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Orthogonal confirmation of next-generation sequencing (NGS)-detected germline variants is standard
practice, although published studies have suggested that confirmation of the highest-quality calls may
not always be necessary. The key question is how laboratories can establish criteria that consistently
identify those NGS calls that require confirmation. Most prior studies addressing this question have had
limitations: they have been generally of small scale, omitted statistical justification, and explored limited
aspects of underlying data. The rigorous definition of criteria that separate high-accuracy NGS calls from
those that may or may not be true remains a crucial issue. We analyzed five reference samples and over
80,000 patient specimens from two laboratories. Quality metrics were examined for approximately
200,000 NGS calls with orthogonal data, including 1662 false positives. A classification algorithm used
these data to identify a battery of criteria that flag 100% of false positives as requiring confirmation (CI
lower bound, 98.5% to 99.8%, depending on variant type) while minimizing the number of flagged true
positives. These criteria identify false positives that the previously published criteria miss. Sampling
analysis showed that smaller data sets resulted in less effective criteria. Our methodology for determining
test- and laboratory-specific criteria can be generalized into a practical approach that can be used by
laboratories to reduce the cost and time burdens of confirmation without affecting clinical accuracy.
(J Mol Diagn 2019, 21: 318e329; https://doi.org/10.1016/j.jmoldx.2018.10.009)
The use of orthogonal assays (eg, Sanger sequencing) to
confirm variants identified with next-generation sequencing
(NGS) is standard practice in many laboratories to reduce the
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risk for delivering false-positive (FP) results. Clinical NGS
tests can inform significant medical decisions,1,2 and there-
fore confirmation is recommended by medical practice
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Orthogonal Confirmation in Genetic Tests
guidelines,3,4 although the details are generally left up to the
laboratory.3,5 Because clinical NGS methods often emphasize
sensitivity (to avoid missing clinically important variants), FP
rates can be elevated compared with those in research NGS.6

Moreover, pathogenic variants are often technically chal-
lenging (eg, many are located within repetitive or complex
regions), which can further increase FP rates.7e9 Confirma-
tion assays have a monetary cost, however, and also increase
the time needed to deliver results, a critical factor in many
clinical situations.

Published studies examining this issue have concluded
that confirmation of the highest-quality NGS calls may not
always be necessary.10e14 Some of these studies10,12

propose specific criteria for separating high-confidence
true-positive (TP) variant calls from those that are possibly
FPs. These criteria differ from those used in filtering, the
separate process of removing calls confidently believed to be
false or unsupportable. The remaining intermediate-
confidence calls are those that benefit from confirmatory
assays, additional data review, or both to determine which
are TPs andwhich are FPs. Unfortunately, these prior studies
are generally small, in some cases proposing criteria using
only one or five example FPs (Table 1). The presence of few
FPs may seem reassuring but leads to significant limitations
in these studies. First, because their statistical power to
Table 1 Summary of the Data Sets

Source
Variant
type Samples

Unique
variants

Variant
calls TPs

This study: Lab 1 SNVs GIAB 27,202 136,146 135
Patients*y 2840 3699 3

Indels GIAB 3715 15,574 14
Patients*y 1749 2274 2

This study: Lab 2 SNVs GIAB 5816 29,148 29
Patients*z 4359 4934 4

Indels GIAB 1185 3617 3
Patients* 267 389

Strom et al10 SNVs Patientsx{ - 108
Baudhuin et al11 SNVs Patientsk 380 797

1KGk** 736 736
Indels Patientskyy 63 122

1KGk** 26 26
Mu et al12 SNVs Patients{ - 6912 6

Indels Patients{ - 933
van den Akker et al14 SNVs Patients{zz 3044 5829 5

Indels Patients{zz 526 1350 1

*Clinical and GIAB data were combined in the final analysis. GIAB data include
yManual review removed certain FPs (particularly indels) and thus reduced FDR
zMany of the clinical FPs were systematic errors in the OTOA and CFTR genes, w
xThe authors did not provide a count of unique variants. For the van den Akke
{CIs were calculated based on data from the publication. No such statistics we
kThe lack of FPs may have been a result of aggressive filtering, which can rem
**Only unique 1KG variants were analyzed. The results from the updated 1KG d
yyMost of the indels in patients were intronic and homopolymer associated. Th
zzThe relatively high FDRs in this data set may have been a result of under-filt
1KG, 1000 Genomes Project; FDR, false discovery rate [calculated as FPs/(FPs þ T

study’s proposed criteria; GIAB, Genome in a Bottle Consortium; Indel, insertio
alteration which may be present in one or more individuals; TP, true positive.
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characterize the FP population is limited, these studies do not
address the question of whether future FPs are likely to
resemble the few observed in the study. Quite possibly,
additional FPs could be different and thus missed by the
proposed criteria. Second, most of these studies use identical
data sets for training and evaluating the proposed criteria,
likely making the results subject to overfitting.15 Third, few
of these studies provide statistical justification. Finally, all of
these prior studies use data from individual laboratories
and do not examine whether the methodologies can be
generalized.

We examined the role of confirmation using a set of
variant calls much larger than those published previously.
Our own sequences of five reference samples characterized
by the Genome in a Bottle Consortium (GIAB)16e18 were
combined with confirmatory data from over 80,000 clinical
tests. The methodology was applied in two clinical labora-
tories that use similar but not identical NGS methods.
Similar to prior studies, high-confidence NGS calls that do
not benefit from confirmation were identified. However, a
battery of criteria was found to be necessary to capture all
FPs, in contrast with the one or two metrics used by most of
the prior studies. Indeed, the specific criteria proposed in
prior studies10e12 miss FPs in our much larger data set.
Observations of a variant as a TP were found to say little
FPs FDR, %
Total
calls

Total
FPs

FP
sensitivity, %

CI lower
bound, %

,945 201 0.15
689 10 0.27 139,845 211 100 98.9
,594 980 6.29
262 12 0.53 17,848 992 100 99.8
,110 38 0.13
804 130 2.63 34,082 168 100 98.5
343 274 7.58
372 17 4.37 4006 291 100 99.1
107 1 0.93 108 1 100 5.1
797 0 0
736 0 0 1533 0 N/A N/A
122 0 0
26 0 0 148 0 N/A N/A
818 94 1.36 6912 94 100 97.4
928 5 0.54 933 5 100 62.1
524 305 5.23 5829 305 100 99.2
142 208 15.41 1350 208 100 98.8

d on- and off-target calls.
s in the Lab 1 clinical data.
hich were tested in many patients.
r study, it was calculated from the data provided.
re provided by the study authors.
ove clinical TPs as well as FPs.
ata mentioned in this article are described.
ese are generally not clinically significant.
ering, which can also affect CIs.
Ps)]; FP, false positive; FP sensitivity, the fraction of FPs captured using the
n or deletion; SNV, single-nucleotide variant; unique variant, a particular
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Figure 1 Study methodology. A: Variant calls can
be classified as high-confidence true positive (green)
and intermediate-confidence (yellow), using strict
thresholds intended to maximize the specificity of the
high-confidence set. The intermediate set will contain
a mixture of true- and false-positive calls. The study
objective was to rigorously determine test-specific
criteria that distinguish these two categories.
Variant calls that are confidently false positives (red)
are typically filtered out using different criteria that
emphasize sensitivity. The analogy to a traffic light is
illustrative. B: Process for collecting true positive and
false positive variant calls for both the clinical and
Genome in a Bottle Consortium (GIAB) specimens.
Each laboratory’s clinically validated next-generation
sequencing (NGS) assays, bioinformatics pipelines,
and filtering criteria were used for both specimen
types. Single-nucleotide variants and indels were
collected as shown. Copy number and structural var-
iants were excluded from this study, as were any
variants with an unknown confirmation status.
Filtering and manual review processes were designed
to remove clearly false variant calls but not those
considered even potentially true. Manual review was
used only with the Lab 1 clinical data. HC, high-
confidence.

Lincoln et al
about its likelihood of being an FP in a different sample or
NGS run, which indicates that prior confirmations can be an
ineffective quality metric. Approaches such as ours can
be used by any clinical laboratory to provide efficient,
effective, and statistically justified criteria for prioritizing
variant calls for confirmation.
Materials and Methods

Eight component data sets from two laboratories (Table 1)
were compiled following the process illustrated in Figure 1.
Key aspects of the used methodology are summarized in
Table 2 and are detailed here and in the Discussion. In
addition to results obtained through clinical testing, five
GIAB DNA specimens were sequenced: NA12878,
NA24385, NA24143, NA24149, and NA24631 (Coriell
Institute, Camden, NJ). Replicates of the GIAB samples
were included. NGS was performed on both the GIAB and
320
the clinical specimens by each laboratory using Illumina
(San Diego, CA) 2 � 150 bp reads as described previ-
ously.8,19,20 Seven (Lab 1) and three (Lab 2) custom
hybridizationebased assays were used, each targeting 100
to 1000 genes. Clinically reportable target regions included,
with some exceptions, protein-coding exons plus immediate
flanking sequences (10 to 20 bp on each side). Mean
coverage across targets was 300 to 1000� or more,
depending on the sample, assay, and laboratory. All data
used in this study passed stringent quality control at the
sample and run levels.
Both laboratories’ bioinformatics pipelines have been

described previously,8,19,20 although after publishing those
descriptions, the laboratories implemented the Genome
Analysis Toolkit (GATK) software Haplotype Caller21,22

version 3.6 (Lab 1) or 3.7 (Lab 2). Lab 1 used a battery
of criteria (Supplemental Table S1) to filter out clearly
erroneous variants and to generate warnings on other vari-
ants that received manual review. Variants that failed review
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Table 2 Key Aspects of Methodology Used in This Study

Aspect of methodology used Rationale (see text for details)

Large data sets used for both SNVs and indels Provides confidence in the resulting criteria and helps minimize overfitting.
Appropriate sizes determined by CI calculations (below).

Both clinical and reference (GIAB) samples used Greatly increases the size and diversity of the data sets, particularly in FPs.
Same quality filtering thresholds as used in
clinical practice

Confirmation criteria can depend on filtering criteria. Using lower filters would add
many FPs to the study but could result in the selection of ineffective or biased
confirmation criteria.

Separate filtering and confirmation thresholds used Allows high sensitivity (by keeping variants of marginal quality) and high specificity
(by subjecting these variants to confirmation).

On- and off-target variant calls analyzed in GIAB
samples

Further increases the data set size and diversity. Off-target calls were subject to the
same quality filters as were on-target calls.

Indels and SNVs analyzed separately Indels and SNVs can have different quality determinants. An adequate population of
each was required to achieve statistical significance.

Partial matches considered FPs Zygosity errors and incorrect diploid genotypes do occur and can be as clinically
important as “pure” FPs.

Algorithm selects criteria primarily by their ability
to flag FPs

Other algorithms equally value classification of TPs, which may result in biased
criteria, particularly as TPs greatly outnumber FPs.

Multiple quality metrics used to flag possible FPs Various call-specific metrics (eg, quality scores, read depth, allele balance, strand bias)
and genomic annotations (eg, repeats, segmental duplications) proved crucial.

Key metric: fraction of FPs flagged (FP sensitivity) Other metrics, including test PPV and overall classifier accuracy, can be uninformative
or misleading in the evaluation of confirmation criteria.

Requirement of 100% FP sensitivity on training data Clinically appropriate. Resulting criteria will be effective on any subset of the training
data (clinical or GIAB, on-target or off-target, etc.)

Statistical significance metric: CI on FP sensitivity Rigorously indicates validity of the resulting criteria: eg, flagging 100% of 125 FPs
demonstrates �98% FP sensitivity at P Z 0.05. Smaller data sets (eg, 50 FPs)
resulted in ineffective criteria.

Separate training and test sets used (cross
validation)

In conjunction with large data sets, cross-validation is a crucial step to avoid
overfitting, which can otherwise result in ineffective criteria.

Prior confirmation of a variant was not used as a
quality metric

Successful confirmations of a particular variant can indicate little about whether
future calls of that same variant are true or false.

All variants outside of GIAB-HC regions require
confirmation

Outside of these regions, too few confirmatory data are available to prove whether the
criteria are effective.

Laboratory- and workflow-specific criteria Effective confirmation criteria can vary based on numerous details of a test’s
methodology and its target genes. Changes can necessitate revalidation of
confirmation criteria.

FP, false positive; GIAB, Genome in a Bottle; GIAB-HC, regions in which high-confidence truth data are available from the GIAB specimens (unrelated to
confidence in our own calls or to on/off-target regions); indel, insertion or deletion; PPV, positive predictive value; SNV, single-nucleotide variant; TP, true
positive.

Orthogonal Confirmation in Genetic Tests
were also removed. To deliver high sensitivity, this process
was conservative: Variants considered possibly true, despite
warnings (eg, relatively low depth or allele balance) were
subjected to confirmation. Compared with Lab 1, Lab 2
used simpler filters (quality-depth score <4 and Fisher
strand bias score >40) and limited manual review, resulting
in a broader selection of variants being subjected to
confirmation. Copy number and structural variants were
excluded. As is typical for hybridization-based NGS,
regions neighboring clinical targets received read coverage.
In the GIAB specimens, variant calls within these off-target
regions were used as long as they passed the same quality
filters as on-target calls and were within a set distance of a
target (300 bp for Lab 1 and 50 bp for Lab 2; parameters
established in the clinical pipelines and not changed for this
study). This requirement prevented large numbers of very
lowecoverage calls from being considered, although the
quality filters remove most such calls in any case. In the
The Journal of Molecular Diagnostics - jmd.amjpathol.org
clinical specimens, off-target calls were used because
confirmatory data were unavailable.

Confirmation of clinical samples was performed by Lab 1
using Sanger (Thermo Fisher Scientific, Waltham, MA) or
PacBio (Pacific Biosciences, Menlo Park, CA) amplicon
sequencing. Lab 1 validated23 the PacBio circular consensus
sequencing method24 specifically for use in confirmation.
This method provides high accuracy25 and has been
successfully applied in other clinical genetics testing.26 Lab 2
used only Sanger confirmation. When the results of a
confirmation assay and NGS disagreed, both results were
manually reviewed, and if the reason for the disagreement
was unclear, additional rounds of confirmation using different
primers or assays were performed. There were few putatively
mosaic variants in this study; those present were considered
TPs if confirmed and FPs if refuted by an adequately sensi-
tive assay. Variants for which confirmation could not produce
a confident answer (TP or FP) were not used in this study.
321
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The reference calls from GIAB18 software version 3.3.2
were used as truth data to confirm variants identified by each
laboratory’s sequencing of the GIAB samples. Manual review
of these samples was not performed. VCFeval27 software
version 3.7.1was used to compare each laboratory’s calls to the
GIAB truth data to determine which laboratory calls were TPs
and which were FPs. VCFeval can match variant calls even
when the same diploid sequence is represented in different
ways (spelling differences), an important factor in comparing
insertions and deletions (indels) and complex variants.27e29

VCFeval also detects partial matchesdthat is, zygosity errors
(falsely calling a homozygous variant as heterozygous or vice
versa) or heterozygous sites at which one of the called alleles is
correct and one is not. These cases, reported by VCFeval as
“FP_CA,”were considered FPs in this study (seeDiscussion).
This study did not examine false negatives in detail.

The analysis of the five GIAB specimens was restricted to
the sample-specific high-confidence regions (GIAB-HC),
which are annotated by the GIAB consortium to indicate
where their reference data have high accuracy.18 The GIAB-
HC regions span 88% to 90% of the genome of each GIAB
sample and cover most exons, introns, and intergenic regions,
an improvement compared with older versions of the GIAB
reference data16 for which there was a greater bias toward
“easy” regions.30 The GIAB-HC designation is unrelated to
any quality assessment of data produced by our laboratories.
Indeed, the NGS assays produced both high- and low-quality
variant calls within and outside the GIAB-HC regions. The
GIAB-HC designation is also unrelated to whether calls were
on- or off-target: Most (not all) of the clinical targets were
within the GIAB-HC regions, as were most off-target calls.
Because the majority of the confirmatory data lay within the
GIAB-HC regions, however, our confirmation criteria were
selected by focusing within these regions (see Discussion).
Doing so required extrapolating the GIAB-HC regions to
patient specimens, for which the union of the five GIAB-HC
files was useddthat is, if a region was considered GIAB-HC
in any of the five GIAB specimens, it was considered GIAB-
HC in all patients. This approach prevented specific
low-confidence calls in the reference data of a particular
GIAB specimen(s) from inappropriately annotating that site
as low confidence in general.

Approximately two dozen quality metrics (Supplemental
Table S2) were examined individually. The most useful
metrics included different ways of measuring read depth
(Supplemental Table S2), allele balance for heterozygous
and homozygous calls, multiple quality scores, various
indicators of strand bias, aspects of the variant call itself,
and aspects of the genomic context. We manually chose
candidate thresholds for each quantitative metric. Both the
metrics and thresholds could be specific to a laboratory and
variant type, but usually were not. Metrics for each variant
call were then turned into discrete flags.

To delineate technically challenging genomic regions,
stratification BED (browser extensible data) files produced by
the Global Alliance for Genomics and Health Benchmarking
322
Workgroup were used.28 These regions were padded by 10
bp on each side to ensure that all affected positions were
appropriately annotated. These BED files were grouped as
follows: i) repeats combined homopolymers and short tan-
dem repeats, ii) segdups (segmental duplications) included
larger regions with homologous copies in the GRCh37
reference genome, and iii) unmappable regions were those in
which the NGS reads could not map uniquely. Specific
definitions are provided in Supplemental Table S2. The
unmappable and segdup regions largely overlappeddbut
both were generally distinct from the (short) repeats.
These data were passed into a heuristic algorithm that

selected a combination of flags for the final battery of
criteria. The Python version 2.7 code for this algorithm is
available (https://github.com/slincoln/flagem). Details of the
algorithm are provided in Supplemental Appendix S1.
CIs were computed at 95% using the Jeffreys method.

Both the Wilson score method and the tolerance interval
method (as mentioned in the guidelines from the Associa-
tion for Molecular Pathology and the College of American
Pathologists29,31) are included in Figure 2 for comparison.
Results

The data sets included almost 14,000 NGS variant calls
subjected to confirmation during clinical testing, and more
than 184,000 calls with high-quality truth data from the
GIAB samples (Table 1). A total of 1662 FPs were observed.
To initially characterize the data, the false-discovery rate
(FDR) of calls in each set was calculated [FPs/(FPs þ TPs)].
Note that FDR is 1 minus the analytic positive predictive
value (FDR is also called positive percent agreement), a
metric recommended in the guidelines from the Association
for Molecular Pathology and the College of American Pa-
thologists, which consider it preferable to specificity (ie, the
specific calculation) for describing multigene sequencing
tests.29 As expected, the FDR of indels was considerably
higher than that of single-nucleotide variants (SNVs), and
manual review had reduced FDRs in the Lab 1 clinical data
compared with those in the GIAB data. FDRs in the GIAB
samples were comparable between laboratories.
Analysis of Individual Quality Metrics from Lab 1

A variety of metrics (Supplemental Tables S2 and S3,
Supplemental Figures S1eS4) were examined to determine
which were informative for identifying (or flagging) FPs.
SNVs and indels were analyzed separately, as were the GIAB
and clinical samples. For each metric and threshold, the
fraction of FPs and TPs flaggeddthese indicate the value and
cost, respectively, of each potential flagdwere computed.
FDR, which indicates how likely flagged variants are to be
FPs, was also computed. A number of informative metrics
were identified, although no single metric proved adequate
alone. For example, consider the quality score (QUAL) for
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 2 Individual quality metric results and statistics. A: Variant call quality scores (QUAL, y axis) for true-positive (TP; blue) and false-positive (FP; red)
single-nucleotide variant (SNV) calls in the Lab 1 Genome in a Bottle Consortium (GIAB) data set. The x axis position of each point is randomly assigned. To make
density changes visible, a random selection of one-fifth of the TP calls was plotted along with all FPs. In the large data set, some FPs had quite high QUAL scores,
demonstrating that this metric is inadequate alone. Corresponding histograms using the full data set without down-sampling are shown in Supplemental Figure S1.
B: Random sample of 1000 data points from the same data set plotted in A. All points are displayed. Arrows indicate the two FPs present. One thousand such
random samples were generated, and compared with the full data set in A, many would lead to quite different conclusions about the effectiveness of QUAL
thresholds. C: Lower bound of the 95% CI on the fraction of FPs flagged (y axis) as a function of the number of FPs used to determine criteria (x axis) assuming
that 100% success is observed. The y axis range is 90% to 100%. This calculation used the Jeffreys method (blue), the Wilson score method (red), and the
tolerance interval method (gray). All methods produce generally similar results and indicate the validity of any study such as this. For example, using the Jeffreys
method, flagging 49 of 49 FPs shows 100% effectiveness, with a CI of 95% to 100%. Many prior studies did not achieve this level of statistical significance
(Table 1). Consistent with these CI calculations, small data sets indeed resulted in ineffective criteria (see Results). D: Histogram of per-variant false-discovery
rates (FDRs; x axis) for all variants that were observed more than once in the Lab 1 data set, and for which one or more of those calls was an FP. SNVs and
insertions and deletions (indels) are combined. An FDR of 100% indicates a fully systematic FP (insofar as we can measure); an FDR of 0% indicates a consistent TP
(not shown in this graph). Each unique variant (ie, a genetic alteration that may be present in multiple individuals) is counted once. The y axis range is 0% to 50%
of variants. Approximately half of all variants that were FPs were also correctly called as TPs in a different specimen(s) or run(s). Examples of this were observed in
both the clinical and the GIAB specimens and included both SNVs and indels. Lab 2 results were similar. Many of these variants have low per-variant FDRs, which
usually but not always are correctly called. Repeated TP observations of such a variant provide little information about the accuracy of any following observation of
that same variant. This study was underpowered to measure FDRs near 0% or 100%, and many more of these variants may exist than are shown here.

Orthogonal Confirmation in Genetic Tests
SNVs in the GIAB data (Figure 2, A and B). This metric was
used by Strom et al10 to identify SNVs that require confir-
mation, although Strom had only a single FP to use in
defining thresholds (Supplemental Figure S5). In the much
larger data set, no threshold value for QUAL could be chosen
that flagged all, or even most, of the FPs without also flag-
ging many TPs. Indeed, some FPs had quite high QUAL
scores. A QUAL cutoff of 800, for example, flagged only
The Journal of Molecular Diagnostics - jmd.amjpathol.org
56% of FPs but also flagged 17% of TPs. These flagged
variants had an FDR of 0.28%, indicating that this subset was
not highly enriched for errors compared with the overall FDR
of 0.15%. Indels fared similarly: 55% of FPs and 18% of TPs
had a QUAL of <800, with an FDR of 16% compared with
the baseline rate of 6.3%.

This observation was also true of the clinical data set, in
which 39% of FP SNVs and 2.9% of TPs had a QUAL of
323
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<800. These variants had a 3.6% FDR compared with 0.16%
overalld20-fold enrichmentdalthough most low-QUAL
calls were still TPs. There is little precision in these mea-
surements, however, because the clinical data set contained
only 10 FP SNVs, and only 4 had QUAL<800. Flagging all
10 FP SNVs required a QUAL threshold of 6400 (using
logarithmic binning), which flagged almost 30% of TPs.
Overfitting would certainly be an issue when analyzing the
clinical data set alone: If the single FP SNV with the highest
QUAL score (5516) had been absent from these data, then
thresholds would be driven by the next, much lower, score
(2567). There is little statistical confidence in any such
threshold: If 10 of 10 FPs are flagged, the point estimate is
100% FP sensitivity, but the lower bound of the CI is only
78% (Figure 2C), demonstrating that thresholds determined
using such a small data set could miss many FPs.

Other metrics were similarly analyzed; allele balance was
found to be the most informative, followed by strand bias,
the presence of nearby variant calls, and certain character-
istics of the variant itself (particularly, whether it was
het-alt, meaning a heterozygous call in which neither allele
is present in the GRCh37 reference genome). All of these
criteria had limitations, however. Some provided strong
indications of a call being an FP but flagged few such
variantsdstrand bias was one example. More commonly,
these criteria captured many TPs in addition to FPs yet still
missed FPs at useful thresholds, similar to QUAL.

More than 80% of the Lab 1 GIAB variant calls that were
analyzed were off target. These calls all passed the standard
quality filters (Supplemental Table S1) and most had high
read depth (>50�; Supplemental Table S3). Despite pass-
ing QC, some calls had relatively low coverage (10� to
50�) or were in complex regions (repeats, high GC%, etc).
Such issues are present but less common within clinical
targets, and including these additional examples allowed
thresholds to be established in a data-based manner.
Nonetheless, the off-target data appeared representative:
Indel FDRs were similar both on and off target (5.3% vs.
6.4%, respectively). SNV FDRs differed somewhat (0.04%
vs. 0.17%) but remained low both on and off target. Repeats
accounted for half of the GIAB indels (both on and off
target) and accounted for approximately 15% of the clinical
indels. Repeats also accounted for many of the indel FPs
across the study, although the vast majority of repeat-
associated calls were correct (TPs), reflecting the high
genetic variability of these sequences.

Of the variants observed more than once, approximately
half of those with at least one FP call were also correctly
called as TPs in one or more different run(s) (Figure 2D).
This was true for both SNVs and indels. It was even some-
times true across replicates of the same sample, a situation
made possible because partial match errors were considered
FPs in this analysis (see Materials and Methods). Many ex-
amples were found in the GIAB specimens, a result attributed
to the increased power to observe such variants in these data
(Supplemental Appendix S1). Clinical examples were
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observed as well. Case-by-case review suggests that the root
causes of this behavior are varied and sometimes complexd
partial match errors accounted for approximately half of these
cases. Given the limited power to detect such variants, many
more may exist. Historical confirmation performance may be
an ineffective quality metric in these data sets.

Combining Metrics

Because no single metric proved adequate, it was investigated
whether using multiple metrics might be more effective. One
precedent of this approach is a study that suggested that
requiring a depth of>100 and an allele balance between 40%
and 60% would identify variants that do not require confir-
mation.12 In our data set, which was much larger than the one
in the study by Mu et al,12 this was not the case: 29 FP indels
and 7 FP SNVs failed to be flagged as requiring confirmation
using Mu’s criteria. Nonetheless, a larger battery of metrics
might prove effective.
A heuristic algorithm was developed to explore this

hypothesis. Briefly, this algorithm incrementally adds flags to
a proposed set with the primary aim of capturing 100% of
FPs using the combination of flags. This algorithm second-
arily prioritizes minimizing the number of TPs also captured.
Criteria were separately chosen for SNVs and indels. Vari-
ants in the GIAB and clinical samples were combined in this
analysis to increase both the number and diversity of FPs
available. This analysis was restricted to the GIAB-HC
regions because of the limited amount of confirmatory data
outside of these regions (see Discussion). To minimize
overfitting, Monte Carlo cross-validationdrunning the
algorithm hundreds of timesdin each iteration, choosing
flags (training) using two-thirds of the data (chosen at
random) and testing these flags using the remaining one-
third, was performed. The flags selected by each iteration
and the specific variants that led to differences among itera-
tions (ie, depending on whether the variant was randomly
assigned to the training or the test set) were examined. This
review highlights the importance of particular implementa-
tion details of our algorithm (Supplemental Appendix S1).
Thefinal selected criteria are shown in Figure 3. Combined,

these criteria flagged 100% of all 201 FP SNVs (CI, 98.9%e
100%) and 100% of all 987 FP indels (CI, 99.8%e100%).
Only 4.1% of clinical (ie, non-GIAB) TP SNVs and 6.7% of
TP indels were flagged by the same criteria. Many FPs
received multiple flags, providing redundancy. Adding
redundancy to the algorithm as an explicit objective increased
the fraction of TPs flagged to 6.8% (SNVs) and 18% (indels).
This increase was largely due to the addition of the repeat flag
in this step (Supplemental Appendix S1).
The importance of data set size was similarly assessed. For

example, when the cross-validation was changed to use only
50 FPs in training, then 100% of indel iterations and 71% of
SNV iterations produced criteria that failed to flag at least
some FPs in the test data. Between 2.0% and 6.0% of FP
SNVs and between 1.5% and 8.4% of FP indels were missed
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Figure 3 Combining flags. These plots show the cumulative effect (top to bottom) of sequentially combining flags chosen by our algorithm. A and B: Single-
nucleotide variants (SNVs) (A) and insertions and deletions (indels; B) in the Lab 1 data set. Red indicates the fraction of all false positives (FPs) captured; blue,
the fraction of clinical true positives (TPs); gray, the fraction of FPs captured by two or more flags. The dashed lines illustrate the flags needed to capture 100% of
the FPs using at least one flag each. To be conservative, the full set of flags shown here was used (maximizing double coverage) and, in particular, required
confirmation of all repeat-associated calls. Note that in the indel analysis, higher QUAL and QD thresholds were required to maximize double coverage than were
required to achieve 100% capture of variants by a single flag each. The flags include: DP, read depth, specifically GT_DP; DP/DP, ratio of GT_DP to INFO_DP; SB5
and SB25, strand bias metrics; QUAL, quality score; QD, quality-depth score; ABnorm, allele balance for heterozygotes, normalized to be within 0.0 to 0.5; ABhom,
allele balance for homozygotes; HetAlt, heterozygous call for which neither allele is in the GRCh37 reference genome; Repeat, variant call within a homopolymer or
short tandem repeat.
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by the poorest performing 25% of data sets. These rates were
consistent with the CI calculations (Figure 2C), which pre-
dicted that criteria established using such small data sets will
capture between 95% and 100% of FPs and will accomplish
that 19 of 20 times. Further reducing the number of training
FPs to 20 produced criteria that uniformly failed; however,
125 FP SNVs or 250 FP indels performed far better.

Application of These Methods to Lab 2 Data

It was examined whether a similar approach would work for
the Lab 2 data sets, which were produced using somewhat
different NGS methods. As of this analysis, Lab 2 had
sequenced only one GIAB sample (NA12878) in addition to
compiling clinical confirmation data. One consequence of
this limitation was that clinical FPs played a larger role in
determining both criteria and CIs. This is not problematic,
although clinical confirmation data can have significant
biases, such as overrepresentation of recurrent variants. Lab
The Journal of Molecular Diagnostics - jmd.amjpathol.org
2’s combined (clinical and GIAB) data set was nonetheless
diverse.

Individual metrics were first analyzed (Supplemental
Table S2), with observations of general similarities with
those of Lab 1. Allele balance was the most informative
criterion for separating TPs from FPs, with quality score,
read depth, and strand bias also showing utility. Het-alt
calls, variants with others nearby, and repeat-associated
variants were often but not always FPs. As for Lab 1,
none of these criteria was adequate alone. Flags were
combined (Supplemental Figure S6) and were able to cap-
ture 100% of FPs with CIs of 98.5% to 100% (SNVs) and
99.1% to 100% (indels). These criteria flagged 13.2% of TP
SNVs and 15.4% of TP indels. Requiring double coverage
increased these rates to 19.6% and 29.8%, respectively.

In comparison with Lab 1 criteria, the criteria chosen for
Lab 2 appeared equally effective although less efficientda
greater fraction of TPs were flagged as requiring confirma-
tion. One reason was that fewer “bad” variant calls had been
325
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removed before confirmation, a result of Lab 2’s different
filtering and (for clinical specimens) manual review pro-
cesses. This difference does not indicate an accuracy problem
for Lab 2, but it resulted in broader confirmation criteria. This
observation reinforced the belief that confirmation criteria can
vary based on filtering thresholds, and supported the
approach of first establishing (and validating) filters before
establishing confirmation criteria. These results also suggest
next steps for Lab 2: Tightening up filtering thresholds
(where possible without impacting sensitivity) could further
reduce confirmation workload by removing unambiguous
FPs, similar to Lab 1’s process. Reducing the number of FPs
in this study, however, would make the CIs wider (ie, less
confident), reflecting an important design aspect of studies
such as ours, which depends on the set of FPs provided (see
Discussion). The four additional GIAB samples would likely
address this issue by providing additional useful FPs.
Discussion

This study investigated whether a large and diverse data set
could be used to develop statistically robust criteria to guide
the application of confirmation assays in clinical genetic
testing. The data sets combined clinical confirmation results
with data from the sequencing of GIAB specimens, allow-
ing for the two data types to complement each otherda key
aspect of our methodology (Table 2). Similar to prior
studies,10e14 this method identifies intermediate-confidence
calls that require confirmation (ie, to determine which are
TPs and which are FPs) from calls that are high-confidence
TPs from NGS alone and do not benefit from confirmation.
It cannot be guaranteed that the criteria chosen by our
method (or any method) will capture all FPs. However, the
probability of missing an FP is below a measurable level in
data sets containing, collectively, almost 200,000 diverse
variant calls with confirmatory data.

These results differ from those of prior studies in
important ways. Neither quality score (as suggested by
Strom et al10) nor the combination of allele balance and read
depth (as suggested by Mu et al12) captured all of the FPs in
our data sets even when thresholds were reoptimized.
Although the criteria must be established independently for
each NGS workflowdand indeed, workflows varied among
these studiesdthis discrepancy may have resulted from the
small data sets used in the prior studies as well as the
studies’ lack of separate training and test data sets. These
limitations may have left these studies underpowered and
subject to overfitting, which can impact the effectiveness of
the chosen criteria. A study by Baudhuin et al11 reported no
FPs, a seemingly excellent result. However, this study and
others6,12,14 showed that both FPs and TPs are abundant
within the intermediate-confidence calls produced by cur-
rent NGS methods. Aggressive filtering thus improves
specificity at the expense of sensitivity. Indeed, a separate
study showed that the methods used by Baudhuin had
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sensitivity limitations.7 The two-threshold model (Figure 1)
helps to address this issue.
In these data sets, a battery of criteria was required to flag

FPs, consistent with metrics recommended in the guidelines
from the Association for Molecular Pathology and the
College of American Pathologists.29 This result is intuitive
given that a variety of underlying factors can result in NGS
FPs and different FPs indeed have different properties. In
theory, a single quality score that captures all of these fac-
tors could be simpler to use than a battery of criteria. Un-
fortunately, no quality score produced by current variant
callers that can identify FPs without also capturing many
TPs is known. Other studies agree.14,21,32,33

A recent study by van den Akker et al14 was somewhat
similar to this one: The authors used a supervised learning
framework, used multiple quality metrics, and analyzed a
larger data set than was used in prior studies (albeit smaller
than this). There were important differences, however: Van
den Akker considered only one relatively small gene panel
and omitted certain challenging regions of those genes. By
contrast, over 2000 genes were examined here and off-target
regions included. Van den Akker’s logistic regression
approach effectively creates (another) arbitrary quality score
by mathematically combining metrics. Here, individual
thresholds on metrics recommended by guidelines were
preferred,29 which makes these results understandable and
easily implementable and avoids the statistical issues asso-
ciated with mathematical combinations of highly correlated
inputs.
Also, the objective of the heuristic algorithm, which fo-

cuses on the detection of FPs, was preferred, as opposed to
machine learning methods that optimize overall prediction
accuracy, an approach that equally values the classification
of TPs. Detecting FPs is clearly of paramount clinical
importance. Moreover, in highly imbalanced data sets (ie,
every data set in Table 1, in which TPs vastly outnumber
FPs), such approaches can produce classifiers that work far
better on the majority class (TPs) than on the minority (FPs)
unless specific corrections are implemented.34 Overall per-
formance metrics (eg, prediction accuracy) also become
uninformative with imbalanced data. For example, in the
combined data sets (N Z 194,119), an algorithm could
show 99.6% prediction accuracy yet still miss half of the
1662 FPs. The FP-centric approach used minimizes these
issues.
Another important aspect of this methodology, not used

in prior studies, was the inclusion of partial match errors, per
recommendations.28 These errors include both zygosity
differences and incorrect diploid genotypes. Both of these
error types can have significant clinical implications, and
both are often resolved by confirmation. It is important to
distinguish partial match errors from “spelling differences,”
a different issue in which sequences are correct but are
described in a noncanonical way.29 This study ignored
spelling differences but considered partial match errors to be
as important as pure FPs (ie, cases in which a variant was
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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called but none is actually present). Partial match errors
represented approximately half of the FPs in our GIAB data
sets. Many partial match errors occurred in repeats, and thus
they were less common in the clinical data sets (approxi-
mately 10% of FPs).

There were numerous benefits to using the large data sets
generated. These not only provided a diverse set of FPs for
training (ie, selecting criteria) but also allowed for the
establishment of separate test sets to properly validate these
criteria, identify outliers, and minimize overfitting. Using all
five GIAB specimens also reduced the risk for biases
resulting from the fact that variant callers are often trained,
and may exhibit superior performance, on one of these
specimens (NA12878).30 Furthermore, the large data sets
allowed computing statistical measures of confidence, a
crucial part of any laboratory validation study, albeit one
that is not always used.29 The statistical metric used (CI
lower bound on fraction of FPs flagged) was inspired by
recent guidelines.29,31 It uses the size of the FP data set as a
proxy for whether those data are likely to be adequately
representative and diverse for use in setting robust criteria.
The CI bound does not directly measure diversity, however,
and can be artificially inflated by under-filtering, as
described later in this section. More sophisticated statistical
approaches are ideal topics for future work. However,
metrics or statistics based on net accuracy of the classifier,
which can be uninformative, as described earlier in this
section, or on positive predictive value, which can be
misleading because variants of intermediate quality become
diluted by the large number of high-confidence TPs, should
be used with caution.

A key question is how large a data set is adequate. For
example, if certain criteria are shown to flag 49 of 49 FPs,
these criteria are ostensibly 100% effective. However, they
have been statistically demonstrated to flag only between
95% and 100% of FPs at P Z 0.05 (ie, 19 of 20 times)
(Figure 2C). This issue was found not to be hypothetical:
Small training data sets (eg, 50 FPs) indeed resulted in
poorly performing criteria, and the corresponding CI bound
(�95.1%) was considered inadequate. Our laboratories’
tests require high specificity, and 100% FP detection with
CI lower bounds between 98.5% and 99.8% (Table 1) was
achieved by using hundreds of example FPs. Such bounds
are likely appropriate for panel and exome tests, which have
an increased risk for producing FPs compared with single-
gene tests. Indels deserve careful attention, as FPs are
more likely to appear pathogenic compared with FP SNVs.

Obtaining a large number of FPs for study can be chal-
lenging, and care was taken not to do so in artificial and
problematic ways. For example, many FPs could be added
by simply lowering filtering thresholds (underfiltering).
However, the resulting criteria might be effective only in
flagging clearly erroneous calls as opposed to accurately
defining the intermediate-confidence set (Figure 1) for
which confirmation matters most. This limitation would be
particularly problematic when using machine-learning
The Journal of Molecular Diagnostics - jmd.amjpathol.org
algorithms that best classify the largest input data subsets.34

For example, van den Akker’s FDRs are quite high14

compared with those in our data sets and those of prior
studies (Table 1), suggesting that many low-quality FPs
may have been included. Underfiltering also will artificially
tighten CIs by counting obvious FPs, which could be
misleading. A similarly problematic approach would be to
run many samples containing the same FP variants. To
avoid such problems, this study used the same filtering
thresholds that our laboratories had previously validated for
use in clinical practice, and both the number of unique
variants and the number of variant calls were considered
when designing this study (Table 1). The GIAB specimens
provided a great deal of data, eliminating potential in-
centives to increase the data set in problematic ways.

One might argue that this study artificially increased the
number of FPs by including off-target regions. To the
contrary, it was considered valuable to deliberately chal-
lenge this approach by adding off-target calls, some of
which present technical challenges that are present but less
frequent in coding exons. Nonetheless, the off-target data
appeared reasonably representative (see Results). Because
100% of the combined GIAB and clinical FPs were required
to have been flagged, these criteria worked for both on- and
off-target calls, as well as both GIAB and clinical speci-
mens. Quality metrics for clinical, on-target GIAB, and
off-target GIAB variant calls were examined separately
(Supplemental Table S3), with observations of similarities
and expected differences resulting from: i) data set sizes, ii)
selection bias (in general, only clinically reportable variants
were subject to confirmation in the clinical specimens), and
iii) manual review (applied to the Lab 1 clinical specimens
but not the GIAB samples).

This study had important limitations. The truth data
provided by the GIAB consortium were used for confir-
mation in the GIAB specimens. These calls are highly
accurate but imperfect.18 In addition, when the Coriell
GIAB specimens are sequenced (as done here), there can be
genetic differences compared with the original DNA sam-
ples used to develop the truth data. In general, these issues
will cause the methodology to establish broader criteria than
might otherwise be necessary, increasing the number of TPs
flagged. Outliers (FPs with unusually high confidence in our
laboratory data) were examined in the data from the GIAB
consortium to ascertain whether those results appeared
correct. No sites in the GIAB specimens were confirmed
using an orthogonal assay, although it may be valuable to do
so in future studies.

A further limitation resulted from the focus on GIAB-
HC regions, in which there were the largest numbers of
variant calls with confirmatory data. The GIAB-HC
designation does not indicate confidence in our own lab-
oratories’ data (Materials and Methods), although there
was an important bias to recognize. The small fraction of
the human genome (10% to 12%) that lies outside of the
GIAB-HC regions comprises sites for which the GIAB
327
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consortium, using multiple platforms and extensive anal-
ysis, could not confidently determine the true sequences.16

These are the hardest regions of the genome to sequence,
and they present diverse challenges that increase error
rates. Criteria that identify FPs within the GIAB-HC re-
gions might not be effective outside of those regions, and
there were few data with which to examine this. It was
concluded that clinically relevant variants outside of the
GIAB-HC regions need to be confirmed, regardless of
other quality metrics. As a consequence, variants in
segmentally duplicated regions (which are usually not
GIAB-HC) require confirmation. Within the Lab 1 data set,
7.0% of clinically reported SNVs and 15% of clinical
indels were thus flagged, in addition to those variants
described in the Results. Additional statistically valid
studies would be required to determine which variant calls
outside of the GIAB-HC regions could forego confirmation
in the future.

The American College of Medical Genetics guideline on
NGS recommends that laboratories have “extensive expe-
rience with NGS technology and be sufficiently aware of the
pitfalls . before deciding that result confirmation with
orthogonal technology can be eliminated.”3,p.6 This meth-
odology provides a practical and rigorous way to follow this
recommendation and to ensure that the experience (ie, data)
is based on a laboratory’s own specific methodologies and
test targets, not NGS in general. Laboratories using the same
sequencing instrument and variant caller (eg, GATK) may
still need different confirmation criteria owing to the many
subtle differences among tests (particularly bioinformatics).
Determining whether universal, interlaboratory criteria are
feasible would require additional and extensive study.
Consistent with guidelines,3,5,29 these data suggest that each
laboratory should validate its own confirmation criteria and
that revalidation of these criteria should accompany any
significant process change (including filtering changes).

These results had specific implications for the current
New York State guidelines, under which confirmation may
be waived after “at least 10 positive samples per target
gene” have been confirmed.4 In these data, many FP vari-
ants were also called as TPs (Figure 2D), an issue not
examined by prior studies. Examples were found in both the
GIAB and clinical data from both laboratories. These vari-
ants run a high risk for being confirmed TPs in a series of
tests and then, after confirmation is no longer considered
necessary, being called falsely. Moreover, in these data sets,
different variants within a gene often exhibited remarkably
different properties that correlated with remarkably different
FDRs. Observing some variants within a gene as TPs pro-
vides little information about whether other variants within
that gene are FPs. In summary, these results argue against
using the New York criteria for confirmation with multigene
sequencing tests.

This methodology does not address other roles that
confirmation assays serve, such as verifying the identity of a
specimen or determining the exact structure of certain
328
variants. Furthermore, this framework does not directly
address conflicts between the results ofNGS and confirmation
assays. As Beck and Mullikin13 elegantly showed, naively
assuming that a confirmation assay is always correct can
introduce more errors than confirmation corrects. This study
also does not address the important issue of setting filtering
criteria to ensure sensitivity. Laboratories need to address
these issues separately. Finally, note that this approach is not
necessarily optimal at minimizing the number of TPs that
would receive confirmation. Instead, it is deliberately con-
servative and designed to prevent FPs from escaping
confirmation.
These data show that criteria can be established to limit

confirmation assays to a small fraction of variants without
any measurable effect on analytic specificity. This study
shows that a large and diverse data set is required to
accomplish this with confidence, and that the specifics of
how criteria are chosen can have a substantial impact on
their effectiveness (Table 2). Limiting confirmation assays
in this careful manner may help to reduce costs and improve
the turnaround time of clinical genetics testing without
compromising quality.
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