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The self-renewal and differentiation potentials of stem cells are dependent on amino acid (AA) metabolism. We review the
literature on the metabolic preference of both cancer and noncancer stem cells. The balance in AA metabolism is responsible for
maintaining the functionality of noncancer stem cells, and altering the levels of AAs can influence the malignant biological
behavior of cancer stem cells. AAs are considered nutrients participating in metabolism and playing a critical role in
maintaining the activity of normal stem cells and the effect of therapy of cancer stem cells. Targeting AA metabolism helps
inhibit the stemness of cancer stem cells and remodels the function of normal stem cells. This review summarizes the metabolic
characteristics and regulation pathways of AA in different stem cells, not only from the nutritional perspective but also from the
genomic perspective that have been reported in the recent five years. In addition, we briefly survey new therapeutic modalities
that may help eradicate cancer stem cells by exploiting nutrient deprivation. Understanding AA uptake characteristics helps
researchers define the preference for AA in different stem cells and enables clinicians make timely interventions to specifically
target the cell behavior.

1. Introduction

Stem cells are poorly differentiated cells with self-renewal
ability and can be divided into cancer stem cells (CSCs) and
normal stem cells based on their cell proliferation ability
and into pluripotent, multipotent, and monopotent stem
cells based on their differentiation potential. Pluripotent
stem cells, such as embryonic stem cells (ESCs), differenti-
ate into various types of tissue cells, and the stability of
this differentiation process maintains the normal growth
and development of the human body. CSCs have unlim-
ited proliferation capacity and are closely related to the
recurrence, metastasis, and drug resistance in tumors; few
CSCs induce tumor occurrence [1, 2].

Because they have high heterogeneity, eliminating CSCs
may represent a permanent cure for cancer [3–5]. Tumor tis-
sues include endothelial cells, stromal fibroblasts, immune
cells, and malignant cancer cells; the cadres of these cells con-
stitute the tumor microenvironment (TME). Cancer cells
encounter numerous challenges and thus readjust their
metabolic properties in their TMEs [6]. A complex TME pro-
vides a unique niche to CSCs. Accumulating evidence sug-
gests that the normal stem cell niche is altered in patients
with hematological neoplasms and that the “neoplastic
niche” promotes malignancy and suppresses normal blood
cell development in such patients [7]. CSCs alter the TME
by transforming adjacent fibroblasts into cancer-associated
fibroblasts (CAF), and CAFs can activate CSC growth by
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metabolites (such as lactic acid, ketone bodies, and gluta-
mine) [8–10]. Hypoxia and nutrient deprivation result in a
buildup of lactic acid, acidifying the TME; this protects CSCs
from immune recognition [11, 12]. Under chronic acidosis
conditions, tumors prioritize glutamine intake [13]. Under
hypoxic conditions, tumor cells strongly express hypoxia-
inducible factor 1α (HIF-1α) and return to a stem-like phe-
notype through dedifferentiation [14, 15]. When cultured
under hypoxic conditions, induced pluripotent stem cells
(iPSCs) change their gene expression to resemble the pheno-
type of CSCs; this provides added support to this theory [16].
Hypoxia promotes cell survival and induces the epithelial-
mesenchymal transition (EMT) [17]. EMT-related factors,
including HIF-1α, WNT, and Snail, regulate cellular metabo-
lism, and the EMT-related metabolites glutamine, glutamate,
and alanine and high lactate concentration are associated
with poor survival and high metastatic potential in patients
with breast cancer [18, 19]. The intraniche metabolic cross-
talk contributes to the production of an adaptive phenotype
of tumor cells [6]. Therefore, it is crucial to explain the met-
abolic characteristics in different stem cell niches.

We focus on the importance of amino acid (AA) metab-
olism to the properties of stem cells. This review elaborates
the function of AAmetabolism in the CSCs and normal stem
cells. Defining the metabolic characteristics of different types
of cells may increase the specificity of cancer treatments.

1.1. AA Metabolism of CSCs. The status of cancer cells can be
reprogrammed through metabolic remodeling while their
dedifferentiation ability for the induced stem-like phenotype
is maintained [20–22]. This capability of switching between
differentiated somatic and stem cell states is called cell plas-
ticity [23]. When performing tumor therapy, both genomic
instability and microenvironment-driven selection support
tumor heterogeneity and enable the development of resistant
cells with stem-like properties because of cell plasticity [24].
Some cellular signals, such as WNT/β-catenin, NOTCH,
NF-κB, and JAK/STAT, facilitate such phenotypic plasticity.
Some cytokines, such as the vascular endothelial growth fac-
tor and epidermal growth factor, are positively correlated
with the reprogramming of stem cell properties [25–27].
The behavior of CSCs somewhat depends on niche stability;
hypoxia and acidosis lead to a change of niche in the TME
[15, 24, 28]. The extracellular matrix is a dynamic TME in
the stem cell niche, which is regulated by components, such
as nutrients and molecules. An unstable extracellular matrix
leads to abnormal behavior of stem cells [28–30]. In addition
to hypoxia and acidosis, AAs are main contributors to cell
survival in a niche, particularly that of CSCs. Many studies
have recently demonstrated that AAs regulate cancer cell
function (AAs) [19–21]. Extracellular free AAs affect the
malignant biological behavior of tumor cells through cell
metabolism, and understanding the metabolic characteristics
of CSCs can help researchers seeking to eliminate them.

1.1.1. AA Metabolism and CSC-Related Phenotypic
Properties. Glutamine is the most abundant and widely used
AA in the human body. The body synthesizes glutamine
itself, and glutamine is thus called a nonessential AA. It is

hydrolyzed into glutamic acid, aspartic acid, and other
metabolites by glutaminase. Since the discovery of tumor
metabolomics, increasing evidence has suggested that tumor
cell growth is highly dependent on glutamine [31–33].
Whether this dependence derives from stem cells in tumor
cells is unclear, so scholars have described the regulation of
glutamine metabolism in CSCs. Mani et al. [34] demon-
strated that the epithelial-mesenchymal transition (EMT)
confers tumor cells with self-renewal ability and promotes
CSC production. So, we question whether there is a differ-
ence in amino acid metabolism between EMT-related epithe-
lial cell carcinoma and cancer stem cells. Aguilar et al. [35]
performed a metabolomic comparison of two prostate cancer
cell lines—PC-3M and PC-3S. PC-3M was rich in stemness
phenotype, but PC-3S was not rich. They discovered that
PC-3M has higher levels of glutamine metabolism and higher
expression of glutaminase than PC-3S. The Warburg effect is
strong in stem cells, and the strength of the Warburg effect is
negatively related to the degree of cell differentiation [36].
Elevated glutamine metabolism can impair the damage
caused by acidic substances produced by the Warburg effect,
and this protection is achieved through glutathione synthesis,
NADPH production, and pH homeostasis [37, 38]. Although
glutamine plays a critical role in various tumor tissues [39,
40], the properties of tumor stem cells in various types of tis-
sue remain to be explored. Tardito et al. [41] demonstrated
that glioma stem cell proliferation is inhibited in the absence
of glutamine, whereas increasing the activity of glutamine
synthetase enables tumor stem cells to grow under glutamine
starvation. Through in vivo and in vitro experiments, Kamar-
ajan et al. [42] demonstrated that the expression of glutamin-
ase 1 (GLS1) and acetaldehyde dehydrogenase (ALDH) in
CSCs of primary and metastatic head and neck cancer tissues
was high. GLS1 is a GLS isoenzyme, of which there are two
subtypes—kidney glutaminase (KGA) and glutaminase C
(GAC). These subtypes are highly expressed in different can-
cers, and targeting glutaminase 1 (both KGA and GAC) was
discovered to reduce the stemness phenotype in vitro and
tumorigenicity in vivo through the reactive oxygen species
(ROS)/Wnt/β-catenin signaling pathway [43–45]. Accumu-
lating evidence has been obtained that ALDH helps maintain
stem cell properties, and ALDH is also regarded a stem cell
marker named the stemness marker [46]. Therefore, gluta-
minase maintains the in vitro CSC stemness phenotype and
tumorigenesis in vivo. Head and neck CSCs (CD44 high/-
ALDH high) have higher glutaminase and glutamate levels
than CD44 low/ALDH low cells and are more likely to be
spherical. Additionally, glutamine directs CD44 low/ALDH
low cells into stemness cells. Glutaminase promotes tran-
scription and translation of ALDH expression, and glutami-
nolysis regulates tumorigenesis and CSC metabolism by
regulating ALDH expression. These findings indicate that
glutamate is a potential marker of cancer metabolism and
provides a new theoretical basis for tumor diagnosis. On
the basis of this, Liao et al. [47] further demonstrated that
glutamine maintains the mechanism of stem cell stemness
and used L-asparaginase to mimic the state of intracellular
glutamine withdrawal. They discovered that glutamine dep-
rivation increases intracellular ROS levels and downregulates
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the β-catenin signaling pathway. The above content (see
Figure 1) illustrates the effect of glutamine on CSCs.
Recently, cystine/glutamate antiporter xCT become a hot
spot for researchers; SLC7A11 encodes the xCT. Polewski
et al. [48] confirmed that the cystine/glutamate antiporter
system (SLC7A11) is upregulated in glioma, and the overex-
pression of SLC7A11 enhances the stemness phenotype of
glioma stem cells (see Figure 1). Targeting of SLC7A11 com-
bined with chemotherapy drugs can reduce the likelihood of
cancer resistance and recurrence and improve the survival of
patients with glioblastoma (GBM). Kim et al. [49] revealed a
new mechanism in which metformin inhibits CSCs through
the glutamine metabolic pathway. Kim et al. used two types
of colon cancer cells (SW620 and HT29) as an experimental
model, and SW620 was discovered to be resistant to metfor-
min, whereas HT29 was sensitive to metformin. Studies have
confirmed that ASCT2 is more highly expressed in SW620-
derived CSCs compared with HT29, and knocking out
ASCT2 or inhibiting glutamine can enhance the inhibitory
effect of metformin on CSCs (see Figure 1). The resistance
of metformin can thus be overcome by inhibiting the gluta-
mine metabolism pathway. Wang et al. [40] demonstrated
that glutamine transporter 2 (ASCT2) is highly expressed in
prostate cancer tissues, and inhibiting the expression of
ASCT2 in prostate cancer can reduce glutamine uptake, lead-
ing to downregulation of E2F cell cycle pathway proteins and
mTORC1 pathway inhibition, thereby inhibiting the growth
of prostate cancer cells. Therefore, we question whether the
high expression of ASCT2 is closely related to prostate CSCs
and aim to obtain a novel concept for prostate CSC metabo-
lism therapy. In recent years, branched-chain AA amino-
transferase 1 (BCAT1) was discovered to be involved in the
progression of glioma, ovarian cancer, liver cancer, breast
cancer, and leukemia [50–54], but less in CSCs. Raffel et al.
[55] performed proteomic analysis of stem cells and nonstem
cells in acute myeloid leukemia (AML) and found that
BCAT1 was significantly highly expressed in stem cells (see
Figure 1). Targeting BCAT1 will become a new target for
stem cell therapy in leukemia.

The presented literature review indicates the necessary
effects of the presence of glutamine on stem cell characteris-
tics. Regarding other AAs, phosphoglycerate dehydrogenase
(PHGDH) is a metabolic enzyme used in serine synthesis,
and overexpression of PHGDH has been associated with

mortality of patients with breast cancer [56]. In recent
years, researchers have demonstrated that high PHGDH
expression in breast CSCs causes maintained cell prolifera-
tion and metastasis ability through the maintenance of
redox homeostasis [57]. Samanta and Semenza [58] showed
that PHGDH reprograms cell metabolism toward increased
glycolysis and suppressed oxidative phosphorylation. A
more active serine synthesis pathway helps hypoxic tumor
stem cells adapt to hypoxia for cell survival. The kynure-
nine (Kyn) pathway is the main direction of tryptophan
metabolism and the crucial mechanism of immune escape;
the immunosuppressive effect of the Kyn pathway has been
attributed to mainly reduced tryptophan levels [59]. Two
main rate-limiting enzymes of tryptophan metabolism,
indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-
dioxygenase, are strongly expressed in tumors and are cor-
related with poor prognosis of patients with cancer [60–63].
An abnormal increase in tryptophan metabolism enzyme
activity leads to depletion of tryptophan levels in the
TME. Recent research has demonstrated that tryptophan
depletion and hypoxia preserve the phenotype of CSCs by
inducing the enhancement of OCT4 transcription; there-
fore, various tryptophan derivatives can be used to inhibit
CSCs [64] (see Figure 1).

Glutamine promoted CSCs’ proliferation and main-
tained stemness phenotype. Glutaminase 1 (GLS1) was
highly expressed in CSCs and promoted the expression of
acetaldehyde dehydrogenase (ALDH); its overexpression
induced glutamine metabolism. BCAT1 promoted HSC
proliferation and survival via maintenance of amino acid
balance. SLC7A11, which function as cystine/glutamate
antiporter, was also highly expressed and enhances the
stemness phenotype of glioma stem cells (GSCs). Phospho-
glycerate dehydrogenase (PHGDH) promoted serine syn-
thesis and maintained cell proliferation and metastasis
ability via the maintenance of redox homeostasis. Trypto-
phan depletion preserved the CSC phenotype via inducing
the enhancement of OCT4 transcription.

1.1.2. AA Metabolism and CSC-Related New Therapeutic
Modalities. Metabolic drugs are used to treat tumors on the
basis of differences in the expression of substances in tumor
cells and normal tissues; they mainly target a specific AA or
a key metabolic enzyme for dietary or drug intervention.
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Figure 1: Effect of amino acids on the properties of cancer stem cells (CSCs).
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With increasing numbers of studies investigating the effects
of AA metabolism on the regulation of tumor stem cell phe-
notypes, targeting AA metabolism pathways will become a
popular topic in cancer therapy research. Although AA
metabolism pathways have a strong impact on the properties
of CSCs, limited studies have evaluated the treatment of
tumors by targeting AA metabolism pathways. Here, we
summarize some potential therapeutic modalities (Figure 2).

Targeting the function of membrane transporters in
CSCs is a potential new therapeutic strategy. In vivo and
in vitro experiments have demonstrated that pharmacolog-
ical deletion of the cystine/glutamate transporter xCT
causes AA starvation in estrogen receptor-positive breast
cancer cells and suppresses the proliferation of these cells
[65]. Actinomycin D has been identified as a potential anti-
tumor agent that significantly inhibits activity of liver CSCs
without affecting normal hepatocytes; the inhibitory effect
on CSCs results from the inhibition of xCT expression
and CD133 synthesis [66]. In addition, the xCT inhibitor,
sulfasalazine, leads to the impairment of glutathione syn-
thesis and induces ROS generation, thereby triggering oxi-
dative damage in head and neck squamous cell carcinoma
[67]. Tumor cells have strong drug resistance, and new
drugs such as small molecule inhibitors are urgently needed
for treating tumors. NCT-503, a molecular inhibitor target-
ing PHGDH, exerts an antitumor effect by enhancing the
chemotherapeutic sensitivity of erlotinib in lung cancer
[68]. CB-839, GLS inhibitor, inhibits the growth of AML
cells by reducing the rate of conversion of Gln to glutamate
[69]. Notch signaling promotes tumorigenesis and also
plays a crucial role in stem-cell-like cells [70, 71]. Notably,
Kahlert et al. [72] demonstrated that the Notch inhibitor
MRK003 has different roles in GBM cells and U87NS gli-
oma stem cell (GSC) spheres. In GBM cells, glutamate
and glutamine levels are decreased, but in U87NS GSCs,
threonine and lactate levels are significantly increased. Lit-
erature does not mention how threonine metabolism regu-
lates tumor stem cell functionality. The aforementioned
agents may become effective antitumor drugs that target
the AA metabolism pathways of CSCs. In addition, many
studies have focused on IDO inhibitors targeting tumors,
but few studies have explored whether the antitumor effect
of IDO inhibitors originates from anti-CSCs.

Actinomycin D (ActD), sulfasalazine target xCT, and
CB-839 target GLS to reduce glutamate synthesis. NCT-503
targets PHGDH to reduce serine synthesis. MRK003 targets
Notch to induce the threonine level.

1.2. AA Metabolism of Normal Stem Cells

1.2.1. Embryonic Stem Cells and Induced Pluripotent Stem
Cells. ESCs are typical pluripotent stem cells with the poten-
tial to form complete individuals. Studying the metabolic
characteristics of ESCs has been critical to the development
of regenerative medicine. Due to ethical constraints, few
studies have investigated human ESCs (hESCs); instead,
mouse ESCs (mESCs) or induced pluripotent stem cells
(iPSCs) have been employed. iPSCs are of a similar type to
ESCs. In 2006, Takahashi and Yamanaka [73] used viral vec-
tors to transfer four transcription factors (OCT4, SOX2,
KLF4, and C-MYC) to receptor cells to maintain the stem-
ness phenotype in a process called cell reprogramming. Due
to the similar functions of iPSCs and ESCs, numerous
researchers have circumvented the ethical controversy
around ESCs by studying iPSCs instead. However, in
research on iPSCs, there is a risk of a low induction rate
and carcinogenesis.

In recent years, researchers have discovered that some
AAs are highly sensitive to maintaining stem cell pluripo-
tency and differentiation ability. Therefore, the AA metabo-
lism characteristics of stem cells may be used to improve
the induction rate of iPSCs and application security. Since
1998, researchers have found that the expression of stem cell
marker (c-myc, oct4) is reduced when cells are cultured in
Dulbecco’s modified Eagle medium that lacks threonine.
Subsequently, the impact of AA metabolism regulation on
embryonic development was discovered [74]. When threo-
nine was resupplied, the proliferative capacity of mESCs
was restored by activating AKT, ERK, P38, JNK/SAPK, and
mTOR [75, 76]. In a recent study, Chen andWang [77] dem-
onstrated that threonine is involved in the maintenance of
epigenetic regulation of mESC pluripotency. Threonine
dehydrogenase (TDH), which converts threonine into gly-
cine (for single carbon metabolism) and acetyl-CoA (for
energy production), is significantly necessary to the survival
of the mESCs. Threonine depletion and TDH inhibition
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Figure 2: New therapeutic agents targeting AA metabolism.

4 Stem Cells International



result in significantly decreased levels of H3K4me2. Demeth-
ylation of histone H3 at lysine 4 (H3K4me3) is the result of
consuming cellular S-adenosyl methionine (SAM). H3K4me3
is dependent on the consumption of cellular SAM. Thus,
threonine andmethionine, used as donor molecules for histone
methylation, are essential to the growth and differentiation of
hESCs. Furthermore, based on this study [77], Shyh-Chang
et al. [78] discovered that placing glycine and pyruvate in the
medium prevented the threonine-starvation-induced death of
mESCs (see Figure 3), illustrating the threonine metabolism
of ESCs. Shiraki and Kume reported that hESCs and iPSCs
require large amounts of methionine (Met) and express high
levels of Met-metabolizing enzymes. Met deprivation leads to
a rapid decrease in intracellular SAM and SAM-regulated gene
expression through supporting methyls for DNA and histone.
The reduction of SAM triggers p53 signaling, reduces the
expression of the pluripotency marker Nanog, and differenti-
ates hESCs and iPSCs into three germ layers [79]. However,
when deprived ofMet for a long period, cells move toward apo-
ptosis (see Figure 3).

Kilberg et al. [75] comprehensively demonstrated that
the self-renewal and differentiation of mESCs are depen-
dent on proline metabolism, and excessive glycine levels
can block proline-induced stem cell differentiation. The
researchers also discovered that L-proline can induce
ESC transformation into mesenchymal stem cells while
genome remodeling with H3K9 and H3K36 methylation
occurred [80]. He and others enriched the regulation of
AA in ESCs [81], confirmed that arginine and proline
depletion can impair the pluripotency of hESCs, and indi-

cated that the downregulation of pluripotency is due to
the reduction of Nanog and Oct4 expression (see
Figure 3), illustrating the function of proline, arginine,
and glycine in mESCs. He et al. [81] reported that depri-
vation of glycine, serine, and tyrosine can downregulate
Nanog expression on the first occasion but enhance the
endodermal differentiation potential. Under the double
deprivation of methionine and cysteine, the self-renewal
ability of hESC H9 is reduced. These studies provide a ref-
erence for human embryo development and ESC research.

Threonine promoted cell survival via metabolism by
TDH to glycine, but excessive glycine inhibited cell differen-
tiation by blocking proline. Threonine input maintained the
properties of stem cells including stemness phenotype and
pluripotency via upregulating H3K4me2 and c-Myc and
Oct4 expression. Threonine induced cell proliferation by
activating signal pathways (AKT, ERK, P38, mTOR, and
JNK). Adding proline to the medium promoted the differen-
tiation of mouse embryonic stem cells into mesenchymal
stem cells. Double depletion of arginine and proline reduced
the expression of Nanog and Oct4 in human embryonic stem
cells. Methionine deprivation reduced Nanog expression via
activating the P53 signal pathway.

1.2.2. Hematopoietic Stem Cells. Hematopoietic stem cells
(HSCs) are the original cells in blood, have the potential to
differentiate into various blood cells, are regarded as typical
multipotent stem cells, and play a key role in maintaining
the stability of blood components. At present, HSCs are
mainly used to treat leukemia through bone marrow
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Figure 3: Effect of amino acids on the properties of embryonic stem cells (ESCs).
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transplantation. However, such transplantation causes diffi-
culties such as immune rejection and metabolic disorders.

An imbalance of AA metabolism can affect the prolifer-
ation and survival of HSCs in vivo and be harmful to them.
Next, Wilkinson et al. [82] employed metabolomics to con-
firm that a balance of branched-chain AAs (BCAAs) helps
maintain hematopoietic stem cell proliferation and cell sur-
vival. HSCs are sensitive to BCAA levels, especially that of
proline, and the balance between these levels. However,
interestingly, an imbalance of BCAAs inhibits HSC growth
more strongly than insufficiency of three AAs, confirming
that AA balance affects HSC survival more strongly than
AA levels. Therefore, the imbalance of AA may be an
essential promoter of dysfunction of HSCs. Studies [82,
83] highlight a critical role for valine balance in HSC
homeostasis, but the mechanism is unclear. Therefore,
enhancement of nutritional AA balance can be used as a
combined treatment for bone marrow transplantation.
Oburoglu et al. [84] confirmed that the glutamine trans-
porter (ASCT2) was highly expressed in HSCs. The ability
of HSCs to differentiate into erythrocytes is dependent on
ASCT2 and activation of glutamine metabolism. Blocking
glutamine metabolism can cause HSCs to differentiate into
monocytes instead (see Figure 4). SHP-1 is a class of pro-
tein tyrosine phosphatases with an SH2 domain that con-
trols intracellular phosphorylation levels of tyrosine, and
the SHP-1 proteins are expressed in all hematopoietic cells.
A lack of SHP-1 weakens the ability of HSCs to self-renew,
and in vivo experiments have confirmed that the HSCs in
SHP-1 knockout mice have no hematopoietic reconstitution
ability [85]. However, whether the phosphorylation level of
tyrosine is involved in the hematopoietic reconstitution of
HSCs is worth further exploration (see Figure 4). The cur-
rent method used for determining the self-renewal and dif-
ferentiation potentials of HSCs is HSC implantation into
immunodeficient mice, but the implantation success rate
is extremely low. Hu et al. [86] used the AA derivative N-
acetyl-L-cysteine to reduce oxidative stress during implan-
tation and increased the HSC implantation efficiency (see
Figure 4). With our deep study of the AA metabolism of
HSCs, the efficiency of bone marrow transplantation can
be improved in the future through nutritional support or
combined antimetabolic drugs.

HSCs highly expressed glutamine transporter (ASCT2).
ASCT2 activated glutamine metabolism resulting in cell dif-
ferentiation into erythrocyte. Blocking glutamine metabo-
lism resulted in cell differentiation into monocytes. SHP-1
reduced phosphorylation of tyrosine and induced hemato-
poietic reconstitution ability. Inputting N-acetyl-L-cysteine
promoted bone marrow transplantation via inhibiting oxi-
dative stress.

2. Conclusion and Discussion

After performing synthetic analysis, we discovered that thre-
onine, proline, and methionine affect the process through
which ESCs and iPSCs differentiate into different tissues;
however, HSCs and CSCs are highly sensitive to glutamine.
This may be due to the preference of HSCs and CSCs to an
acidic niche. An acidic environment enhances drug resis-
tance by reducing chemotherapeutic drug permeability and
promoting drug efflux [24]. In addition, hypoxia induces
high glutamine metabolism. Hypoxia induces HIF-1α to
maintain the stem-phenotype of CSCs, and the expansion
of myeloid progenitors induces hypoxia due to oxygen deple-
tion and stabilizes HIF-1α in the bone marrow microenvi-
ronment; thus, hypoxia-induced HIF-1α activation is
essential to HSC mobilization [15, 87]. The diversity of AAs
taken up by ESCs and iPSCs is related to the diversity of their
differentiation orientation. In the future, inducing normal
stem cell-oriented differentiation may be dependent on exog-
enous AA intervention. Tryptophan depletion induces the
stemness phenotype of CSCs, which may correspond to the
inhibition of the T cell response [88]. Tryptophan metabo-
lism produces an immunosuppressive Kyn, and based on
the aforementioned theories, tryptophan metabolism inhibi-
tion may enhance the tumor immune response; some rele-
vant inhibitors are currently undergoing clinical trials [89].
However, whether or not the inhibition of tryptophan
metabolism can reduce the drug resistance of CSCs requires
further investigation.

Understanding the metabolic expression profiles of dif-
ferent tissues and organs can help researchers to achieve
the objective of differentiation from stem cells into specific
tissue types according to different preferences of tissues and
organs for various AAs; this can be achieved by altering the
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Figure 4: Effect of amino acids on the properties of hematopoietic stem cells (HSCs).
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nutritional input or gene regulation. Stem cells derived from
different pathological types have different AA metabolism
patterns, which may be related to their microenvironment
and genetic background. Therefore, according to the meta-
bolic characteristics of different CSCs, more antitumor
modalities against specific CSCs can be developed. The met-
abolic differences between stem cell types provide a theoreti-
cal basis for developing effective antitumor drugs that do not
damage normal cells [90]. Furthermore, according to the
characteristics of AA metabolism in different tumors, the
therapeutic effect of antitumor drugs may be improved by
changing dietary habits in the future.
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