]

Predicted gene expression of
multiple genes across cancers. TCGA 8725 (369) Yes ResNet50

Pearson’s R
0.47 (MKI67 in LIHC),
0.43 (CD3D in COAD)

Zhang, 2020
[51]

Predicted BAP1 expression
status in uveal melanoma. Internal data set 184 No ResNet18 AUC 0.93

Levy-Jurgenson, 2020
[54]

Predicted spatially resolved
transctiptomics from bulk

mRNA and miRNA expression.

TCGA-BRCA,
-LUAD

761 BRCA,
469 LUAD No Inception-v3 AUC 0.95 (miR-17)

Naik, 2020
[56]

Predicted hormone receptor
status in breast cancer.

ABCTB,
TCGA-BRCA

2535 ABCTB,
1014 BRCA Yes ResNet50 AUC 0.92
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3.3. Predicting Tumour Mutational Burden

While no standardised definition exists, TMB is typically defined as the number of non-
synonymous mutations per megabase of exome [59]. TMB has been hailed as an emerging
surrogate biomarker for immunotherapies due to its relationship with neoantigens [59].
Although only a minority of somatic mutations in tumours give rise to neoantigens, it is
hypothesised that tumours with a greater number of somatic mutations will have increased
levels of neoantigens [59]. These neoantigens can then be recognised by CD8+ T-cells,
resulting in an increased immune response [60]. In 2020, the FDA granted approval
for the use of the immunotherapy pembrolizumab to treat patients with unresectable or
metastatic TMB-high solid tumours [61]. Currently, whole-exome sequencing (WES) is
considered gold-standard for measuring TMB, however, this is primarily confined to a
research setting due to the high cost and complexity of associated with WES. For this
reason, researchers have begun investigating alternative methods of estimating TMB, such
as using gene panels [62] and applying deep learning to histopathology slides [63]. This
section summarises recent literature concerned with estimating TMB using deep learning
applied to histopathology slides. Identified studies concerned with estimating TMB from
WSIs using deep learning are summarised in Table 3.

Due to the high dynamic range of TMB values, it is considered impractical to directly
predict TMB values. Instead, cohorts are typically stratified into TMB-low and TMB-high
groups based on a defined threshold, thus resulting in a binary classification problem
which can be tackled using a neural network. The first published study found to apply
these methods was carried out by Wang et al. in the context of gastric and colon cancer [64].
The performance of eight state-of the-art deep learning models was compared on TCGA
stomach adenocarcinoma (STAD) and colon adenocarcinoma (COAD) data sets separately.
Interestingly, Googlenet was found to have the highest AUC on the STAD data set while
VGG19 was the best performing model on the COAD data set, indicating that the optimal
choice of neural network architecture may not only be problem-specific, but also specific
to the data set at hand. It is worth noting that the difference in performance between
certain pairs of models was found to be substantial, for example, on the TCGA-COAD
data set, VGG19 achieved an AUC of 0.82, while the Inception-v3 model trained using the
same set of hyperparameters achieved an AUC of 0.73. A possible explanation for these
discrepancies is that the optimal set hyperparameters may be model-specific. The impact of
the selected probability threshold used to separate classes was also investigated, revealing
that optimal thresholds differed between the two cancer types. The authors acknowledged
that using the upper tertile of the TMB distribution across each data set to label patients as
TMB-low or TMB-high may not be optimal.

In a later study by Jain et al., the authors investigated the dependence of model
performance on the selected TMB threshold in lung adenocarcinoma [63]. Similar AUCs
were achieved for the median, upper tertile of the TMB distribution, and 10 mutations
per megabase, while a slight drop in performance was observed when setting the TMB
threshold to the upper quartile. In addition to optimising the TMB threshold, the authors
sought to elucidate how magnification could affect model performance. It was found
that tiles sampled at 20× magnification generally yielded better model performance,
however, performance was substantially improved when aggregating the predictions at
three magnifications using a random forest classifier. These results may indicate that levels
of TMB influence both the spatial arrangement of tissue, observed at low magnification,
and cell structure, observed at high magnification. Despite demonstrating that patients
can be stratified by TMB from WSIs, the two aforementioned studies report no efforts
to elucidate the histomorphological changes identified by deep learning models to make
such predictions.
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Table 3. Comparison of studies aimed at predicting tumour mutational burden from digitised histopathology slides using
deep learning.

Reference Description Cohorts Num. of Samples
(ext. Validation)

External
Validation

Neural
Network Outcome Measures

Jain, 2020
[63]

Predicted TMB in
lung adenocarcinoma. TCGA-LUAD 760 No Inception-v3 AUPRC 0.92

Wang, 2020
[64]

Predicted TMB in
gastrointestinal cancer.

TCGA-STAD,
-COAD, -READ 644 No

Resnet50, Googlenet,
Inception v3, Alexnet,
VGG19, Squeezenet,

Densenet

AUC 0.75 STAD (Googlenet);
AUC 0.82 COAD (VGG19)

Shimada, 2021
[65]

Predicted TMB
in colorectal cancer.

TCGA-CRC,
Japanese-CRC 278 No Inception-v3 AUPRC 0.91

A later study published by Shimada et al. aimed to identify the histopathological
characteristics associated with possessing a high TMB, revealing that slides predicted to be
TMB-high by a deep learning model applied to a colorectal cancer cohort were enriched for
tumour-infiltrating lymphocytes (TILs) [65]. In addition to testing the association between
TMB-high predictions and a number of clinicopathological features, the authors found that
mismatch repair (MMR) status was also significantly associated with TMB-high, showing
that the same model could generalise to predict MSI in patients.

3.4. Predicting Microsatellite Instability

MSI arises as a result of deficiencies in MMR pathways, such as mutations in MMR
genes and hypermethylation of the MLH1 gene promotor [66]. MMR deficiencies result
in the accumulation of mutations in short tandem repeats known as microsatellites [67].
MSI is most prevalent in colorectal cancers, although it is also be observed in number of
other cancers. In 2017, the FDA approved the use of anti-PD1 therapy in MSI-high or
MMR-deficient solid tumours [68]. Since then, the demand for MSI/MMR testing in the
clinic has increased dramatically. At present, polymerase chain reaction and IHC assays are
used to test for MSI/MMR in tumours [69]. However, recent research has focused on using
deep learning applied to WSIs to identify MSI/MMR cases. MSI/MMR tumours have
been found to be characterised by distinct histomorphological features, such as tumour-
infiltrating lymphocytes, mucinous differentiation and poor differentiation [70]. This
section summarises recent literature concerned with predicting MSI in cancers using deep
learning applied to histopathology slides. Identified studies concerned with estimating
MSI from WSIs using deep learning are summarised in Table 4.

Several studies were identified which explore the use of deep learning to predict MSI
status from histopathology slides, most of which were applied to colorectal cancer. As
with predicting TMB, the task is generally approached as binary classification problem,
with the aim of stratifying patients according MSI-high or MSI-low (also referred to as
microsatellite-stable, or MSS). The earliest published study found to predict MSI from
histopathology slides was carried out by Kather et al. in 2019 [71]. Here, a quantitative
measure of MSI was derived using tile-level predictions and significant correlations were
observed between MSI scores and PD-L1 expression and an interferon-γ signature in
colorectal cancer, as well as CD8+ expression signatures in gastric cancer. These results may
indicate that different mechanisms of driving MSI exist across cancer types. Additionally,
tiles predicted as MSI-high were found to spatially overlap with regions characterised by
poor cell differentiation and lymphocyte-rich tumour regions, consistent with previous
histopathological knowledge [70].

Kather et al.’s work was used as a benchmark for a number of subsequent studies.
Using a distillation framework, which uses a neural network’s previous iteration’s pre-
dictions during training in an effort to reduce generalisation errors, Ke et al. achieved
improvements in AUC of between 0.01 and 0.04 on the same problems as described in
Kather’s 2019 paper [72].



Diagnostics 2021, 11, 1406 15 of 20

Echle et al. revisited the problem using a large-scale international cohort, MSIDETECT,
hailed as the “first international collaborative effort to validate such a deep learning–based molecu-
lar biomarker” [73]. Interestingly, diminishing performance was observed using training
cohorts greater than 5500 patients, at which a maximum AUC of 0.92 was achieved. Echle et
al. also demonstrated that while colour normalisation did not result in higher performance
on a held-out test set, a slight increase in performance was observed on an external data
set, demonstrating that colour normalisation may improve the generalisability of deep
learning models in predicting MSI.

Cao et al. developed a MIL-based deep learning model trained on frozen WSIs of
TCGA colon adenocarcinoma cases and showed that the model could be generalised to an
Asian colorectal cancer cohort of FFPE slides through transfer learning [28]. Fine-tuning
the model on just 10% of the Asian colorectal cancer samples improved the model’s AUC
by 0.2 compared to generalising the model without transfer learning.

Table 4. Comparison of studies aimed at predicting microsatellite instability from digitised histopathology slides using
deep learning.

Reference Description Cohorts Num. of Samples
(ext. Validation)

External
Validation

Neural
Network Outcome Measures

Kather, 2019
[71]

Predicted MSI status
in gastointestinal cancer.

TCGA-STAD,
-CRC, DACHS

315 STAD,
747 CRC, (378) Yes ResNet18

AUC 0.81 TCGA-STAD;
AUC 0.84 TCGA-CRC-KR;
AUC 0.77 TCGA-CRC-DX

Ke, 2019
[72]

Predicted MSI status
in colorectal cancer. TCGA-CRC 387 CRC-KR,

360 CRC-DX No AlexNet, ResNet,
VGG, Inception-v3 Accuracy 98.8% (AlexNet)

Cao, 2020
[28]

Predicted MSI status
in colorectal cancer.

TCCG-COAD,
internal data set

429 COAD,
785 internal Yes ResNet18 AUC 0.88 (TCGA-COAD);

AUC 0.85 (internal)

Echle, 2020
[73]

Predicted MSI status in
colorectal cancer using a
large, multicenter cohort.

MSIDETECT 6406 (771) Yes ShuffleNet AUC 0.96

Yamashita, 2021
[74]

Predicted MSI status
in colorectal cancer.

Internal data set,
TCGA-CRC 100 (484) Yes MobileNetV2 AUC 0.779

Krause, 2021
[27]

Used GAN-generated
images to improve
prediction of MSI

in colorectal cancer.

TCGA-CRC,
NLCS

256 CRC,
1457 NLCS No Conditional GAN,

ShuffleNet

AUC 0.742 (TCGA-CRC);
AUC 0.757 (NLCS);

AUC 0.777 (real and synthetic data)

Lee, 2021
[75]

Predicted MSI status
in colorectal cancer.

TCGA-CRC,
SMH 1920 (365) Yes Inception-v3 AUC 0.972 (TCGA-CRC);

AUC 0.787 (SMH)

Yamashita et al. compared the performance of an MSI-prediction deep learning
model with pathologist’s evaluation and sought to improve the interpretability of the
model by assessing ten human-interpretable features known to be associated with MSI [74].
Although MSI is not routinely screened for by pathologists, the author’s model exceeded the
performance of pathologists at detecting MSI in colorectal cancer, while also outperforming
Kather et al.’s original model. Of ten hand-crafted histomorphological features known to
have associations with MSI, only three, the presence of more than two TILs per high-power
field, mucinous differentiation, and absence of dirty necrosis, were found to be significantly
with MSI status upon multivariable analysis. The same three features were found to be
significantly associated with the deep learning model’s predictions, demonstrating a degree
of explainability for the model.

The most recently published study showed that frozen tissue specimens resulted in
better model performance than FFPE tissues for predicting MSI in colorectal cancer [75].
Additionally, the authors showed that a model trained on colorectal samples was unable
to discriminate MSI-high and MSI-low samples in metastasized tumours, demonstrating
that features associated with MSI in one type of tissue may not be associated with MSI in
another tissue type.

Another recent study sought to investigate how synthetic images could be used to
augment data sets for training deep learning models to predict MSI status in colorectal
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cancer [27]. The authors were able to show that images produced using a GAN retained
histomorphological features associated with MSI, such as poor differentiation and in-
traepithelial lymphocytosis. These synthetic images could then be identified by a CNN.
Augmenting a training data set of real images with GAN-generated images yielded an
improvement in AUC of 0.035. Despite these promising results, further studies will be
necessary to validate the use of GAN-generated images for training deep learning models,
particularly applied to other molecular features such as mutated genes or expression.

4. Discussion

The digitisation of clinical data over the past decade is enabling a revolution in
healthcare through the use of artificial intelligence. Namely, computer vision methods
applied to medical imaging data have seen numerous successes both in a research and
clinical setting [12]. While histopathology is considered gold-standard in cancer diagnosis,
new precision treatments often require the identification of clinically actionable, molecular
biomarkers through genomics assays. Since the first published study aiming to predict
molecular genetics from histopathology slides in 2018 [34], there has been a growing
number of publications applying such methods to a range of informative cancer biomarkers.
While using deep learning to infer molecular biomarkers from histopathology slides offers
a promising alternative to costly and time-consuming molecular tests, many obstacles
remain to be overcome.

As demonstrated through this review of literature, the performance of deep learning
models in digital pathology is dependent on a number parameters related to study design,
such as the neural network architecture, sample preparation, the size of the cohorts avail-
able and the methods used for establishing ground-truth labels for training, among others.
For example, Wang et al. found a discrepancy in AUC of almost 0.1 between a VGG19
neural network and an Inception-v3 neural network trained on the same problem [64].
Echle et al. found that diminishing performance was observed after increasing cohort size
past 5500 patients when predicting MSI status [73], while Kather et al. found that using
different methods of defining mutated genes in training samples yielded different results
in certain genes [43].

Notably, the generalisability of these deep learning models to populations of different
ethnic groups remains poorly understood. For example, Kather et al. found that their
MSI classifier trained on a TCGA data set made up of predominantly Western populations
generalised poorly to a Japanese cohort [71]. Although a similar result was obtained by
Cao et al., the authors showed that fine-tuning the model on a small subset of a cohort with
a different ethnic background vastly improved model generalisability [28]. These studies
demonstrate the need for large-scale multi-center research efforts, such as the work carried
out by Echle et al. using the MSIDETECT consortium [73], as well as rigorous external
validation of results in order to mitigate the risk of bias in clinical practice.

Substantial time and financial investment is required to recruit cohorts of sufficient
size to maximise and reliably estimate the performance of deep learning models in digital
pathology. Therefore, future studies will likely rely on collaborations between multiple
research centres to attain the level of performance and testing required to eventually enable
safe and effective clinical decisions to be made based on molecular biomarkers detected
through deep learning applied to histopathology slides. Additionally, Krause et al. and
Liu et al.’s use of synthetic images to augment digital pathology data sets has been shown
to merit further research and such methods may prove invaluable in the future when
assembling large, shareable data sets [27,41].

Furthermore, the importance of model interpretability in digital pathology studies
cannot be overstated if such methods are to be effectively integrated into clinical work-
flows. Without thorough assessments of the features leading to a model’s decision, it is
impossible to ensure that a deep learning model is not exploiting artefacts in data sets to
obtain predictions. Additionally, “black-box” models make it difficult for medical pro-
fessionals to trust that predictions can effectively complement other measurable data in
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making clinical decisions. While many recently published studies make efforts to explain
models’ predictions using human-interpretable features, such practice should continue to
be encouraged among researchers in order to facilitate the translation of novel diagnostic
strategies based on deep learning to the clinic.
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Abbreviations
The following abbreviations are used in this manuscript:

EGFR Epidermal growth factor receptor
NSCLC Non-small cell lung cancer
TMB Tumour mutational burden
MSI Microsatellite instability
MIL Multiple-instance learning
CNN Convolutional neural network
WSI Whole-slide image
FFPE Formalin-fixed paraffin-embedded
H&E Hematoxylin and eosin
AUC Area under the ROC curve
TCGA The Cancer Genome Atlas
WGD Whole-genome duplication
GAN Generative adversarial network
IHC Immunohistochemistry
PR Progesterone receptor
HER2 Human epidermal growth factor receptor 2
FDA US Food and Drug Administration
BAP1 BRCA1-associated protein 1
ABCTB Australian Breast Cancer Tissue Bank
ER Estrogen rceptor
WES Whole-exome sequencing
STAD Atomach adenomcarcinoma
COAD Colon adenocarcinoma
TIL Tumour-infiltrating lymphocytes
MMR Mismatch repair
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