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Abstract
Purpose: Most radiomic studies use the features extracted from the manually drawn tumor contours for classification or survival

prediction. However, large interobserver segmentation variations lead to inconsistent features and hence introduce more challenges in

constructing robust prediction models. Here, we proposed an automatic workflow for glioblastoma (GBM) survival prediction based

on multimodal magnetic resonance (MR) images.

Methods and Materials: Two hundred eighty-five patients with glioma (210 GBM, 75 low-grade glioma) were included. One hundred

sixty-three of the patients with GBM had overall survival data. Every patient had 4 preoperative MR images and manually drawn tumor

contours. A 3-dimensional convolutional neural network, VGG-Seg, was trained and validated using 122 patients with glioma for automatic

GBM segmentation. The trained VGG-Seg was applied to the remaining 163 patients with GBM to generate their autosegmented tumor

contours. The handcrafted and deep learning (DL)−based radiomic features were extracted from the autosegmented contours using

explicitly designed algorithms and a pretrained convolutional neural network, respectively. One hundred sixty-three patients with GBM

were randomly split into training (n = 122) and testing (n = 41) sets for survival analysis. Cox regression models were trained to construct

the handcrafted and DL-based signatures. The prognostic powers of the 2 signatures were evaluated and compared.

Results: The VGG-Seg achieved a mean Dice coefficient of 0.86 across 163 patients with GBM for GBM segmentation. The

handcrafted signature achieved a C-index of 0.64 (95% confidence interval, 0.55-0.73), whereas the DL-based signature achieved a

C-index of 0.67 (95% confidence interval, 0.57-0.77). Unlike the handcrafted signature, the DL-based signature successfully stratified

testing patients into 2 prognostically distinct groups.

Conclusions: The VGG-Seg generated accurate GBM contours from 4 MR images. The DL-based signature achieved a numerically

higher C-index than the handcrafted signature and significant patient stratification. The proposed automatic workflow demonstrated

the potential of improving patient stratification and survival prediction in patients with GBM.
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Introduction
Glioma is the most common type of primary brain

tumor in adults. It arises from glial cells, normally astro-

cytes and oligodendrocytes. According to the World

Health Organization guideline, glioma can be classified

into grade I to grade IV based on the histologic character-

istics.1 Glioblastoma multiforme (GBM) is the most

aggressive, grade IV, glioma. It accounts for 81% of

malignant brain tumors.2 Despite extensive efforts, prog-

noses for patients with GBM remain dismal. The median

overall survival (OS) is 14 to 16 months after diagnosis.3

The 5-year survival rate is below 5%.4 It is beneficial to

build survival prediction models for assisting therapeutic

decisions and disease management in patients with GBM.

Magnetic resonance imaging (MRI) is the preferred

imaging modality for GBM diagnosis and monitoring.

Radiomic features extracted from MR images using

advanced mathematical algorithms may uncover tumor

characteristics that fail to be appreciated by the naked

eye. Many studies have investigated the association of

MRI radiomic features with the survival outcomes of

patients with GBM.5-7 However, radiomic features were

extracted from the manually drawn tumor contours in

these studies. Manual tumor segmentation is not only

time-consuming but also sensitive to intraobserver and

interobserver variabilities. These segmentation variations

could result in many inconsistent radiomic features,8,9

which introduces more challenges in constructing robust

prediction models.

Developing an automatic GBM segmentation model

could eliminate the manual contour variations and enable

an automatic survival prediction workflow. Convolu-

tional neural networks (CNNs) have achieved state-of-

the-art performance in medical image segmentation.

Particularly, U-Net10 and fully convolutional network11

have been widely adopted. Shboul et al12 used an ensem-

ble of the 2-dimensional (2D) U-Net and the 2D fully

convolutional network for GBM segmentation followed

by an XGBoost based regression model to achieve auto-

matic GBM survival prediction. However, this study only

investigated the handcrafted radiomic features that were

extracted using explicitly designed algorithms. These fea-

tures are normally low-level image features that are lim-

ited to current human knowledge. Another type of

radiomic feature can be extracted using a pretrained

CNN.13-15 We refer to these features as “deep learning

(DL)-based features” in this study. These high-level fea-

tures may have higher prognostic power than the hand-

crafted features.

In this study, we proposed an automatic workflow for

GBM survival prediction based on 4 preoperative MR

images. A novel 3D CNN, VGG-Seg, was proposed and

trained for automatic GBM segmentation. The hand-

crafted and DL-based radiomic features were extracted
from the autosegmented contours generated by the VGG-

Seg and used to construct 2 separate Cox regression mod-

els for survival prediction. The prognostic powers of the

constructed signatures were evaluated and compared. To

our knowledge, this is the first paper to investigate the

DL-based radiomic features for automatic GBM survival

prediction.
Methods and Materials
Data set

Two hundred eighty-five patients with glioma were

acquired from the Brain Tumor Segmentation 2018 chal-

lenge.16-18 Two-hundred and ten patients had GBM, and

the remaining 75 patients had low-grade (grade II-III) gli-

oma (LGG). Each patient had 4 preoperative MR images

acquired. These included T1-weighted, contrast-enhanced

T1-weighted, T2-weighted, and fluid-attenuated inversion

recovery (FLAIR) MR images. Patient images were

acquired with different clinical protocols and various scan-

ners from multiple institutions. For each patient, MR

images were coregistered, resampled to 1 mm3 resolution

using linear interpolation, and skull-stripped.16,17 The final

image dimension was 240£ 240£ 155. All patients had 3

ground truth tumor subregion labels (edema, enhancing

tumor, and necrotic and nonenhancing tumor core)

approved by experienced neuro-radiologists. OS data were

available for 163 patients with GBM.

We applied the N4 bias correction algorithm on all

images, except the FLAIR images, to remove low-fre-

quency inhomogeneity.19 Each MR image was normalized

to have zero mean and unit standard deviation in the brain

voxels. Figure 1 shows the transverse slices of 4 prepro-

cessed MR images and the corresponding tumor labels.
VGG-Seg for automatic GBM segmentation

Figure 2 shows the architecture of the VGG-Seg pro-

posed for automatic GBM segmentation. It contains 27

convolutional layers, forming an encoder and decoder

architecture. The encoder network was constructed based

on the VGG16 model20 that achieved accurate perfor-

mance in object detection. Instance normalization layers21

and residual shortcuts22 were implemented to improve

model performance. The VGG-Seg can be trained to per-

form an end-to-end mapping, converting the concatenation

of 4 preprocessed images to 4 probability maps for 3 tumor

subregion labels and background labels.

In the model training stage, 122 patients without OS

data were randomly split into a training set of 105

patients (75 patients with LGG and 30 patients with

GBM) and a validation set of 17 patients with GBM. The



Fig. 1 Transverse slices of preprocessed T1-weighted (T1w), contrast-enhanced T1-weighted (CE-T1w), T2-weighted (T2w), and

fluid-attenuated inversion recovery (FLAIR) images along with the corresponding ground truth labels for edema, enhancing tumor,

and necrotic and nonenhancing tumor core (NCR/NET) for a representative case.

Fig. 2 The overall VGG-Seg architecture. Four magnetic resonance (MR) images are concatenated and input into the VGG-Seg con-

taining 27 convolutional layers. The model generates 4 probability maps. Each filled box represents a set of 4-dimensional (4D) feature

maps, the numbers and dimensions of which are shown. The window size and the stride for convolutional, maxpooling, and deconvolu-

tional layers are also presented. Abbreviations: Conv = convolutional layer; Deconv = deconvolutional layer; IN = instance normaliza-

tion layer; Maxpool = maxpooling layer; ReLU = rectified linear unit.
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Adam stochastic gradient descent method23 was used to

minimize the multi-Dice loss:

loss ¼ 1

4

X4
i ¼ 1

1� 2
PN

j ¼ 1 Pij � LijPN
j ¼ 1 Pij þ

PN
j ¼ 1 Lij

 !
; ð1Þ

where Pij is the probability, after Softmax layers, of the

voxel j being the label i; 4 labels are background label

and 3 tumor subregion labels; Lij is the ground truth label,

0 or 1, of the voxel j being the label i; and N is the voxel

number. The validation set was used for tuning hyper-

parameters including the initial learning rate and the stop-

ping epoch number. A batch size of 1 was used for model

training.

The trained VGG-Seg was applied to the remaining

163 patients with GBM (all of whom had corresponding

OS data) to generate their tumor subregion labels. The

autosegmented tumor contour was acquired by merging

the 3 predicted subregion labels. Model accuracy was

evaluated using the Dice coefficient:

Dice ¼ 2 Vground \ Vauto

� �
Vground þ Vauto

; ð2Þ

where Vground and Vauto are the volumes of the ground

truth tumor contour and autosegmented tumor contour,

respectively.
Radiomic feature extraction

Handcrafted features
Using the PyRadiomics24 package (version 2.1.2) for

all 163 patients with GBM, 1106 handcrafted features

were extracted from 4 MR images. These features were

extracted from the autosegmented tumor contour and

contained 14 shape-based features, 72 first-order statisti-

cal features, 292 second-order statistical (textural) fea-

tures, and 728 high-order statistical features. Shape-

based features represented the shape characteristics of the

tumor contour. First-order statistical features represented

the characteristics of the tumor intensity distribution.

Textural features were extracted based on gray level

cooccurrence, gray level size zone, gray level run length,

gray level dependence, and neighborhood gray-tone dif-

ference matrices. They represented the characteristics of

the spatial intensity distributions. High-order statistic fea-

tures were extracted from the images filtered using Lapla-

cian of Gaussian filters.

DL-based features
Using a pretrained classification CNN VGG19 model,20

1472 DL-based features were extracted for all 163 patients

with GBM in the testing set. We used a pretrained VGG19

that is available in the deep learning toolbox (version 12.0)

from MATLAB (version 9.5, R2018b). It was trained on

more than a million images from the ImageNet data set.25
Figure 3 shows the model architecture and feature extrac-

tion scheme. VGG19 contains 16 convolutional layers and

3 fully connected layers. Five max-pooling layers are used

to achieve partial translational invariance, reduce model

memory usage, and prevent overfitting. For each patient,

we selected a square region of interest (ROI) from the

transverse slice that had the largest tumor area. The size of

the ROI was set as the maximum dimension of the tumor

contour on the selected slice. We then resized the ROIs of

FLAIR, T2-weighted, and contrast-enhanced T1-weighted

MR images to 224 £ 224 using bilinear interpolation,

mapped the pixel intensity to the range (0−255) and

concatenated them. The concatenation was input into the

pretrained VGG19 for feature extraction. As shown in

Figure 3, DL-based features were extracted by average-

pooling the 5 feature maps after max-pooling layers. Each

feature map generated a vector after average-pooling. Five

feature vectors were first normalized with their Euclidean

norms and then concatenated to form a single feature vec-

tor. DL-based features were acquired by normalizing the

single feature vector with its Euclidean norm.
Survival prediction model

The 163 patients with GBM with available OS data

were randomly split into a training set of 122 patients and

a testing set of 41 patients. Each feature was normalized

using the mean and standard deviation of the training set.

Because a large number of features may lead to overfit-

ting, we preselected a subset of features having the high-

est univariate C-index. Higher C-index values indicate

features with higher prognostic power. The Cox regres-

sion model with regularization was trained using the

selected features to construct a radiomic signature for sur-

vival prediction in patients with GBM. The radiomic sig-

nature is a linear combination of the features weighted by

the Cox regression model coefficients. We tested 3 regu-

larization techniques: ridge, elastic net, and least absolute

shrinkage and selection operator. The number of the pre-

selected features, the regularization technique, and the

corresponding regularization parameters were chosen

with 5-fold cross-validation using the training set. Two

Cox regression models were trained using either hand-

crafted features or DL-based features. The resulting

radiomic signatures are referred to as the “handcrafted

signature” and the “DL-based signature,” respectively.

The prognostic power of the 2 constructed radiomic

signatures was evaluated using the C-index and the aver-

age areas under the receiver operating curves (AUCs) at

different survival time points. A paired t test and DeLong

tests were conducted to test the significance of the differ-

ences in the C-index and AUCs, respectively. A threshold

on the radiomic signature can be set using the training set

for patient stratification. We investigated 2 thresholds: 1

selected using the X-tile software26 and the other defined



Fig. 3 Deep learning (DL)−based feature extraction scheme using VGG19. VGG19 contains 16 convolutional layers, 5 max-pooling

layers, and 3 fully connected layers. The average-pooling layers were used for extracting DL-based features. Feature maps and feature

vectors after every layer are shown as cuboids and rectangles, respectively. The feature map depth and feature number are shown. A

concatenation of fluid-attenuated inversion recovery (FLAIR), T2-weighted (T2w), and contrast-enhanced T1-weighted (CE-T1w)

regions of interest (ROIs) was input into the pretrained VGG19 for feature extraction. By average-pooling along the spatial dimen-

sions, 1472 DL-based features were extracted from max-pooling feature maps. Abbreviations: Conv = convolutional layer;

ReLU = rectified linear unit.
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by the median signature value of the training patients.

The X-tile software selected the optimal threshold by

selecting the highest X2 value of the data divisions. The

chosen thresholds were then used to stratify the testing

patients into high-risk and low-risk groups. Log-rank

tests were conducted to test the difference between the 2

risk groups.
Results
OS statistics

The median and mean (standard deviation) of OS were

367.0 days and 416.5 (329.2) days in the training set, and

362.0 days and 442.1 (408.6) days in the testing set,

respectively. A Mann-Whitney U test indicated that we
Table 1 Dice coefficients of the whole tumor contours for

the training, validation, and testing sets

Dice Training

(75 LGG and

30 GBM)

Validation

(17 GBM)

Testing

(163 GBM)

Whole tumor 0.92 § 0.03 0.90 § 0.07 0.86 § 0.09

Abbreviations: GBM = glioblastoma multiforme; LGG = low-grade

glioma; SD = standard deviation.

Results were averaged and showed in (mean § SD) format.
cannot reject the null hypothesis that there was a differ-

ence in OS between 2 data sets (P = .83).
Tumor segmentation

The VGG-Seg was trained using an initial learning

rate of 5 £ 10�4 for 150 epochs. These hyperparameters

resulted in the minimum validation loss. The Dice coeffi-

cients of the whole tumor contours for the training, vali-

dation, and testing sets are summarized in Table 1. The

autosegmented contours achieved the Dice coefficient of

0.86 § 0.09 on the whole tumor contour for 163 patients

with GBM in the testing set.
Survival prediction

Table 2 shows the optimal preselected feature number,

regularization technique, and regularization parameter

that achieved the best cross-validation result for each fea-

ture set.

The handcrafted signature achieved a C-index of 0.64

(95% confidence intervals [CI], 0.55-0.73) on the testing

set, whereas the DL-based signature achieved a C-index

of 0.67 (95% CI, 0.57-0.77). A paired t test indicated that

we could not reject the null hypothesis that there is no

difference in C-index (P = .27).



Table 2 Optimal regularization technique and hyperparameters selected by 5-fold cross-validation for each feature set

Number of preselected features Regularization technique Regularization parameter (λ)

Handcrafted features 50 Ridge 3.439

DL-based features 80 Ridge 1.813

Abbreviation: DL = deep learning.
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Table S.1 shows the AUCs of the signatures, evaluated

at the OS of 300 days and 450 days, of the testing set. The

DL-based signature achieved numerically higher AUCs

than the handcrafted signature. P values of DeLong tests

were greater than .05.

We split the testing patients into high-risk and low-risk

groups based on signature thresholds. Figure 4 shows the
Fig. 4 Kaplan-Meier survival curves of the testing patients. Patients w

crafted signature or the deep learning (DL)−based signature. The top

X-tile software, and the bottom row shows the stratification based on

rank tests are shown.
Kaplan-Meier survival curves of the 2 risk groups. We

cannot reject the null hypothesis that there was no differ-

ence between the risk groups, stratified by thresholding the

handcrafted signature, and the patient OS (X-tile: P = .31;

hazard ratio [HR], 1.44; 95% CI, 0.71-2.91; median:

P = .20; HR, 1.51; 95% CI, 0.80-2.87). On the other hand,

thresholds on the DL-based signature resulted in
ere stratified into 2 risk groups based on thresholds of the hand-

row shows the stratification based on the threshold generated by

the median signature value. P values of the corresponding log-
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significant stratification of patients into 2 prognostically

distinct groups (X-tile: P < .01; HR, 2.80; 95% CI, 1.26-

6.24; median: P = .02; HR, 2.16; 95% CI, 1.12-4.17).
Discussion
In this paper, we proposed an automatic workflow for

GBM survival prediction based on 4 preoperative MR

images. The VGG-Seg was proposed and trained using

105 patients with glioma for automatically generating

GBM contours from 4 MR images. The trained VGG-Seg

was applied to 163 patients with GBM to generate their

autosegmented tumor contours for survival analysis. We

extracted handcrafted and DL-based radiomic features

from the MR images using the autosegmented contours

for these patients. Two Cox regression models were

trained using the extracted features to construct the hand-

crafted and DL-based signatures for survival prediction.

The handcrafted signature achieved a C-index of 0.64,

while the DL-based signature achieved a C-index of 0.67.

The DL-based signature achieved numerically higher

AUCs, evaluated at the OS of 300 days and 450 days,

than the handcrafted signature. Additionally, the DL-

based signature, unlike the handcrafted signature,

resulted in prognostically distinct groups using either X-

tile generated or median threshold. Shboul et al12 did not

report the C-index but did report an accuracy of 0.52 in

classifying patients with GBM into 3 survival outcome

groups. However, DL-based radiomic features were not

investigated in this study. It is also difficult to know

whether significant patient stratification was achieved for

testing patients with GBM in this study because log-rank

tests were not conducted.

The VGG-Seg achieved accurate automatic GBM seg-

mentation, with a mean Dice coefficient of 0.86 for the

163 patients with GBM. A study showed that the mean

Dice coefficient between the whole tumor contours drawn

by 2 experts based on multimodal MR images was 0.86.27

Recently, many studies have proposed novel 3D CNN

architectures for improving glioma segmentation accu-

racy.28-30 The goal of this study was not to benchmark

the best segmentation model but to develop an automatic

workflow that can achieve accurate GBM survival predic-

tion. Other automatic segmentation methods can be inte-

grated into the proposed workflow but were not explored

within the scope of this study. Potential future work

includes selecting the best segmentation model and inves-

tigating whether more accurate autosegmented contours

may result in a better survival prediction model.

We included 75 patients with LGG for training the

VGG-Seg because we found that the VGG-Seg trained

with both 75 patients with LGG and 30 patients with

GBM achieved better performance than the VGG-Seg

trained with 30 patients with GBM alone. This is

expected, as LGG and GBM have a similar appearance in
MR images. The VGG-Seg could generate 3 tumor subre-

gion labels. However, the accuracy of segmenting subre-

gion labels using the VGG-Seg was low, with the mean

Dice coefficients of the tumor subregions smaller than

0.75. Hence, we decided to use the whole tumor contours

for feature extraction.

Our study has several limitations. First, the number of

patients is limited so we only investigated the transfer

learning method for survival prediction. A CNN trained

from scratch for survival prediction could directly learn

useful features from MR images. However, it could be

easily overfitted and hence require more patient data to

achieve robust performance. Other methods like training

an autoencoder for feature extraction would also be valu-

able to explore. Second, the information provided by the

MR images may be limited and not powerful enough for

achieving more accurate models. Future work could be

done to include genomic features and investigate whether

the combination of genomic and radiomic features could

improve prediction performance. Third, we did not con-

sider the treatment status of patients due to data scarcity.

Integrating treatment status may help achieve better pre-

diction performance and is worthy of investigation in the

future.
Conclusions
We proposed an automatic workflow for GBM sur-

vival prediction based on 4 preoperative MR images. The

proposed VGG-Seg generated accurate GBM contours.

Our study showed that radiomic features, extracted from

the autosegmented contours generated by the VGG-Seg,

were associated with GBM OS. The DL-based radiomic

signature resulted in a numerically higher C-index than

the handcrafted signature and helped achieve significant

patient stratification. Our automatic workflow based on

DL-based radiomic features demonstrated the potential

of improving patient stratification and survival prediction

in patients with GBM.
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