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Abstract

Background: This study presents an analysis of trabecular bone structure in standard radiographs
using Fourier transforms and principal components analysis (PCA) to identify contributions to hip
fracture risk.

Methods: Radiographs were obtained from 26 hip fracture patients and 24 controls. They were
digitised and five regions of interest (ROI) were identified from the femoral head and neck for
analysis. The power spectrum was obtained from the Fourier transform of each region and three
profiles were produced; a circular profile and profiles parallel and perpendicular to the preferred
orientation of the trabeculae. PCA was used to generate a score from each profile, which we
hypothesised could be used to discriminate between the fracture and control groups. The fractal
dimension was also calculated for comparison. The area under the receiver operating characteristic
curve (A,) discriminating the hip fracture cases from controls was calculated for each analysis.

Results: Texture analysis of standard radiographs using the fast Fourier transform yielded variables
that were significantly associated with fracture and not significantly correlated with age, body mass
index or femoral neck bone mineral density. The anisotropy of the trabecular structure was
important; both the perpendicular and circular profiles were significantly better than the parallel-
profile (P < 0.05). No significant differences resulted from using the various ROI within the proximal
femur. For the best three groupings of profile (circular, parallel or perpendicular), method (PCA
or fractal) and ROI (A, = 0.84 — 0.93), there were no significant correlations with femoral neck bone
mineral density, age, or body mass index. PCA analysis was found to perform better than fractal
analysis (P = 0.019).

Conclusions: Both PCA and fractal analysis of the FFT data could discriminate successfully
between the fracture and control groups, although PCA was significantly stronger than fractal
dimension. This method appears to provide a powerful tool for the assessment of bone structure
in vivo with advantages over standard fractal methods.
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Background

The NIH Consensus Statement defines Osteoporosis as "a
skeletal disorder characterised by compromised bone
strength predisposing to an increased risk of fracture" [1].
Bone strength was defined as "the integration of two main
features: bone density and bone quality". Currently, clin-
ical diagnosis is based solely on bone mineral density
(BMD) in accordance with the World Health Organisa-
tion guidelines |2]. Previous studies, however, have found
that trabecular bone structure also plays a significant role
in determining bone strength [3-5] with BMD explaining
only 60 to 80 % of the variability in mechanical resistance

[6].

Trabecular bone structure is visible on standard pelvic
radiographs and many attempts have been made to quan-
tify the quality of the structure and assess its relationship
to osteoporosis and BMD. These range from visual scoring
systems, such as the Singh index [7], through to sophisti-
cated computerised methods based on fractals [8-10] and
other image processing methods [11-13]. A review of the
literature suggests that fractal analysis has been a method
of choice in recent years for the analysis of trabecular bone
structure in CT scans [14,15], MRI [16], histology [17] and
radiographs [18-21], although it has not been established
categorically that it is preferable to other methods of tex-
ture analysis [22,23]. By reducing all the information in
the image to one descriptor, the fractal dimension [24], a
large part of the information is lost. The Fourier transform
of an image expresses the information in the image in
terms of spatial frequencies rather than distances. Various
methods can be applied to extract information from the
Fourier transform [25], including the fractal dimension
[24]. However such methods have not been fully
exploited for analysing bone structure [8,26-30].

In this study we investigate the use of Fourier transforms
and Principal Components Analysis to generate a mathe-
matical model of the data which can be used to help clas-
sify individuals according to the presence or absence of a
hip fracture. Principal component analysis (PCA) [31] is a
data reduction technique that has been applied in many
fields of study, including investigation of gene expression
[32], development of an electronic nose [33] and tracing
of the evolutionary changes in fish morphometry [34]. It
describes data in terms of a small number of orthogonal,
linearly independent components which contain the
majority of the information. PCA has no preconditions,
such as relying on the data to fit a normal or fractal distri-
bution, but builds a mathematical model based on the
correlations present in the data. An eigenanalysis of the
correlation or covariance matrix is used to perform PCA.
The resulting components are then selected in order of the
amount of variance they account for, enabling an efficient
mapping of the data. As the first few components account
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for the vast majority of the variance in the original data,
they can be selected for analysis whilst the remainder are
discarded as 'noise'. In this way, the number of variables
can be greatly reduced whilst maintaining the informa-
tion present in the original data. In this pilot study we
used these methods to investigate the similarities and dif-
ferences between trabecular bone structure in fracture and
control groups using standard radiographs of the proxi-
mal femur.

Methods

Study data

A set of digitised standard pelvic radiographs was availa-
ble from a previous investigation into the morphology of
the proximal femur [35]. These radiographs were taken
from an earlier study [36], that had examined three
groups (osteoporotic, osteoarthritic and control) of age
matched, postmenopausal women (30 subjects per
group). Subjects with osteoarthritis were excluded from
the present study. All patients had undergone a scan of the
unfractured hip by dual-energy x-ray absorptiometry
(DXA) using a Norland XR-26 scanner (CooperSurgical
Inc, Trumbull, CT). The controls had had their left hip
scanned. All patients and controls had had a pelvic antero-
posterior radiograph recorded within a year of the DXA
scan. We used those radiographs and the femoral neck
BMD (Neck-BMD) data in the current study. A data set of
50 digitised radiographs was available comprising 26 hip
fracture patients (HIP) and 24 controls (CNT). The radio-
graphs were digitised, using a Howtek MultiRAD 850
scanner (Howtek, Hudson, New Hampshire) at a resolu-
tion of 584 dpi (44 pm per pixel) and a depth of 12 bits.
The age, height and weight of each subject were also
recorded.

Region selection

Five regions of interest (ROIs) were selected relative to the
principal trabecular systems in locations known to be
related to hip fracture via the Singh index [7] and BMD
analysis [37]. To ensure reproducibility, their locations
were determined in relation to the centre and angle of the
narrowest part of the femoral neck and the centre and
radius of the femoral head on each image, as shown in
Figure 1.

Each ROI was 256 x 256 pixels (11.3 mm square), to ena-
ble use of the fast Fourier transform, and were selected as
follows. The upper region of the head (UH) lies on the
upper part of the principal compressive trabeculae, the
central region of the head (CH) is at the intersection of the
principal compressive and tensile trabeculae, the upper
region of the neck (UN) lies on the principal tensile
trabeculae, the lower region of the neck (LN) is at the base
of the principal compressive trabeculae and finally Ward's
triangle (WA) which lies between these structures. The
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Figure |

Regions of interest. Displays the five regions of interest, upper femoral head (UH), central femoral head (CH), upper femo-
ral neck (UN), Ward's triangle area (WA) and the lower femoral neck (LN) used for analysis. Points A to G are determined by
the femoral head and neck and used to locate the ROls. Points A and E mark the femoral neck width. Points B, C and D lie at
1/4, 1/2 and 3/4 along this line. Point F is the centre point of the femoral head, point G at |/2 the radius of the femoral head at
an angle of 45 degrees to the neck width, 135 degrees to the neck shaft, shown as a dashed line through point C.
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points and regions were identified using a macro written
for Image Pro Plus software (version 4.1.0.0, Media
Cybernetics, Silver Spring, Maryland). The femoral head
was described by a best-fit circle, calculated from a series
of manually marked points around the outline of the fem-
oral head. Between 15 and 20 evenly spaced points were
used to describe the outline, depending on the size of the
head. The radius and centre (marked as F in Figure 1) of
the femoral head were then taken from this circle. The nar-
rowest part of the neck (neck-width) was determined
using two automatic edge traces, marking the upper and
lower outlines of the femoral neck. The first point and the
direction for each trace were marked manually; the edge
of the neck could then be identified automatically by the
software. The neck width (A - E in Figure 1) was calculated
by finding the smallest Euclidean distance between the
traces. The centre of the neck was located at the mid-point
of this line (point C) and the axis of the femoral neck was
taken to be a line perpendicular to this through the centre
of the neck (dashed line). The top right corner of the WA
region was located at the midpoint of the neck width
(point C). Points B and D were placed 25% and 75% of
the way along the neck width and used as the midpoints
of the UN and LN regions respectively. Point F, the centre
of the femoral head marked the centre of the CH region
and point G, the centre of the base of the UH region. Point
G was placed one half of the femoral head radius above
point F, at a 45-degree angle to the neck width (A-E).

Region analysis

Analysis was performed using Matlab software (version
6.1.0, MathWorks Inc, Natick, Massachusetts). A fast Fou-
rier transform was generated for each ROI and three pro-
files were generated using data from the power spectrum.
Firstly a global or circular profile (CircP) was generated,
composed of the magnitude at each spatial frequency
averaged across all angles, resulting in a profile with 128
data points. To create this profile, each pixel in the Fourier
transform was assigned to the integer spatial frequency
that most closely matched its' distance from the zero'th
component.

The angle of preferred orientation was calculated by find-
ing the angle of the maximum value in the power spec-
trum for the first 25 spatial frequencies [38]. The
maximum value over this range relates to the dominant
texture orientation within the image, the trabecular struc-
ture. As data in the frequency domain relate to features in
the spatial domain rotated by 90°, the median of the val-
ues plus 90° was taken as the angle of preferred orienta-
tion for each image. Due to the symmetry of the Fourier
power spectrum, angles were only calculated between 0°
and 180°, rather than 0° and 360°. Two more profiles
were then generated, parallel with (ParP) and perpendic-
ular to (PerP) the angle of preferred orientation. In this
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case the average value was calculated at each spatial fre-
quency from all points lying within + 5° of the desired
angle (Fig. 2).

Principal component analysis

Principal component analysis [31] was used to model sta-
tistically the shape of each set of profiles (parallel, perpen-
dicular and circular). This was performed using an
eigenanalysis of the correlation matrix. The eigenvectors
then become the principal components and are selected
in order, depending on their eigenvalue. The eigenvalues
are associated with the components in decreasing order,
the largest eigenvalue is associated with the first compo-
nent and the smallest with the last. In order to choose the
number of components for analysis, a scree plot [31,39]
was generated by plotting the eigenvalues (representing
the proportion of variance described by each component)
against the component number (Figure 3). In each case,
the first few principal components were selected for anal-
ysis using the scree test [39] to find an 'elbow" in the slope
of the plot. This is used as a threshold between the com-
ponents that contained useful information, which were
then used as input variables for further analysis, and those
that could be attributed to noise.

Fractal analysis

Fractal analysis was performed on each profile using a
method similar to the Fourier transform technique
described by Majumdar et al [40]. The average power spec-
trum of the circular profile was plotted on a log-log scale,
three approximately linear regions were defined and the
gradient (slope) of a straight line fitted to each region was
found; slopeA, a 'coarse' slope, where the log of the spatial
frequency is less than or equal to 1.0, slopeB a ‘medium’
slope, where the log of the spatial frequency lies between
1.0 and 1.75 and slopeC, a 'fine' slope where the log of the
spatial frequency is above 1.75. The fractal dimension was
calculated for each slope using the formula suggested by
Majumdar et al [40]

Statistical analysis

Stepwise discriminant analysis was used to select principal
components that could be combined to build a linear
classifier. If the stepwise procedure failed to select any
components, the most accurate of the individual compo-
nents was chosen. The same procedure was used to dis-
criminate between the groups using the fractal dimension.
Measurement of the area under the ROC curve was used
to compare the classifiers built using the discriminant
analysis [41]. A three way ANOVA was applied in order to
determine whether there were significant differences
between the performance of classifiers depending on the
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Figure 2

Profile generation. (A) Shows a typical region of interest (contrast enhanced for visualisation) showing the trabecular bone
structure, in this case aligned approximately 22° to the vertical. (B) The central section of the FFT (128 x 128 pixels). The hor-
izontal and vertical axes have been marked with a mid-grey tone to indicate that they have been excluded from the angle calcu-
lation. The bright strip at the centre (running from top left to bottom right) shows the preferred orientation of the trabeculae.
Angles calculated from the Fourier power spectrum correspond to the same angles in the spatial domain, rotated by 90°. (C)
The pixels with the maximum values are marked using white squares for the first 25 spatial frequency values of the Fourier
power spectrum. The median angle, lying 21.8° from the horizontal is shown by a dashed white line. (D)_The regions used to
generate the parallel (shaded black) and perpendicular (shaded white) profiles, based on the orientation of the trabecular

structure.
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Scree plot. Example of a scree plot from the perpendicular profile. The first component typically accounts for the largest
amount of variance. The components are chosen to the left of an 'elbow' in the plot. Here components | to 5 are included in
the analysis as they lie before the 'elbow' at pointé (eigenvalue = 1.63).

type of analysis, the profile used or the region analysed.
Pearson product moment correlation was applied to
examine the relationship with age, BMI and Neck BMD
for the strongest classifiers. A one-way ANOVA was used
to test for significant differences in the performance of the
slopes from each spatial frequency band used in the fractal
analysis. T-tests, correlation and ANOVA were performed
using SigmaStat (version 2.03, SPSS Science, Chicago).
Principal component analysis, discriminant analysis, and
measurement of the area under the ROC curve were calcu-
lated using SPSS (version 10 SPSS Science, Chicago).

Results

There were no significant differences between the age,
height, weight or body mass index (BMI) of the fracture
and control groups (Table 1). As expected femoral neck-

BMD was significantly lower in the fracture group in com-
parison to the control group (P = 0.001).

The Receiver Operating Characteristic (ROC) curve is a
plot of True Positive Fraction v False Positive Fraction (or
Sensitivity v 1 - Specificity). The area underneath the
curve (A,) represents the performance of the classifier
ranging from a value of 0.5 if it is no better than chance to
1.0 for a perfect discriminator. Table 2 shows A, for PCA
analysis by region for the circular, perpendicular and par-
allel profiles respectively, discriminating fracture and con-
trol cases. A wide range of values was observed (overall
mean 0.70, standard deviation 0.11). Some were little bet-
ter than chance (A, = 0.5) (mostly derived from the paral-
lel profile) and the strongest ones were from the
perpendicular profiles. The 5 largest areas under the ROC
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Table I: Summary of anthropometric variables for the fracture and controls groups. Mean and standard deviation (SD) of the age,
height, weight, BMI and BMD of the fracture and control groups. P values were obtained from a two-tailed t-test.

Variable Control Group (n = 24) Fracture Group (n = 26)

Mean SD Mean SD P
Age, years 69.1 6.5 69.2 6.3 0.97
Height, cm 158.6 7.1 157.1 0.4 0.38
Weight, kg 634 9.5 61.0 9.0 0.38
Body Mass Index, kg/m? 252 32 24.8 4.1 0.72
Femoral neck BMD (g cm2) 0.70 0.11 0.604 0.066 0.001

Table 2: Classification accuracy for each region-profile combination. Area under the ROC curve for principal component analysis of each
profile by region of the femoral neck. Analysis using three-way ANOVA found that the area under the ROC curve was significantly
higher in the perpendicular profile than in the parallel profile. (P < 0.05)

Region Circular (95% CI) Parallel (95% CI) Perpendicular (95% CI)
Upper head 0.76 (0.63 — 0.89) 0.57 (0.41 - 0.73) 0.84 (0.73 - 0.95)
Central head 0.59 (0.43 - 0.75) 0.56 (0.40 - 0.73) 0.84 (0.72 - 0.95)
Upper neck 0.72 (0.58 — 0.86) 0.72 (0.57 — 0.86) 0.67 (0.52 - 0.82)
Wards triangle 0.74 (0.61 — 0.88) 0.61 (0.45-0.76) 0.71 (0.56 — 0.86)
Lower neck 0.71 (0.56 — 0.85) 0.55(0.39-0.71) 0.93 (0.87 — 1.00)

Table 3: The best five classifiers: Area under the curve and correlation with BMD, age and BMI. Area under the ROC curve (A,) for each

of the best 5 classifiers and the correlation with age R
significance values (P).

age?

femoral neck BMD (Rgpp) and body mass index (Rgy,) and associated

Analysis Profile ROI A,(95% CI) Remo(P) Rage(P) Remi(P)
PCA PerP LN 0.93 (0.87 — 1.00)  0.09 (0.55) 0.14 (0.34) -0.08 (0.58)
PCA PerP UH 0.84 (0.73-0.95)  0.09 (0.52) -0.17 (0.24) -0.03 (0.86)
PCA PerP CH 0.84 (0.72-095)  0.06 (0.70) 0.27 (0.055) -0.11 (0.46)
PCA CircP UH 0.76 (0.63 - 0.89)  -0.16 (0.28) -0.15 (0.29) 0.07 (0.62)
Fractal ParP UN 0.75 (0.61 —0.89)  -0.30 (0.034) 0.25 (0.081) -0.04 (0.78)

curve were obtained by PCA of the perpendicular profile
of the lower neck, upper and central head regions (Table
3) (A, = 0.93, 0.84 and 0.84 respectively), followed by
PCA analysis of the circular profile in the upper head
region (A, = 0.76) and, finally, fractal analysis of the par-
allel profile in the upper neck region (A, = 0.75). Femoral
neck BMD lay between the third and fourth best texture
measures (A, = 0.79 95% CI = 0.66 - 0.91). Plots of the
ROC curves for the strongest combinations of image anal-
ysis classifier are shown in Figure 4.

Table 3 also shows the correlations between the top five
classifiers with age, BMI and Neck-BMD. No significant
correlations were found between any of these classifiers
and either age or BMI and, for the top three, there was also
no significant correlation with Neck-BMD (P > 0.05). The

fifth placed classifier, fractal analysis of the parallel profile
in the upper neck region, was the only one significantly
associated with Neck-BMD (P = 0.034).

A three-way analysis of variance was used to examine dif-
ferences in performance due to the region, profile or type
of analysis used. It showed that overall PCA analysis per-
formed significantly better than fractal analysis (P =
0.019) and that analysis of both the perpendicular and
circular profiles performed significantly better than the
parallel profile (P = 0.003 and 0.011 respectively). No sig-
nificant differences were found between the different
regions of the femoral neck (P = 0.241) (despite the
apparently large differences in A,). The power of this test
was 0.69, 0.97 and 0.15 for the investigation of differ-
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Figure 4

Comparison of ROC curves. Comparison of the ROC curves for the strongest classifier from the combination of (A) PCA
analysis of the perpendicular profile (Lower neck region), (B) PCA analysis of the circular profile (Upper head region) and (C)

Fractal analysis of any profile (Upper neck region).

ences due to the method of analysis, type of profile used
and the region analysed respectively.

Table 4 presents the mean A, for the slope from each of the
spatial frequency bands for all regions of interest. This was
assessed for each profile individually and also for all the
profiles together. A one-way ANOVA was used to test for
significant differences in Az between slopes A, B and C. In
the individual profiles, slopeA performed significantly bet-
ter than slopeC for the circular profile (P = 0.008), however
when all the profiles were considered, no significant dif-
ferences were apparent (P = 0.26).

Discussion and conclusions

In these short series, this study found that texture analysis
of standard radiographs using the fast Fourier transform
can yield variables that are significantly associated with
fracture but not significantly correlated with age, body
mass index or Neck-BMD. Both PCA and fractal analysis
of the FFT data could be used to discriminate successfully
between the groups, although overall PCA was
significantly stronger than fractal dimension. The best
results from this study were not significantly correlated
with femoral neck-BMD, age or BMI, indicating their
potential for use as an independent predictor of fracture.
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Table 4: Comparing slopeA, slopeB and slopeC. The average and standard deviation of the area under the ROC curve (A,) are presented
for each of the slopes used in the fractal analysis for all regions of interest. A significant difference was found between slopeA and slopeC
in the circular profile, however when all the profiles were compared, no significant differences were found.

SlopeA SlopeB SlopeC P
All profiles 0.601 (0.074) 0.598 (0.055) 0.565 (0.067) 0.260
Circular 0.670 (0.072) 0.611 (0.022) 0.531 (0.026) 0.008
Parallel 0.544 (0.042) 0.620 (0.083) 0.563 (0.037) 0.140
Perpendicular 0.589 (0.047) 0.563 (0.032) 0.600 (0.104) 0.678

The radiographic appearance of bone is known to be
affected by factors including the size of the patient. As
there was no significant difference in the BMI of the frac-
ture and control groups, it is unlikely that this has influ-
enced the results, however it is an issue that will need
addressing in future studies.

The PCA method extends a method previously developed
for analysis of histological sections [26]. The use of ori-
ented profiles improved the performance of the analysis
by selecting directions in which there was the most infor-
mation about bone structure i.e. perpendicular to the pre-
ferred orientation of the trabeculae. PCA considerably
reduces the number of variables required to characterise
the image via its power spectrum. For example, in this
study, we start with a 256 x 256 pixel ROI (65,536 pixels),
the Fourier transform is performed and a profile of 128
spatial frequency values is generated. For each profile,
PCA was able to describe over 70 % of the variance present
in the data using only 5 components or fewer. Overall, the
performance of principal components analysis was signif-
icantly stronger than that of fractal analysis (P < 0.01).
One advantage of PCA that may contribute to this finding
is the ability to summarise the information present in the
dataset with a small number of components via an
economical mapping of the variance present in the data.
In addition, the property of orthogonality between these
components ensures that the variables generated are line-
arly independent (Fig. 5). Benefits can also be found by
the use of a model built on the mathematical distribu-
tions present in the data, rather than expecting the data to
meet a given mathematical property, such as fitting a frac-
tal distribution.

Previous studies using non-fractal analysis of the Fourier
power spectrum have focussed on images of the spine or
wrist, where the alignment of trabeculae is generally
orthogonal [28-30]. In such images, analysis of trabecular
orientation can be performed by examining the vertical
and horizontal sectors as the trabeculae lie predominantly
in these directions. The trabecular structure of the femur is
more complicated as the trabeculae are aligned in arcs, so
the preferred orientation changes throughout the proxi-

mal femur. Analysis parallel to the preferred orientation
of the trabeculae was significantly poorer than analysis
using either the perpendicular or circular profiles (P <
0.05). Analysis in the perpendicular direction was strong-
est overall, although it was not significantly better than
the circular profile. This accords with the increasingly ani-
sotropic nature of trabecular bone with aging; bone loss is
not evenly distributed but is lost primarily at angles per-
pendicular and oblique to the preferred orientation of the
trabeculae [30]. This loss heightens the risk of fracture,
especially if the impact is from the side, as expected from
a typical fall from standing height, as there are fewer
trabeculae orientated in this direction to absorb the force
of impact.

In summary, this paper presents a new method for analys-
ing the structure of trabecular bone from standard radio-
graphs. It demonstrates that the Fourier transform can be
used to describe structural information in images which
may be related to fracture, independently of BMD. This
study is limited by the small size of the data set and fur-
ther analysis is needed to validate these findings. This
should be performed on a similar series of radiographs,
consisting of fracture and control subjects scanned at the
same resolution. The methods from this study could then
be applied directly to this group (without recalculating
the PCA) to evaluate whether they were generally applica-
ble. However the success of both this and our previous
study, using similar techniques to analyse histological sec-
tions, indicates that this may be an effective method with
clinical utility for describing bone quality statistically in
terms of structural parameters.
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Plot of two principal components. Example of a scatterplot of two principal components. For FFT/PCA analysis of the
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