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G
reat leaps forward in our understanding of the

basic biology of aging, including interventions

that extend longevity, have come about from

using common laboratory animal models. As we now

strive to apply these findings for human benefit, a serious

concern arises in how much of this research will directly

translate to normal, largely healthy, and genetically varied

populations of people. Laboratory animals, including

rodents, are only distantly related to humans and have

undergone different evolutionary pressures that likely

have driven species-specific idiosyncrasies of aging. Due

to our long lifespans, any outcomes of longevity inter-

ventions in human studies are unlikely to be discovered

even during the research careers of current graduate

students. There is then strong rationale for testing whether

the interventions discovered that slow aging in laboratory

rodents, such as dietary restriction, mTOR (mechanistic

target of rapamycin)inhibition, or acarbose (1�3), will

also extend the lifespan of species more closely related to

humans. In this context, the calorie restriction studies

utilizing non-human primates and performed by the

University of Wisconsin and the National Institute on

Aging are prime examples of this approach. However, the

rhesus macaques used in these studies also have relatively

long lifespans which required time commitment in the

order of decades to accomplish the recently published

final results (4�6).

Most non-human primates that can be kept in healthy

laboratory populations have relatively long lifespans, but

the small South American common marmoset (Callithrix

jacchus) may offer a number of advantages over other

non-human primate species, particularly for researchers

interested in aging.

Short lifespan
The normal lifespan of the common marmoset is the

shortest of any anthropoid primate, with an average life-

span in captivity of approximately 7�8 years and max-

imum lifespans reported between 16 and 21 years (7�9).

While much longer-lived than rodents, the average age of

marmosets is more manageable for a designed longevity

study than the 25-year average lifespan of rhesus maca-

ques or the 70-plus average lifespan of humans (see

comparison in Fig. 1). In addition, marmosets in a closed

colony have a natural adult mortality that drives a decline

in their cumulative survival rate from about 85 to 35% that

occurs between 5 and 10 years of age (8). In other words, a

carefully designed intervention study could occur over the

time course of a single NIH R01 granting period using

this non-human primate.

Size and husbandry
Marmosets are relatively small (averaging 300�500 g in

body weight) compared with other primates and can be

maintained as breeding pairs and family units similar to

what would be found in the wild. Moreover, their small size

allows for the maintenance of a relatively small vivarium

footprint which is more in line with rodent research. From a

husbandry standpoint, marmosets may be more amenable

to staff in charge of animal care procedures due to their

small size and relatively docile nature in comparison with

other primate species. In addition, because of their relatively

short lifespan, it is much more likely that the vivarium,

husbandry, and personnel required for marmoset care can

be maintained consistently throughout the course of aging

studies, meaning increased likelihood of replicable long-

itudinal assessments of physiology, behavior, etc.
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Relevance to human disease and aging
Similar to other non-human primates, the sequenced

marmoset genome has high homology (�93%) with that

of humans. Many of the common molecular biology tools,

including antibodies, have relatively good cross-species

recognition (10). Marmosets have a growing track record

as a non-human primate model used for a number of

diseases and pathologies that are generally considered as

age-related, including Parkinson’s disease, respiratory

diseases, and infectious diseases. Moreover, marmosets

display age-related changes in pathologies associated with

diabetes, cardiac disease, cancer, and renal disease similar

to those seen in humans (8,9). Marmosets thus represent a

complement to the existing non-human primate models

used to study aging and, in particular, a model in which

effects on longevity might be assessed in a relatively timely

manner.

Despite this promising outlook, there are some potential

challenges to using the common marmoset as a non-

human primate model to study aging. Like other non-

human primates, there is much less genetic tractability in

this species relative to the mouse, which must be taken into

account when designing studies on the biology of aging.

However, transgenic marmosets have been previously

generated (11) and new technologies including CRISPR/

Cas systems may lead the way in developing new, geneti-

cally modified marmoset models for the study of age-

related diseases or the basic biology of aging. Pertinent to

the audience of this journal, large-scale, careful patholo-

gical assessments of causes of death and the rate of

progression of disease need to be performed to compare

to what is known about the pathology of disease progres-

sion and mortality in mouse strains. Finally, despite

being much more closely related to humans than rodents,

marmosets are a New World monkey species which

diverged from the Old World monkey species (including

humans) 26 to 43 million years ago. All but the last issue

can be dealt with by using different scientific approaches.

In summary, there are a growing number of studies

addressing aging and age-related diseases using the com-

mon marmoset including intervention studies such as

dietary restriction and inhibition of mTOR signaling

(12,14). There is then growing hope that such studies will

have significant impact as a representation of a first step in

translating longevity and healthspan interventions from

mice to humans.
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indicate an individual species identified with accompanying

text. Primate species are shaded in gray.
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