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ABSTRACT

The establishment and maintenance of immune homeostasis rely on a dynamic, bidirectional
exchange of information between commensal microorganisms and the host immune system. At
the center of this process are CD4"Foxp3* regulatory T cells (Tregs), which have emerged as pivotal
mediators to ensure immunological equilibrium. This review explores the sophisticated mechanisms
by which the gut microbiota modulates the differentiation, expansion, and functional specialization
of Tregs, orchestrating intestinal immune tolerance to support host-microbiota mutualism. We
discuss the role of microbial-derived structural components and metabolites in shaping the immu-
noregulatory fitness of Tregs. Additionally, we explore the impact of gut microbial dysbiosis, where
disrupted microbial-immune crosstalk compromises immune tolerance, contributing to the devel-
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opment of inflammatory and autoimmune disorders. Finally, we highlight the potential of micro-
biota-based strategies to recalibrate intestinal immunity and restore immune tolerance.

Introduction

The human body represents a complex ecosystem,
intricately intertwined with trillions of microorgan-
isms that collectively constitute the gut microbiome -
a dynamic consortium encompassing bacteria,
viruses, fungi, and other microbial entities. This
microbial community is dominated by two bacterial
phyla, Bacteroidetes and Firmicutes, which constitute
approximately 90% of the total gut microbial biomass,
with smaller contributions from Proteobacteria,
Actinobacteria, and Verrucomicrobia.'> Commensal
fungi, such as Candida and Saccharomyces species,
and bacteriophages further contribute to this ecosys-
tem, while gut-resident bacteria reciprocally suppress
pathogenic invaders. While the human genome
encodes approximately 20,000 genes, the hologen-
ome, which integrates the host genome with the
collective genetic material of its resident microbiota,
comprises over 33 million genes.4 This vast genetic
reservoir enables the gut microbiota to establish a

mutualistic relationship with the host, performing
critical functions such as fermenting dietary fibers to
produce short-chain fatty acids (SCFAs),”” synthe-
sizing vitamins (e.g., vitamin B12 and K),*’ metabo-
lizing xenobiotics,'” and competitively excluding
pathogens,"" while the human gut provides protec-
tion, nutrients, and favorable growth conditions for
these microbes.

Additionally, the gut microbiome has emerged
as a central regulator of host immunity, profoundly
influencing immune development, tolerance, and
homeostasis influencing both innate and adaptive
immune responses.>'? Dysbiosis — alterations in
microbial composition or function - has been
linked to numerous diseases, including inflamma-
tory bowel disease (IBD), autoimmune disorders,
and cancer.>'*"1°

For this mutualistic relationship to thrive, the
host needs to recognize the microbiome as part of
itself, a process facilitated by co-evolved
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mechanisms that ensure immune tolerance. The
gut immune system comprises a highly specialized
and compartmentalized network of innate and
adaptive immune components that work synergis-
tically to maintain mucosal homeostasis and
defend against pathogens. Key innate immune
cells involved in mucosal defense include intestinal
epithelial cells (IECs) and innate lymphoid cells
(ILCs). IECs act as a physical barrier and also
produce antimicrobial peptides and cytokines.
Among the ILCs, group 3 ILCs (ILC3s) are espe-
cially important for maintaining mucosal immune
homeostasis and promoting tolerance to commen-
sal microbes.'””'® Dendritic cells (DCs) and macro-
phages continuously sample luminal antigens and
help orchestrate immune responses, often promot-
ing regulatory over inflammatory pathways.'>*°
Among adaptive components, IgA-producing
plasma cells are essential for neutralizing patho-
gens and shaping microbial composition without
inducing inflammation.?' Importantly, the gut har-
bors a substantial population of type 1 regulatory
(Tr1) T cells that secrete high levels of IL-10 and do
not express Foxp3 constitutively.”> Additionally,
regulatory B cells that produce IL-10 and TGEF-f
to suppress inflammatory responses.23
Foxp3"CD4" regulatory T cells (Tregs) and Th17
cells, whose balance is crucial for immune toler-
ance and pathogen defense, respectively.'?

Tregs, a specialized subset of CD4" T cells char-
acterized by the expression of the transcription
factor Foxp3, play a crucial role in maintaining
immune homeostasis and preventing excessive
inflammatory responses.**? Tregs are indispensa-
ble for establishing dominant immune tolerance
and maintaining immune homeostasis. Tregs
exert their suppressive functions through multiple
mechanisms, including the production of anti-
inflammatory cytokines (IL-10, TGF-f, IL-35),
metabolic disruption of effector T cells, cytolysis,
and modulation of dendritic cell function.***”
They are broadly classified into two categories:
thymic Tregs (tTregs), which develop in the thy-
mus and prevent autoimmunity, and peripheral
Tregs (pTregs), which differentiate in peripheral
tissues and mediate tolerance to innocuous anti-
gens, including dietary components and commen-
sal microbes.>*® Within the intestinal mucosa, a
significant population of Tregs co-expresses Foxp3

and RORyt, the latter being a transcription factor
typically associated with Th17 cells.'” These RORyt
+ Tregs are predominantly of peripheral origin and
play a crucial role in maintaining tolerance to the
gut microbiota.”® Their development and mainte-
nance are heavily influenced by microbial signals,
highlighting the intimate relationship between the
gut microbiota and the regulatory arm of the
immune system.

The gut microbiome has evolved sophisticated
mechanisms to influence the differentiation,
expansion, and functional fitness of Tregs. In
turn, Tregs suppress excessive immune responses,
thereby preserving the diversity and eubiosis of the
commensal microbiota. This reciprocal interaction
underscores the critical importance of the micro-
biome-Treg axis in immune regulation. Recent
advances have revealed that microbial structural
components, such as polysaccharide A (PSA), cell
surface 3-glucan/galactan polysaccharides (CSGG),
and mannan/p-1,6-glucan-containing polysacchar-
ides (MGCP), directly modulate Treg differentia-
tion and function.”’”** Furthermore, microbial
metabolites - including short-chain fatty acids
(SCFAs), tryptophan derivatives, and BA - play
pivotal roles in shaping Treg biology through epi-
genetic modifications, metabolic reprogramming,
and receptor-mediated signaling pathways.’’ >
However, dysregulation of the microbiome-Treg
axis can lead to immune dysfunction, contributing
to the pathogenesis of inflammatory and autoim-
mune diseases. For example, in inflammatory
bowel disease (IBD), dysbiosis and reduced pro-
duction of SCFAs and secondary BA impair Treg
function, resulting in chronic inflammation.'>*?

In this review, we explore microbial factors and
mechanisms that support Treg function in main-
taining immune homeostasis. We also examine the
therapeutic potential of targeting the microbiome-
Treg axis in the context of inflammatory and auto-
immune diseases. By integrating recent advances,
we highlight the pivotal role of microbially derived
signals in immune regulation and their implica-
tions for disease prevention and treatment.

Microbial modulation of tregs

The incorporation of gut microbes into the host’s
immunological self requires the establishment of



active immune tolerance to prevent inappropriate
immune activation while preserving the ability to
respond to harmful pathogens. Indeed, Germ-free
(GF) mice, which lack a gut microbiome, exhibit an
underdeveloped immune system, highlighting the
critical role of microbial colonization in immune
maturation.” Furthermore, the depletion of micro-
biota with oral antibiotics has been shown to
exacerbate intestinal inflammation, underscoring
the importance of the gut microbiome in maintain-
ing peripheral tolerance.’* Tregs have been exten-
sively studied toward establishment of central and
peripheral immune tolerance, since their discovery
and, over the last two decades, have emerged as
central regulators in establishing and maintaining
dominant immune tolerance.’® As described above,
two major subtypes of Tregs — tTregs and pTregs
were initially thought to have distinct roles, recent
studies suggest that both subsets can be induced in
response to microbial antigens, challenging their
traditional classifications.>*>”

The gut microbiota plays a critical role in shaping
Treg populations, both in the thymus and the per-
iphery. Microbial-derived signals, including polysac-
charides, metabolites, and structural components,
directly influence Treg differentiation, expansion,
and function.™' These interactions highlight the
intricate crosstalk between the microbiota and
Tregs, which is essential for maintaining immune
homeostasis and preventing inflammatory diseases.

While the gut microbiota is a critical regulator of
Treg-mediated immune tolerance, not all microbial
species or their metabolites universally promote
anti-inflammatory responses. Certain gut bacteria,
such as Segmented Filamentous Bacteria (SFB), are
known to drive pro-inflammatory Thl7 cell
responses, which can exacerbate inflammation in
susceptible hosts.”**® For instance, SFB coloniza-
tion in mice has been shown to promote Th17 cell
differentiation in the gut, contributing to autoim-
mune conditions such as experimental autoim-
mune encephalomyelitis (EAE).”®  Similarly,
Prevotella copri has been associated with enhanced
susceptibility to colitis and arthritis through activa-
tion of pro-inflammatory  pathways.*>*!
Pathobionts such as Enterococcus faecalis and
adherent-invasive Escherichia coli (AIEC) exacer-
bate inflammatory bowel disease (IBD) by activat-
ing NF-kB and NLRP3 inflammasome pathways,
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thereby suppressing Treg activity.** ** Even com-
mensals like Helicobacter hepaticus can adopt
pathogenic roles in genetically susceptible hosts,
triggering colitis through IL-23-driven Thl17
responses.”> These examples underscore the con-
text-dependent nature of microbial-immune inter-
actions, where the same microbiota can either
promote tolerance or inflammation depending on
host genetics, microbial strain specificity, and
environmental triggers. In this section, we explore
the mechanisms by which the relevant gut micro-
biota modulates Treg biology, focusing on the gen-
eration and function of both thymic and pTregs in
response to microbial components.

Microbial regulation of thymic treg development

GF mice generally display a reduced thymus size,
indicating the importance of microbiota in thymic
cellular development and immune maturation.”
Within the thymus, medullary thymic epithelial
cells (mTECs) play a central role in establishing
central self-tolerance. They achieve this through
the negative selection of self-reactive T cells via
clonal deletion or their differentiation into Tregs.
This process is facilitated by the promiscuous
expression of tissue-restricted antigens (TRAs),
driven by transcription factors such as Aire*®*’
and Fezf2.* Intriguingly, mTECs also express mul-
tiple Toll-like receptors (TLRs), suggesting a
potential role for microbial signals in thymic Treg
development.”” While TLR signaling has been
shown to be important for Treg generation, there
is no significant difference in TLR-MyD88-
mediated cytokine gene expression between
mTECs from GF and specific pathogen-free (SPF)
mice. This indicates that mTEC TLRs may be acti-
vated by endogenous ligands rather than microbial
signals.*’

Both mTEC and thymic DCs can present anti-
gens to drive Treg cell generation.’>”" During a
critical period of early neonatal life in mice, intest-
inal CX3CR1" dendritic cells transport microbial
antigens from the intestine to the thymus.
Interestingly, these antigens primarily stimulate
microbiota-specific conventional T cells rather
than tTregs.”> However, this study utilized
Segmented filamentous bacteria (SFB) as a model
microorganism, predominantly inducing Th17 T
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cell responses, thus it remains to be seen if Treg-
inducing bacteria could expand tTregs under simi-
lar settings.

Further evidence of microbial influence on
tTregs comes from studies using limited T cell
receptor (TCR) models. The TCR repertoire of
tTregs was found to be significantly overlapping
with colonic Tregs,”” suggesting shared antigen
specificity between these populations. In mice defi-
cient in extra-thymic Treg generation, a niche of
tTregs is established in early post-natal life.
Interestingly, these cells proliferate independent
of IL-2 signaling but require microbial antigens
for their expansion, highlighting the role of micro-
bial signals in shaping thymic Treg dynamics.*®

Despite these insights, the precise contribution
of microbial signals to thymic Treg development
remains unclear. The lack of definitive markers and
the interchangeability between Treg subsets make
it challenging to unequivocally determine the thy-
mic origin of microbiota-induced Tregs. Future
studies employing lineage-tracing models and sin-
gle-cell technologies, as well as monocolonization
studies with Treg-inducing bacteria, will be essen-
tial to dissect the mechanisms by which microbial
signals influence thymic Treg development and
function.

Microbial antigen-induced pTregs

Immune tolerance to gut microbiota is primarily
mediated by peripheral RORyt" Tregs (RORyt"
pTregs), which arise from naive conventional
CD4" T cells under specific activation conditions.®”
These RORyt" pTregs populate the gut mucosal
immune system during a critical developmental
window around weaning in mice, coinciding with
robust microbial colonization of the gut.*® The gen-
eration of these pTregs depends on bacterial anti-
gens, diet-derived metabolites, and host-produced
retinoic acid.”® Interestingly, disruptions to the
microbiota during this early life period can lead to
inflammatory pathologies later in life, underscoring
the importance of this temporal window in estab-
lishing immune tolerance.”®

Gut microbiota is essential for generating pTreg
diversity and their functional fitness in the colon.”
Despite significant progress in understanding
pTreg biology, the identity of the antigen-

presenting cells (APCs) responsible for mediating
their induction has remained elusive. CD103" con-
ventional dendritic cells (cDCs) have been impli-
cated in promoting pTreg differentiation in
response to luminal antigens.zo’5 > However, stu-
dies using adoptive transfer models have demon-
strated that Helicobacter-specific T cells can
differentiate into pTregs even in the absence of
CD103" DCs, suggesting that these cells are not
indispensable for microbial antigen-driven pTreg
generation.60

Recent investigations have highlighted the
potential role of RORyt-expressing APCs in
pTreg induction®~®® (Figure 1). Consistent with
previous observations,”® these studies excluded a
role for conventional DCs in this process. Deletion
of MHCII from RORyt" APCs resulted in a marked
reduction in gut RORyt" pTregs. Lyu et al. identi-
fied lymphoid tissue inducer (LTi)-like group3 ILC
(ILC3) as key players in RORyt" pTreg generation
through antigen presentation and integrin avp3-
mediated processing of latent TGFB.®> Notably,
this study provided the first evidence implicating
integrin avp3 in pTreg induction. In a mouse
model where MHCII was deleted specifically in
ILC3s (H2-Ab1" Rorc™), a significant reduction
in RORyt" pTregs was observed in mLNs and large
intestine. Furthermore, a correlation between
ILC3s and RORyt" pTregs was observed in the
human intestine, with a disruption of these cells
noted in patients with IBD.®> Kedmi et al. demon-
strated that RORyt" APCs (which were either ILC3
or Janus type cells) require CCR7-mediated migra-
tion, MHCII-dependent antigen presentation, and
integrin avp8 functionality to effectively induce
RORyt" pTregs.®”> When these processes are
impaired, the failure to generate pTregs results in
the expansion of pathogenic Th17 cells instead.

In contrast, Akagbosu et al. identified Thetis
cells, a distinct subset of RORyt" APCs, as key
mediators of pTreg generation during early life.
Specifically, subgroup TC IV, characterized by the
expression of Itgav and Itgb8 (encode Integrin sub-
unit a, and g, respectively) and Tgfb2 (encodes
TGEFp), was shown to play an essential role in this
process.®’ In contrast to the findings reported by
Lyu et al., Akagbosu et al. demonstrated that ILC3s
were dispensable for RORyt" pTreg generation
using H2-Ab1""Rora®™ mice, which selectively
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Figure 1. Mechanism of microbial antigen-specific pTreg generation in mesenteric lymph nodes. In the gut, bacterial antigens are
captured by RORyt™ antigen-presenting cells (APCs) that express either integrin avB8 or avB3, which activate latent TGF-B. These APCs
present microbial antigens to naive T cells in an MHC class Il-restricted manner while simultaneously activating latent TGF-f. This
process drives the differentiation of naive CD4™ T cells into CD4"RORyt*Foxp3™ peripheral regulatory T cells (pTregs) in the presence of

active TGF-f.

delete MHCII in ILC3. This discrepancy may arise
from differences in Cre drivers used in the respec-
tive mouse models, suggesting the possibility that
Rorc“"-mediated deletion might also affect MHCII
expression in Thetis cells. Resolving this issue will
require the development of genetic tools to speci-
fically target Thetis cells. Further, by analyzing the
single-cell atlas of human intestinal and gut-drain-
ing lymph node cells spanning fetal to adult life,**
Akagbosu et al. identified a cluster within the mye-
loid cells that expressed signature Thetis cell genes
— TNFRSF11B and SPIB, along with AIRE. These
cells were predominantly localized in mLNs and
enriched in fetal samples, suggesting a potential
role in establishing gut immune tolerance early in
life. Whether these cells functionally contribute to
the establishment of tolerance to gut microbiota in
humans remains to be determined. Future studies
are needed to elucidate their mechanistic roles and
validate their functional significance in peripheral
immune tolerance.

The human leukocyte antigen (HLA) system
plays a crucial role in shaping the interaction

between microbial antigens and the host immune
system, including the development of Treg cells.
Certain HLA alleles have been associated with
altered susceptibility to autoimmune and inflam-
matory conditions, which may be partly mediated
through their influence on microbiota-Treg
interactions.> For instance, HLA-DQ2 and
HLA-DQS8 haplotypes, which are strongly asso-
ciated with celiac disease (CeD), influence the
presentation of both gluten peptides and poten-
tially microbial antigens that may share structural
similarities.®® This molecular mimicry could
affect Treg induction and function in genetically
susceptible individuals. Furthermore, recent stu-
dies have demonstrated that specific HLA alleles
can influence the composition of the gut
microbiota,’” potentially creating a feedback
loop that affects Treg homeostasis. The HLA-
microbiota-Treg axis represents an important
area for future research, particularly in under-
standing how genetic factors influence individual
responses to microbial antigens and subsequent
immune regulation.
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Microbe-derived ligands in treg generation

Bacterial structural components, such as lipopoly-
saccharides, peptidoglycans etc. interact with diverse
host immune receptors, including TLRs and NOD-
like receptors (NLRs), to shape the immune land-
scape. While the adjuvant effect of microbial com-
ponents in activating the effector immune response
is well established, we and others have demonstrated
their equally critical role in driving immunoregula-
tory responses.””>>®%* Qur previous work has
demonstrated that a probiotic mixture named
IRT5, comprising Lactobacillus acidophilus,
Lactobacillus ~ casei,  Lactobacillus  reuteri,
Bifidobacterium bifidum, and Streptococcus thermo-
philus, induces the generation of Foxp3* Tregs.”
This process is mediated by tolerogenic DCs that
express high levels of IL-10, TGF-B, COX-2, and
indoleamine 2,3-dioxygenase (IDO). Similarly,
Lactobacillus pentosus KF340 (LP340) induced IL-
10 Type 1 regulatory T cells (Tr1 cells), alleviating
atopic dermatitis in mice.”' However, the specific
effector components responsible for these immuno-
modulatory  effects remained unidentified.
Identifying these effector components is crucial for
comprehending the molecular language of host-
microbiome interactions. Moreover, this knowledge
is essential for developing prebiotics, probiotics, and
live biotherapeutic products (LBP) with a broad
therapeutic window. To address this gap, we
recently have rationally identified a unique dietary
commensal strain, Lactiplantibacillus plantarum
IMB19 (LpIMB19), and its effector component cap-
sular thamnose-rich heteropolysaccharide (RHP),
which has the capability to enhance CD8 T cell
immune response and augment anti-tumor
immunity.”>”> The RHP functions as a TLR2 ligand,
modulating tumor-associated macrophages toward
an inflammatory phenotype, which subsequently
activates CD8 T cells. To modulate Treg-mediated
immunoregulatory responses, we and other
researchers have identified specific microbial ligands
capable of enhancing both the frequency and sup-
pressive function of Tregs. These ligands have been
shown to effectively alleviate disease progression in
various mouse models of gut-related disorders as
well as pathologies affecting distant tissues.

Polysaccharide a (PSA)

In a significant study, Mazmanian et al.*® identified
PSA, a protease-resistant zwitterionic capsular poly-
saccharide derived from the human commensal bac-
terium Bacteroides fragilis, as the first example of a
unique symbiont molecule capable of promoting
immunoregulatory responses. PSA was shown to
directly interact with TLR2 on T cells, driving the
induction and expansion of Tregs and, thus, suppres-
sing the differentiation of pro-inflammatory Th17
cells” (Figure 2). This discovery established a foun-
dational framework for the rational identification of
commensal bacteria with Treg-inducing properties,
offering new avenues for modulating immune toler-
ance. However, subsequent studies revealed addi-
tional layers of complexity in PSA-mediated
immunomodulation. In an in vitro co-culture system,
Kreisman et al.”” demonstrated that human CD4* T
cells exposed to PSA in the presence of a mixed
population of APCs differentiated into IL-10-produ-
cing Tr1 cells, which are distinct from Foxp3™ Tregs.
Notably, Telesford et al.”® found that the ability of
PSA to induce Foxp3™ Tregs was dependent on DCs,
suggesting that DC-mediated processing and presen-
tation of PSA are critical for its Treg-inducing effects.
This finding underscores the critical role of DC-
mediated processing and presentation of PSA in
shaping its Treg-inducing effects and highlights how
specific APC subsets influence the nature of the T cell
response elicited by PSA. The clinical relevance of
PSA-producing B. fragilis has been further empha-
sized by studies showing a reduced prevalence of
actively PSA-producing strains in colonic biopsies
from patients with IBD.”””® These observations sug-
gest that the loss of PSA-mediated immunoregulatory
signals may contribute to the dysregulated immune
responses characteristic of IBD, underscoring the
therapeutic potential of PSA and PSA-producing bac-
teria in restoring immune homeostasis. Genomic
screening has identified various commensal bacteria,
including some pathogens, that produce capsular
zwitterionic polysaccharides akin to PSA. Notably,
Bacteroides cellulosilyticus DSM 14,838 was shown
to protect against colitis in mice,” underscoring zwit-
terionic polysaccharides as a promising class of
immunomodulatory molecules for therapeutic use.
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Figure 2. Microbial ligands drive pTreg generation and modulate immune responses. Left Panel: Bacteroides fragilis produces a
protease-resistant zwitterionic capsular polysaccharide known as Polysaccharide A (PSA), which acts as a ligand for Toll-like receptor 2
(TLR2). Upon binding to TLR2, PSA induces dendritic cells (DCs) to adopt a regulatory phenotype, promoting the differentiation of
naive CD4+ T cells (Tn) into peripheral regulatory T cells (pTregs). Additionally, PSA can directly interact with TLR2 on both naive T cells
and Tregs, stimulating the production of the anti-inflammatory cytokine IL-10 Middle Panel: Bifidobacterium bifidum strain PRI1 (Bb
PRI1) expresses cell surface B-glucan/galactan polysaccharides (CSGG), which are potent inducers of pTregs. CSGG binds to TLR2 on
CD103*CD11b"* DCs, driving these cells toward a tolerogenic phenotype characterized by the production of IL-10 and TGF-. This
environment promotes the differentiation of naive CD4" T cells into CD4"Foxp3™ pTregs. Right Panel: Polysaccharides derived from
commensal yeast cell walls, such as mannan/f-1,6-glucan-containing polysaccharides (MGCP), are strong inducers of pTregs and
inhibit the differentiation of inflammatory Th1 cells. MGCP operates through two distinct pathways in DCs: 1. Binding to Dectin-1 on
DCs enhances Cox2 production, fostering a tolerogenic phenotype that supports the differentiation of naive CD4* T cells into

CD4"Foxp3™ pTregs. 2. MGCP-treated DCs suppress Th1 cell differentiation and IFN-y production in a Cox2-dependent manner.
Notably, this suppression requires MGCP binding to TLR2 on DCs.

Cell surface - B glucan/galactan polysaccharides
(CSGG)

was found to promote the development of
CD103" CD11b" regulatory DCs in the colon.
Intriguingly, monocolonization of GF mice with

Through extensive ex vivo screening to identify Bb PRI1 induced colonic Tregs with relatively

bacteria capable of inducing pTregs, we discovered
that Bifidobacterium bifidum strain PRI1 (Bb PRI1)
possesses significant pTreg-inducing properties.29
Bifidobacterium species are well-documented for
their ability to colonize the gut of breastfed infants

diverse TCR clonotypes. These pTregs were not
only reactive to the bacterium itself but also
expanded in response to dietary antigen OVA and
bacterial flagellin. To further explore how Bb PRI1

early in life, playing a critical role in shaping the
neonatal immune system.* Notably, supplementa-
tion with Bifidobacterium has been shown to alle-
viate allergic inflammation in infants with
dysbiotic gut microbiota compositions.®' In GF
mice mono-colonized with Bb PRI1, the strain

influences the functional orientation of colonic
Treg cells with distinct TCR repertoires, we con-
ducted single-cell RNA sequencing and performed
a comparative analysis of colonic Tregs from both
SPF and GF mice.”® Our findings indicate that Bb
PRII could alter the activation trajectory of colonic
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Tregs, promoting the emergence of a distinct phe-
notypic subset that is prevalent in SPF mice but
absent in GF mice. Additionally, Bb PRI1 exposure
facilitated the expansion of specific Treg clono-
types characterized by shared transcriptional fea-
tures. The microbiota-driven colonic Treg subset,
identified as PD-1- CXCR3" Tregs, exhibited
greater suppressive capacity than their counter-
parts from GF mice, demonstrated increased IL-
10 production, and played a central role in mod-
ulating enteric inflammation in dextran sodium
sulfate (DSS)-induced colitis.”*

Fractionation of Bb PRI1’s cellular components
revealed that its cell surface CSGG were critical
mediators of Treg induction. CSGG is a complex
mixture of neutral polysaccharides, including f-
1-6-glucan, P-1-4-galactan, p-1-6-galactan, and
B-galactofuranan, which collectively act as ligands
for TLR2.* Engagement of TLR2 by CSGG trig-
gers DCs to produce IL-10 and TGF-f. CSGG acts
as a ligand for TLR2, triggering DCs to produce
the anti-inflammatory cytokines IL-10 and TGEF-
B, fostering an immunoregulatory environment
(Figure 2). While CSGG’s ability to activate
TLR2 and induce DC-mediated production of
IL-10 and TGF-P has been established, further
research is needed to elucidate the downstream
signaling pathways activated by TLR2 engagement
and their precise role in mediating these immu-
nomodulatory effects. Importantly, CD4" Foxp3*
Tregs induced by CSGG treatment demonstrated
functional activity, effectively suppressing the
progression of inflammatory colitis in mouse
models. It is to be noted that in Tregs, TLR signal-
ing can have context-dependent effects. TLR2
activation by certain bacterial lipopeptides can
temporarily abrogate the suppressive function of
Tregs by inducing a shift toward a Th17-like phe-
notype, characterized by reduced Foxp3 expres-
sion and increased IL-17 production.®® This effect
is mediated through the MyD88-dependent acti-
vation of NF-kB and PI3K/Akt pathways, which
inhibit Foxp3 function.*® Conversely, TLR2 sig-
naling can also promote Treg expansion under
certain conditions like CSGG treatment, high-
lighting the context-dependent nature of these
pathways.*>”*

Mannan/B-1,6-glucan-containing polysaccharides
(MGCP)

Commensal fungi constitute about 2% of human
microbial biomass®> and play a key role in
immune regulation.®*® High-throughput sequen-
cing techniques have revealed that the gut micro-
biome harbors over 50 genera of fungi, such as
Candida, Saccharomyces, and Cladosporium spe-
cies being among the most prevalent.*” Fungal
dysbiosis is increasingly recognized as a key fea-
ture of IBD.**° Enhanced colonization of the
intestine by Candida species and elevated pro-
duction of anti-Saccharomyces cerevisiae antibo-
dies, have been observed in patients with IBD.”'"
** Interestingly, the immunomodulatory proper-
ties of beta-glucans appear to vary based on their
chemical structure, exhibiting either pro-inflam-
matory or anti-inflammatory effects. Under
steady-state conditions, polysaccharides contain-
ing B-1,3-glucan predominantly enhance pro-
inflammatory responses.”® In contrast, a relatively
less abundant class of cell surface polysacchar-
ides, obtained from the fractionation of yeast
cell wall components coupled with the enzymatic
removal of (-1,3-glucan termed MGCP, has been
shown to exert strong anti-inflammatory effects
on the immune system.”” These MGCPs exhibit
immunomodulatory properties by promoting the
induction of Tregs while simultaneously suppres-
sing the differentiation of IFN-y-producing Thl
cells?’ (Figure 2). Mechanistically, MGCP med-
iates Treg induction through the modulation of
DCs in a Dectin-1-dependent manner and
induces them to produce Cox2. Although
Dectin-1 is traditionally associated with pro-
inflammatory immune responses,”” our data sug-
gest that it may function in a ligand-specific
manner when interacting with MGCP, thereby
promoting the generation of immunoregulatory
Tregs. Intriguingly, the suppressive effect of
MGCP on Thl differentiation was found to be
dependent on TLR2 signaling in DCs, as TLR2-
deficient DCs failed to inhibit Thl differentiation
when co-cultured with MGCP and naive CD4" T
cells. In vivo, MGCP demonstrated therapeutic
potential by suppressing the progression of
T-cell transfer colitis and experimental



autoimmune encephalomyelitis (EAE), under-
scoring its ability to mitigate inflammatory and
autoimmune conditions.

However, given that Treg potentiation can hinder
anti-tumor immunity, we observed that MGCP treat-
ment exacerbated tumor growth in a mouse mela-
noma model. These findings provide critical insights
into the complex interplay between fungal-derived
polysaccharides and the host immune system, with
implications for both autoimmune diseases and can-
cer immunotherapy. Furthermore, they underscore
the importance of characterizing multiple ligands
derived from microbial structural components.
Identification of MGCP reveals that seemingly oppos-
ing immunomodulatory ligands may coexist within
the same microbe,”” potentially exerting their effects
in a context-dependent manner to fine-tune immune
responses.

Bacterial metabolites in treg generation and
function

Short-chain fatty acids (SCFAs)

SCFAs are small organic molecules composed of
fewer than six carbon atoms, primarily produced
through the microbial fermentation of dietary fibers
in the colon.”®”” The most prominent SCFAs — acet-
ate (C2), propionate (C3), and butyrate (C4) - play
essential roles in Treg development, expansion, and
function.””” A comprehensive list of gut microbiota
species associated with SCFA production is provided
in Table 1.

SCFAs serve as key signaling molecules between
gut microbiota and host immune cells. They act as
ligands for G-Protein coupled receptors (GPCRs) -
GPR41, GPR43, GPR109A, and OIfr78,'""*! and
induce pTreg generation and proliferation. Studies
on human GPRs reveal that propionate activates
both GPR43 and GPR41, acetate predominantly tar-
gets GPR43, and butyrate exhibits selectivity for
GPR41."** Additionally, GPR109A, is specifically acti-
vated by butyrate and the vitamin niacin.'>> GPR43 is
coupled to both Gai and Gaq proteins, activating
phospholipase C, inhibiting adenylyl cyclase, and trig-
gering intracellular calcium release.'*” In Tregs,
GPR43 signaling enhances mTOR activity and glyco-
lysis, supporting cellular proliferation and functional
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fitness.'”* GPR41, predominantly coupled to Ga,
inhibits cAMP production and activates ERK1/2
and p38 MAPK pathways.'”” SCFA binding to
GPRI109A activates Gai proteins to inhibit adenylyl
cyclase and reduce cAMP levels.'*® In dendritic cells,
GPRI109A signaling induces the expression of anti-
inflammatory genes and promotes the production of
retinoic acid and IL-10, creating a tolerogenic envir-
onment conducive to Treg differentiation.'*’

In the GF mice, oral supplementation with SCFAs,
significantly increased the frequency of colonic
Tregs.”” This effect was mediated through SCFA
binding to GPR43, followed by inhibition of histone
deacetylase (HDAC) activity,” leading to enhanced
acetylation at Foxp3 gene locus. In an adoptive trans-
fer model of T cell mediated colitis, GPR43 ™"~ CD4" T
cells failed to convert to Tregs upon treatment with
SCFAs.”” However, conflicting evidence exists
regarding the dependency on GPCRs for SCFA-
mediated Treg modulation. For instance, Park et al.
demonstrated that SCFA-induced Treg differentia-
tion occurs independently of GPR41 or GPR43 but
instead relies on direct HDAC inhibition.'*® Notably,
acetate, despite being a potent GPR43 agonist, failed
to enhance pTreg differentiation. Further, butyrate
can bind to GPR109A on colonic APCs and induce
expression of 1110 and Aldhlal to induce differentia-
tion of Tregs.

In the cell intrinsic manner, SCFAs can act as
epigenetic regulator and were shown to inhibit
HDAC activity and thus, enhance histone acetyla-
tion of Foxp3 gene locus. This epigenetic modifica-
tion enhances the accessibility of transcriptional
machinery to promoter regions and conserved
non-coding sequences (CNSs), such as CNS3,
within the Foxp3 locus. Chloroform-resistant
microbial strains, including Clostridium species,
were found to restore colonic Treg numbers in
GF mice, an effect attributed to their robust pro-
duction of butyrate. Indeed, dietary supplementa-
tion with butyrylated starch ameliorated CD4" T
cell-induced transfer colitis by enhancing colonic
Treg generation. Butyrate enhanced histone H3
acetylation at both promoter and CNS3 of the
Foxp3 gene locus.”’ Similar observations were
reported by Arpaia et al., showing that oral buty-
rate potentiates colonic pTreg differentiation via
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SCFAs. Butyrate and propionate, but not acetate,
increased histone acetylation on intronic CNS1 of
Foxp3 gene via HDAC inhibition.*

Beyond their HDAC-inhibitory effects, SCFAs
can promote Treg differentiation through meta-
bolic reprogramming. For example, propionate
treatment in patients with multiple sclerosis (MS)
enhanced mitochondrial oxygen consumption
rates, altered mitochondrial morphology, and
boosted the suppressive functionality of Tregs.
This treatment also increased the proportion of
circulating Tregs, contributing to the mitigation
of disease progression.'”” These findings highlight
the multifaceted mechanisms by which SCFAs

Dietary fibres

GUT MICROBES (&)

modulate Treg biology, acting through both epige-
netic and metabolic pathways (Figure 3).

In human studies, abnormal concentrations of
SCFAs have been observed in various disease
states, providing important clinical correlates to
mechanistic findings in animal models. Patients
with IBD consistently show reduced fecal SCFA
levels, particularly butyrate, compared to healthy
controls'**"*? correlating with impaired Treg
induction, increased mucosal inflammation,
and disease exacerbation. This reduction corre-
lates with decreased abundance of butyrate-pro-
ducing bacteria such as Faecalibacterium
prausnitzii and Roseburia species.">® Similarly,

SCFA producing bacteria

a
)
% ”"‘/ \I - =
Acetate
Propionate
Mucus layer
Butyrate
GPR41
GPR1 09A . GPR43
e m
O 7 {
2 / \(
”}gh . 1110 / Foxp3
_|:L o - (1 |
\ /
:.‘. a,!:DAC /
y/A'aN¢ - \ ¢
V4 \ RA "
Propionate n\A-——
Dendritic cell Naive T cell Treg

Figure 3. Mechanisms of intestinal treg modulation by microbial short-chain fatty acids (SCFAs). Gut bacteria metabolize dietary fibers
to produce short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, which play a critical role in the generation and
function of intestinal peripheral regulatory T cells (pTregs). Acetate: Acts as a ligand for the GPR43 receptor and inhibits histone
deacetylase (HDAC) activity in Tregs upon binding to GPR43. This inhibition stabilizes Foxp3 expression, thereby enhancing the
suppressive function of pTregs. Propionate: Binds to both GPR41 and GPR43 receptors and similarly inhibits HDAC activity, contribut-
ing to the stabilization of Foxp3 expression. Propionate can also diffuse into Tregs to directly inhibit HDACs. Additionally, propionate
enhances oxygen consumption in Treg mitochondria, improving their metabolic fitness and functional stability. Butyrate: Functions as
a ligand for GPR109A, expressed on gut dendritic cells (DCs). Activation of GPR109A upregulates the expression of //70 and Aldh1al in
DCs, leading to increased production of IL-10 and retinoic acid (RA). These factors promote the differentiation of naive CD4* T cells (Tn)
into pTregs. Butyrate can also diffuse into Tregs to inhibit HDACs, further stabilizing Foxp3 expression.
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reduced SCFA levels have been reported in

patients with multiple sclerosis,"** type 1
diabetes,"*” and asthma,'’® suggesting a com-
mon metabolic signature across multiple

immune-mediated conditions. In mouse models,
SCFA depletion in DSS-induced colitis exacer-
bates inflammation and reduces Treg popula-
tions,  while  butyrate  supplementation
ameliorates symptoms.'>' Similarly, in murine
CRC models, low butyrate promotes tumor
growth, and in metabolic disease models, SCFA
reductions  impair  insulin  sensitivity.°
Interestingly, there are notable discrepancies
between mouse models and human conditions
regarding SCFA metabolism and effects. Owing
to their fiber-rich diets and Clostridia-enriched
microbiota, mice generate higher SCFA concen-
trations, while typical human diets produce sub-
stantially ~ lower =~ SCFA  levels.®*>!?11%2
Additionally, the distribution and expression
patterns of SCFA receptors differ between mice
and humans, potentially affecting downstream
signaling pathways.'>” For instance, GPR41 and
GPR43 expression patterns in immune cells
show species-specific differences, which may
influence the immunomodulatory effects of
SCFAs."*® These discrepancies highlight the
importance of validating findings from mouse
models in human studies and considering spe-
cies-specific differences when translating basic
research into clinical applications.

The impact of SCFAs on immune regulation
appears to be highly context-dependent, with
potentially divergent outcomes based on the
local immune environment, concentration, and
disease context.”””'*® While SCFAs are widely
recognized for their immunoregulatory func-
tions by promoting Treg differentiation and
function, their immunomodulatory effects can
vary based on concentration, receptor engage-
ment, and the local immune environment.'*’
Acetate has been shown to have limited effects
on Treg differentiation compared to butyrate
and propionate, and in some contexts, it may
enhance pro-inflammatory responses by pro-
moting effector T cell functions."*'"'*> High
concentrations of butyrate can induce apoptosis
in colonic epithelial cells, potentially compro-
mising barrier integrity.'*»'*  Also, while

promoting Treg differentiation in healthy con-
texts, butyrate can enhance oxidative stress and
exacerbate inflammation in CRC by activating
oncogenic Wnt/B-catenin signaling.'*® Similarly,
propionate amplifies Treg suppressive capacity
in autoimmunity but may impair anti-tumor
immunity by dampening CD8+ T cell
responses.'*’

Furthermore, in certain neurological conditions,
elevated SCFA levels have been associated with
microglial activation and neuroinflammation,
highlighting their dual nature."*® In EAE, studies
have reported both protective and exacerbating
effects of SCFA supplementation, suggesting com-
plex regulatory mechanisms that may vary by dis-
ease stage and immunological context.'**'*® These
findings highlight the dose- and context-dependent
duality of microbial metabolites, necessitating care-
ful therapeutic targeting.

Tryptophan metabolites

Tryptophan (Trp) is an essential aromatic
amino acid for humans supplied by dietary
proteins. The gut microbiome possesses diverse
enzymes capable of processing dietary nutrients
into a broad spectrum of metabolites, which
could play an important role in host
pathophysiology."”® Despite Trp being the
least abundant amino acid in proteins and
cells, it is a precursor to a wide variety of
microbial and host metabolites.'>' Dietary Trp
is absorbed primarily in the small intestine and
is metabolized through three major pathways.
Approximately 90% of Trp is metabolized via
Kynurenine pathway by host IDOs and trypto-
phan 2,3-dioxygenase (TDO) enzymes.'”>'*’
This generates several biologically active meta-
bolites like kynurenine (Kyn), kynurenic acid
(Kna), 3-hydroxykynurenine (3-OHKyn), 3-
hydroxyanthranilic acid (3HAA), and quinoli-
nic acid.">* About 5% of Trp is used to synthe-
size serotonin by tryptophan hydroxylases
(TPH1 and TPH2). Serotonin is further meta-
bolized into melatonin through sequential
enzymatic steps involving serotonin-N-acetyl-
transferase and acetylserotonin O-
methyltransferase.''> Notably, 90-95% of sero-
tonin resides in the gastrointestinal tract,



predominantly within enterochromaffin cells.”
H2155156 The remaining 5% of dietary trypto-
phan is catabolized by gut bacteria into indole
and its derivatives, including indole-3-acetic
acid (IAA), indole-3-propionic acid (IPA), and
others via Indole pathway.'"”” This process is
particularly prominent in the distal colon, as
gradual depletion of carbohydrates from prox-
imal to distal colon shifts bacterial metabolism
toward protein fermentation.'”® Additionally,
certain bacterial species, such as Lactobacilli,
can degrade Trp in the stomach and ileum of
mice."”’

Serotonin

Serotonin (5-HT) has emerged as a critical media-
tor of immune regulation, particularly in the con-
text of Tregs. Unlike T effector cells (Teffs), Tregs
express key components of the serotonergic sys-
tem, including the serotonin transporter (SERT),
serotonin receptors (5-HT1la and 5-HT2), and
enzyme tryptophan hydroxylase, which converts
Trp into serotonin.'® While under microbial influ-
ence, the majority of serotonin is produced by
enterochromaffin cells in the gut epithelium,155
certain bacterial species like Streptococcus spp.,
Enterococcus spp., Escherichia spp., Lactobacillus
plantarum, Klebsiella pneumonia, and Morganella
morganii — can also synthesize serotonin.'®'"'%> A
comprehensive list of bacterial species involved in
serotonin biosynthesis is provided in Table 2.

In adult GF mice, serum and plasma levels of
serotonin are significantly reduced, with the most
pronounced deficits observed in the colon rather
than the small intestine,'™'®® suggesting a specific
role of microbiota in regulating colonic 5-HT.''?
However, recent studies have revealed that during
early life, gut bacteria play a dominant role in seroto-
nin production in the small intestine. For instance,
Rodentibacter heylii and Enterococcus gallinarum
contribute to serotonin synthesis in mice, while
Staphylococcus aureus, Clostridium perfringens,
Klebsiella grimontii, Staphylococcus epidermis, and
Enterobacter cloacae perform similar functions in
human small intestine.'® Mechanistically, this 5-HT
inhibits mMTORC1 in T cells via indole-3-acetaldehyde
(I3A), promoting their differentiation into Tregs
rather than effector T cells'®’ (Figure 4). Thus,
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bacterial serotonin facilitates the establishment of
immune tolerance to dietary antigens and commensal
microbes during early perinatal development. Oral
administration of serotonin to neonatal mice fol-
lowed by ovalbumin (OVA) sensitization induced
long-term tolerance to OVA. Moreover, T cells
from serotonin-treated mice exhibited enhanced tol-
erogenic properties in an adoptive transfer colitis
model. Interestingly, serotonin treatment also altered
gut microbiota composition, suggesting bidirectional
regulation between the microbiome and Tregs via
serotonin signaling.'®’

However, role of serotonin and Treg interaction
in immune pathology remains complex and con-
text-dependent. In arthritic mice deficient in sero-
tonin, there is a shift toward Thl7 cell
polarization.'®® Similarly, mice lacking enzyme
Tph exhibit reduced Treg frequencies and
increased Th17 responses during collagen-induced
arthritis, effects that can be reversed by serotonin
supplementation.'®® However, in humans with
allergic rhinitis, elevated serum serotonin levels
correlate negatively with peripheral Treg frequen-
cies, highlighting potential discrepancies between
murine models and human disease states.'”’

Indoles

Intestinal bacteria can convert the tryptophan into
indole by enzyme tryptophanase (TnaA).'”!
Interestingly, in mammals, indole is produced
exclusively through bacterial metabolism, as host
cells lack the metabolic ability to synthesize it.'”
While TnaA expression was earlier thought to be
solely a characteristic of prokaryotes, recent evi-
dence suggests that lateral gene transfer has
enabled certain eukaryotic organisms, such as the
gut-associated parasite Blastocystis, to acquire bac-
terial-derived TnaA,'”> which could help its adap-
tation to gut environment.'**

Beyond indole, the intestinal microbiota gener-
ates a diverse array of indole-related metabolites
through tryptophan catabolism. These include
indole-3-pyruvate, indole-3-lactate, indole-3-pro-
pionate,
indole-3-acrylate, indole acetaldehyde, indole-3-
aldehyde, 3-methyl-indole (skatole), and indole-3-
acetaldehyde."”>'”® These metabolites play critical

indole-3-acetate, indole-3-acetamide,
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Figure 4. Mechanisms of intestinal treg modulation by microbial tryptophan metabolites. Dietary tryptophan is metabolized by gut
bacteria through distinct pathways, generating bioactive compounds that modulate intestinal regulatory T cells (Tregs). Serotonin
Pathway: Bacteria containing tryptophan hydroxylase convert dietary tryptophan into serotonin (5-HT). Naive CD4™ T cells take up
serotonin and metabolize it into indole-3-acetaldehyde (I3A). I3A inhibits the mechanistic target of rapamycin complex 1 (mTORC1),
promoting the differentiation of naive T cells (Tn) into peripheral regulatory T cells (pTregs). Notably, Tregs themselves express
serotonin receptors, transporters, and tryptophan-metabolizing enzymes, such as tryptophan hydroxylases (TPH1 and TPH2),
suggesting a direct role for serotonin in Treg biology. Indole Derivatives Pathway: Bacteria expressing tryptophanase (TnaA) catabolize
tryptophan into various indole derivatives in the colon. These indole metabolites serve as ligands for the aryl hydrocarbon receptor
(AhR). Activation of AhR enhance Liver kinase B1 mediated fatty acid oxidation via Skp2/K63-ubiquitination pathway in CD4™ T cells
promoting Treg generation (left panel). Further, AhR activation enhances Foxp3 expression and gut homing molecules like CD103,
CCR6, Gpr15, and CCL20 in peripheral Tregs. It reinforces the suppressive regulatory functions of Tregs, further promoting immune
tolerance in the gut.

roles in maintaining intestinal barrier integrity, tetrachlorodibenzo-p-dioxin (TCDD), a xenobiotic
protecting against pathogens, and modulating  AhR ligand, promotes Treg differentiation, while
host metabolism, primarily through the activation ~ 6-formylindolo[3,2-b]carbazole (FICZ), an endo-
of the transcription factor aryl hydrocarbon recep- ~ genous ligand derived from indole-3-acetaldehyde
tor (AhR).15%197:198 comprehensive list of bacter- (I3AA) via bacterial metabolism, drives Thl7

ial species generating indole derivatives by Trp polarization.”’*”*!* Thus, indole-mediated Treg
catabolism is provided in Table 3. differentiation and accumulation can be context-

AhR is expressed across multiple T cell subsets, dependent and ligand-specific. Multiple AhR
with particularly high levels observed in Th17 cells, ligands can promote Treg development, leading
FOXP3" Tregs, and Trl cells. Intriguingly, gut-  t© increased Treg numbers and improved out-
resident Tregs exhibit elevated AhR expression ~ comes in experimental autoimmune diseases.”"”
compared to Tregs in other tissues, underscoring ~ AhR activation enhances the expression of gut-
its specialized role in maintaining intestinal home- ~ homing molecules such as CD103, CCR6, Gpr15,
ostasis and regulating gut Treg functions.’' Ahr ~ and CCL20 in peripheral Tregs, facilitating their
activation affects Treg and Th17 development ina  recruitment to the intestinal mucosa (Figure 4).
ligand-specific manner. For instance, 2,3,7,8- Although AhR-deficient Tregs retain Foxp3
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expression, they lose their suppressive functional-
ity, emphasizing the critical role of AhR in Treg-
mediated immune regulation.’'® Interestingly, Ahr
expression in intestinal Tregs is not dependent on
microbiota, as GF or antibiotic-treated mice show
no differences in Treg AhR levels.”*

A phytochemical AhR ligand, indigo natura-
lis, has been shown to promote the accumula-
tion of Helios™ Tregs near MHCII" epithelial
cells in intestinal crypts, further supporting the
role of AhR in shaping the gut immune
landscape.”'” Additionally, AhR ligands enhance
Liver kinase B1 mediated fatty acid oxidation via
Skp2/K63-ubiquitination pathway in CD4" T
cells promoting Treg generation (Figure 4),
which protect mice from DSS-induced colitis.*'®
In its inactive state, AhR resides in the cyto-
plasm as part of a complex with heat shock
protein 90 (HSP90), AhR-interacting protein
(AIP), and p23.?"” Upon binding to ligands
AhR undergoes conformational changes that
expose its nuclear localization signal, leading to
translocation into the nucleus.”’” In the nucleus,
AhR dimerizes with the AhR nuclear transloca-
tor (ARNT) and binds to specific DNA
sequences known as xenobiotic response ele-
ments (XREs) in the promoter regions of target
genes.””” In Tregs, AhR activation induces the
expression of genes involved in Treg differentia-
tion and function, including Foxp3, IL-10, and
TGF-B.**' Additionally, AhR can interact with
other transcription factors, such as c-Maf, to
synergistically enhance IL-10 production.**?
Furthermore, AhR activation in dendritic cells
induces the expression of IDO1, creating a feed-
back loop that enhances kynurenine production
and further activates AhR signaling.**®

The interplay between microbial indole derivatives
and Tregs remains an emerging area of research. A
recent study demonstrated that the probiotic
Lactobacillus reuteri, a producer of indole-3-lactate,
cross-feeds other bacterial species and enhances
microbial tryptophan metabolism.*** Elevated pro-
duction of indole derivatives enriches the gut micro-
biota with Clostridium clusters XIVa, XIVb, and 1V,
known inducers of colonic Tregs.”*> This microbial
shift confers protection against Citrobacter rodentium
infection and alleviates DSS-induced colitis.***

Conversely, disruptions in microbial indole meta-
bolism can impair immune tolerance. Stephen-
Victor et al. recently revealed that goblet-cell-
derived resistin-like molecule § (RELMp) influences
the gut microbiome by depleting indole-metabolite-
producing bacteria like Lactobacilli and Alistipes.**®
This is achieved through the upregulation of anti-
microbial genes such as Sprr2a1/2/3 and Reg3, which
alters the microbial balance, impairs oral tolerance,
and exacerbates food allergy responses. Lactobacilli
produce indole derivatives like IAA, I3A, and ILA,
which promote the expansion of RORyt" Tregs via
AhR activation. In a mouse model of IL-4 receptor
gain-of-function-induced food allergy, reintrodu-
cing Lactobacilli restored oral tolerance, whereas
deleting AhR in Tregs abolished this protective
effect.”*® In conclusion, microbial indole derivatives
and their interaction with AhR represent a critical
axis in regulating intestinal immunity and Treg
function. These metabolites not only shape the com-
position of the gut microbiota but also influence
immune homeostasis and disease susceptibility.
While significant progress has been made in eluci-
dating the roles of indoles and AhR in immune
regulation, further research is needed to fully unra-
vel the intricate mechanisms underlying these inter-
actions. Such insights hold immense therapeutic
potential for modulating gut immunity and treating
inflammatory and autoimmune disorders.

In humans, abnormal tryptophan metabolism
has been observed in various inflammatory and
autoimmune conditions. Patients with IBD show
reduced serum levels of tryptophan and altered
kynurenine pathway metabolites like indole-3-
aldehyde, indicating enhanced IDO1 activity.”*’
Similarly, patients with multiple sclerosis exhibit
altered tryptophan metabolism, with changes in
the kynurenine-to-tryptophan ratio correlating
with disease activity.”*® Recent metabolomic stu-
dies have also identified reduced levels of AhR
ligands in patients with psoriasis®*’ and rheuma-
toid arthritis,”’ suggesting impaired tryptophan
metabolism by the gut microbiota. Significant
differences exist between mice and humans
regarding tryptophan metabolism and AhR sig-
naling. The affinity of various tryptophan meta-
bolites for the AhR differs between species, with
some ligands showing high potency in mice but
limited activity in humans.”®’ Additionally, the



expression patterns of enzymes involved in tryp-
tophan metabolism vary between species, affect-
ing the spectrum of metabolites produced.'”
These differences may explain some of the chal-
lenges in translating AhR-targeted therapies from
mouse models to human diseases. Future studies
should focus on identifying human-specific AhR
ligands and understanding their role in immune
regulation to develop more effective therapeutic
strategies.

Bile acids

Bile acids (BAs) are amphipathic metabolites
derived from cholesterol in the liver and play a
crucial role in the digestion and absorption of diet-
ary fats. Beyond their classical functions in lipid
metabolism, BAs are now recognized as critical
regulators of glucose and energy homeostasis.”*
Further, identification of their receptors has
paved the way for a deeper understanding of their
hormone-like characteristics in regulating immune
homeostasis.**’

In humans, the liver synthesizes two primary
BAs: cholic acid (CA) and chenodeoxycholic acid
(CDCA). In contrast, rodents produce additional
muricholic acids (MCA), which are 6-hydroxylated
derivatives of CDCA.*** These primary BAs are
conjugated with glycine or taurine in the liver
before being secreted into the duodenum.**>**°
Approximately 95% of secreted BAs are reabsorbed
in terminal ileum and recycled back to liver via
enterohepatic circulation. The remaining BAs
enter the colon, where they undergo extensive
microbial transformation.

Gut microbiota possessing bile salt hydrolase
activity, such as bacteria from the genera
Lactobacillus, Bifidobacterium, Clostridium, and
Bacteroides, are able to deconjugate the BAs by
cleaving the glycine or taurine moiety attached to
the steroid core.”?>*** Deconjugated BAs are
turther modified through dehydroxylation, epi-
merization, oxidation, desulfation, esterification,
and reconjugation. For example, the dehydroxyla-
tion of CA and CDCA at the C7 position generates
secondary BAs, including DCA and lithocholic
acid (LCA), respectively. In mice, murideoxycholic
acid is also formed from MCA.>*” GF animals lack
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secondary BAs, underscoring the essential role of
gut microbiota in bile acid metabolism.**®*** A list
of gut bacterial strains involved in BA transforma-
tion reactions is provided in Table 4. BA-metabo-
lizing enzymes help bacteria to overcome BA
toxicity. Conversely, BAs help sustain microbial
diversity, with human tauro-p-MCA and tauro-
cholic acid playing key roles in shaping an adult-
like microbiome.**® Dysregulation of bile acid
metabolism, as seen in cholestasis or bile acid liga-
tion models, is associated with reduced microbial
diversity.>*"**?

BAs exert their immunomodulatory effects via a
heterogenous family of transmembrane GPCRs
and nuclear receptors. The nuclear receptor farne-
soid X receptor (FXR) serves as the primary recep-
tor for CDCA in humans and CA in mice,>**7%%°
while secondary BAs like DCA and LCA activate
G-protein bile acid receptor 1 (GBPARI, also
known as Takeda G-protein receptor (TGR5).**®
Additionally, DCA and LCA interact with other
nuclear receptors, including the vitamin D receptor
(VDR),** pregnane-X-receptor (PXR),**® and
constitutive androstane receptor (CAR).**
Emerging evidence also implicates muscarinic M3
receptors”®  and  sphingosine-1-phosphate
receptor251 in BA signaling (Figure 5).

Several studies have highlighted critical role of
BAs and their derivatives in regulating Treg differ-
entiation in the intestine. Two derivatives of LCA
— 3-0x0LCA and isoalloLCA - generated by bac-
terial modification of primary BAs have been
shown to modulate T cell differentiation. 3-
oxoLCA inhibits the differentiation of Th17 cells
by directly binding to transcription factor RORyt.
IsoalloLCA, on the other hand, increased mito-
chondrial reactive oxygen species (mtROS) leading
to enhanced FOXP3 expression utilizing CNS3
enhancer region in the Foxp3 locus.’* IsoalloLCA
also promotes histone acetylation at the Foxp3 pro-
moter in the presence of TGF-P signaling (Figure
5).>* Subsequent work identified Bacteroidetes spe-
cies as producers of isoalloLCA and demonstrated
that its induction of mtROS generates Tregs via
activation of nuclear receptor NR4A1l (Figure
5).°> Notably, patients with IBD exhibit reduced
representation of genes encoding enzymes for
isoalloLCA production in gut microbiome, along
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Table 4. Gut bacterial strains involved in bile acid transformation reactions.

S.No. Phylum Species Strain Reference
1 Actinobacteria Bifidobacterium adolescentis Lucas et al."”

2 Actinobacteria Bifidobacterium bifidum

3 Actinobacteria Bifidobacterium dentium

4 Actinobacteria Collinsella aerofaciens

5 Actinobacteria Collinsella intestinalis

6 Actinobacteria Collinsella stercoris

7 Bacteroidetes Alistipes indistinctus

8 Bacteroidetes Bacteroides caccae

9 Bacteroidetes Bacteroides finegoldii

10 Bacteroidetes Bacteroides intestinalis

1 Bacteroidetes Bacteroides ovatus

12 Bacteroidetes Bacteroides thetaiotaomicron 3731

13 Bacteroidetes Bacteroides thetaiotaomicron 7330

14 Bacteroidetes Bacteroides thetaiotaomicron VPI-5482

15 Bacteroidetes Bacteroides uniformis

16 Bacteroidetes Bacteroides vulgatus

17 Bacteroidetes Bacteroides xylanisolvens

18 Firmicutes Blautia hansenii

19 Firmicutes Blautia luti

20 Firmicutes Clostridium asparagiforme

21 Firmicutes Clostridium hylemonae

22 Firmicutes Clostridium leptum

23 Firmicutes Clostridium M62_1

24 Firmicutes Clostridium scindens

25 Firmicutes Coprococcus comes

26 Firmicutes Dorea formicigenerans

27 Firmicutes Dorea longicatena

28 Firmicutes Enterocloster bolteae (formerly Clostridium)

29 Firmicutes Erysipelatoclostridium ramosum (formerly Clostridium)

30 Firmicutes Holdemania filiformis

31 Firmicutes Hungatella hathewayi (formerly Clostridium)

32 Firmicutes Lactobacillus ruminis

33 Firmicutes Roseburia intestinalis

34 Firmicutes Ruminococcus GM2/1

35 Firmicutes Ruminococcus gnavus

36 Firmicutes Ruminococcus torques

37 Firmicutes Tyzzerella nexilis (formerly Clostridium nexile)

38 Fusobacterium Fusobacterium varium

39 Proteobacteria Escherichia coli K12 MG1655

40 Proteobacteria Escherichia fergusonii

41 Proteobacteria Proteus penneri

42 Firmicutes Lactobacillus plantarum K21 Wu et al.2®

43 Firmicutes Clostridium scindens ATCC 35,704 Ridlon et al.?°"; Wahlstrom et al.2%?
44 Actinomycetota  Eggerthella lenta Doden et al. 2
45 Firmicutes Ruminococcus gnavus ATCC 29,149 Doden et al.2%
46 Firmicutes Bacillus subtilis RO179 Culpepper et al.?**
47 Actinomycetota  Bifidobacterium animalis subsp. lactis B94 Culpepper et al.?**
48 Bacteroidetes Bacteroides fragilis NCTC 9343, ATCC 25,285  Sun et al.2®

49 Firmicutes Lactobacillus salivarius Xu et al 2%

50 Firmicutes Lactobacillus plantarum WCFS1, ATCC14197 Prete et al.2”’

51 Firmicutes Lactobacillus acidophilus ATCC 4356 Wu et al.>%®

52 Actinomycetota Eggerthella lenta DSM 2243, €592 Harris et al.?*®
53 Bacteroidetes Bacteroides thetaiotaomicron VPI-5482, ATCC 25,285 Adhikari et al.2"°
54 Bacillota Eubacterium rectale ATCC 33,656 Mukherjee et al.""®
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Figure 5. Mechanisms of intestinal treg modulation by microbial bile acid Metabolites. Gut bacteria play a key role in bile acid (BA)
metabolism by deconjugating primary bile acids that escape the enterohepatic circulation. These deconjugated BAs undergo further
modifications by gut microbiota, generating secondary BAs that modulate intestinal Treg responses through diverse mechanisms.
isoDCA : This secondary bile acid metabolite inhibits the nuclear farnesoid X receptor (FXR) in dendritic cells (DCs), promoting their
tolerogenic phenotype. These tolerogenic DCs facilitate the differentiation of naive CD4™ T cells into CD4"RORyt*Foxp3™ pTregs
(pTregs). Additionally, isoDCA enhances Foxp3 expression in pTregs through a CNS1-mediated mechanism, further stabilizing their
regulatory function. Bile Acids and Vitamin D Receptor (VDR) : Certain bile acid metabolites act via the nuclear vitamin D receptor to
upregulate Foxp3 expression, driving the generation of pTregs and reinforcing immune tolerance. isoalloLCA: A metabolite derived
from lithocholic acid (LCA), isoalloLCA increases mitochondrial reactive oxygen species (ROS) in Tregs. This leads to the activation of
the transcription factor Nr4a1l which enhances Foxp3 expression through a CNS3-dependent mechanism, strengthening Treg
suppressive activity. 3-oxoLCA: Another LCA-derived metabolite, 3-oxoLCA, suppresses Th17 cell differentiation by inhibiting RORyt
binding, thereby reducing pro-inflammatory Th17 responses.

with decreased microbial synthesis of this
metabolite.”>> Human gut bacteria Gordonibacter
pamelaeae P7-E3, Eggerthella lenta P7-G7,
Raoultibacter massiliensis P7-A2, Collinsella intes-
tinalis P8-C1, Adlercreutzia equolifaciens P11-C8
and Clostridium citroniae P2-B6 were later identi-
fied as top converters of LCA to 3-oxoLCA.>>
BAs also expand pTregs through interactions
with their receptors. Campbell et al. discovered
that the secondary BA 3p-hydroxydeoxycholic
acid (isoDCA) induces an anti-inflammatory phe-
notype in DCs by inhibiting the FXR activity,
thereby promoting pTreg differentiation.”>* The

interaction between isoDCA and FXR downregu-
lated several pro-inflammatory genes involved in
antigen processing, presentation, and pro-inflam-
matory signal transduction in DCs (Figure 5).
Furthermore, bacteria engineered to produce
isoDCA enhanced colonic RORyt" pTregs in a
CNS1-dependent manner.””* Primary and second-
ary BAs can also induce RORyt" pTregs by inter-
acting with Treg-intrinsic VDR (Figure 5).%>° This
effect does not rely on Vitamin D3, as colonic
RORyt" pTregs were unaffected by its absence in
diet but were significantly reduced by Treg-specitfic
VDR deletion.
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Overall, BAs, gut microbiota, and colonic pTregs
form a dynamic and interdependent network
essential for establishing intestinal immune toler-
ance. Intestinal BAs are indispensable for main-
taining colonic pTregs, while gut microbes are
instrumental in shaping this relationship by meta-
bolizing BAs. Dysregulation of this triadic interac-
tion can disrupt immune tolerance, contributing to
inflammatory diseases such as IBD. Indeed, admin-
istration of BAs like LCA**® or rationally designed
consortium composed of BA-producing bacteria'®’
have shown promise in reducing colitis severity.

Human studies have revealed significant altera-
tions in bile acid profiles across various disease states.
Patients with IBD show increased levels of primary
bile acids and decreased secondary bile acids in feces,
reflecting impaired microbial bile acid metabolism.**®
This dysregulation is particularly pronounced in
Crohn’s disease patients with ileal involvement,
where bile acid malabsorption contributes to diarrhea
and other symptoms.”*”**® Similarly, patients with
primary sclerosing cholangitis, which is often asso-
ciated with IBD, exhibit distinct bile acid signatures
characterized by elevated levels of toxic bile acids.**
Notable species differences exist in bile acid metabo-
lism between mice and humans. Mice produce muri-
cholic acids, which are potent FXR antagonists,
whereas these bile acids are absent in humans.**
Additionally, the gut microbiota composition differs
substantially between mice and humans, affecting the
spectrum of secondary bile acids produced.**' These
differences may explain some of the discrepancies
observed when translating findings from mouse
models to human conditions. For instance, while
certain bile acid receptor agonists show promising
results in mouse models of colitis, their efficacy in
human IBD has been variable.”*> Understanding
these species-specific differences is crucial for devel-
oping targeted therapies based on bile acids for
human diseases.

Additionally, microbial metabolites such as sec-
ondary BAs can have context-dependent effects,
with some derivatives promoting inflammation
under specific conditions.”*> For instance, DCA has
been implicated in pro-inflammatory responses in
certain disease states, potentially exacerbating liver
inflammation and colorectal cancer progression by
inducing DNA damage.”***®> Furthermore, indole

derivatives, while activating AhR-dependent Treg
pathways, can also drive Th17 polarization in the
presence of pro-inflammatory cytokines like IL-6.""
These findings highlight the dose- and context-
dependent duality of microbial metabolites, necessi-
tating careful therapeutic targeting.

Impact of impaired immune responses on
microbiota

While the influence of the microbiota on immune
function has been extensively studied, the recipro-
cal impact of impaired immune responses on
microbiota composition and function is equally
important but less well characterized. Defects in
Treg function or number can significantly reshape
the intestinal microbial landscape, creating a dys-
biotic environment that may further exacerbate
immune dysregulation.” Studies in mice with spe-
cific immune deficiencies have provided valuable
insights into this relationship. For instance, mice
lacking the anti-inflammatory cytokine IL-10,
which is crucial for Treg function, develop sponta-
neous colitis accompanied by significant altera-
tions in their gut microbiota, including increased
abundance of pro-inflammatory Proteobacteria
and decreased levels of beneficial Firmicutes.”®
Similarly, Foxp3-deficient mice, which lack func-
tional Tregs, exhibit profound dysbiosis character-
ized by the expansion of mucosa-associated
segmented filamentous bacteria and other poten-
tially pathogenic species.**”*%®

In humans, primary immunodeficiencies affect-
ing Treg development or function, such as IPEX
(Immune dysregulation, polyendocrinopathy,
enteropathy, X-linked) syndrome caused by
FOXP3 mutations, are associated with significant
alterations in gut microbiota composition.”*” These
patients often exhibit reduced microbial diversity
and increased abundance of opportunistic patho-
gens, which may contribute to their gastrointestinal
symptoms and systemic inflammation. Beyond
genetic immunodeficiencies, acquired impairments
in immune function can also impact the micro-
biota. For example, HIV infection, which depletes
CD4" T cells including Tregs, leads to significant
dysbiosis characterized by increased pathobiont
abundance and reduced levels of beneficial



bacteria.””® Similarly, immunosuppressive thera-
pies used in transplantation and autoimmune dis-
eases can alter the gut microbiota composition,
potentially contributing to opportunistic infections
and other complications.””!

The mechanisms by which impaired immune
responses affect the microbiota are multifaceted.
Defects in antimicrobial peptide production,
mucus layer integrity, and IgA secretion - all of
which can be influenced by Treg function - directly
impact microbial colonization and composition.*”?
Additionally, alterations in cytokine profiles and
intestinal inflammation can create selective pres-
sures that favor the expansion of certain bacterial
species over others.””> This bidirectional relation-
ship creates a potential feedback loop: impaired
immune function leads to dysbiosis, which further
exacerbates immune dysregulation, potentially
contributing to chronic inflammation and disease
pathogenesis. Understanding this complex inter-
play is crucial for developing targeted interventions
that restore both immune homeostasis and a
healthy microbiota.

Dysregulation of microbiome-treg axis in
diseases

Inflammatory bowel disease (IBD)

Microbial dysbiosis and metabolite alterations in IBD
Dysbiosis, characterized by alterations in the diver-
sity, composition, and function of the gut micro-
biota is a key aspect of IBD. The relationship
between dysbiosis and IBD remains complex and
bidirectional making it challenging to ascertain
whether dysbiosis is a cause or consequence of the
disease. Nonetheless, studies on GF mouse models
have demonstrated that IBD either fails to develop
or is significantly attenuated in the absence of gut
microbes, underscoring the critical role of the
microbiome in the pathogenesis of IBD.*”*
Genome-wide association studies have found that
many of genomic loci associated with IBD are
responsible for host-microbiome interactions.””>*”®
Gut bacterial -diversity significantly decreases in
both ulcerative colitis (UC) and Crohn’s disease
(CD) forms of IBD.*””*”® Multi-omics™ and multi-
biome'’ analysis have revealed a consistent deple-
tion of obligate anaerobes like Faecalibacterium
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prausnitzii and Roseburia hominis'>>>*”° among
other SCFA-producing bacteria like Eubacterium
spp. (E. rectale and E. ventriosum), Blautia spp.,
Bacteroides spp., and Anaerostipes hadrus. Indeed,
the IBD metabolome presented with a general
reduction in SCFAs.>® Additionally, this was accom-
panied by a significant reduction in
Subdoligranulum sp., which forms a complex of
new species-level clade with at least seven butyrate
producer species of Subdoligranulum, Gemmiger,
and Faecalibacterium genera.'”***

An increase in primary bile acid cholate and its
glycine and taurine conjugates was also observed in
CD patients while secondary BAs lithocholate and
deoxycholate were reduced.” This shift suggests a
depletion of secondary BA-producing bacteria or
faster colonic transit times that limit microbial BA
transformation in IBD patients.””>**' Additionally,
an increase in fungal diversity has been reported in
both UC and CD.?®* IBD patients display an
increased abundance of Candida albicans and a
decreased abundance of Saccharomyces cerevisiae.
However, S. cerevisiae was found enriched in a CD
cohort in Japan and USA but was depleted in the
China cohort."” This suggests a geographical het-
erogeneity effect on IBD-associated mycobiome.
Nevertheless, high levels of anti-Saccharomyces cer-
evisiage antibodies are robust biomarkers of
CD.278’283

Treg dysfunction and therapeutic implications in IBD
Although IBD has a complex pathophysiology
with the involvement of multiple factors, these
findings indicate that dysbiosis-induced Treg
dysfunction may play a role in IBD in geneti-
cally susceptible individuals, as both SCFAs and
BAs are important for maintaining Treg-
mediated gut immune tolerance. Indeed, coloni-
zation of GF mice with human fecal microbiota
from IBD patients resulted in an increased num-
ber of Th17 cells and a reduced population of
RORyt" Tregs, compared to mice colonized with
microbiota from healthy donors.***
Paradoxically, in human patients of CD colon
lamina propria, Tregs are enriched while the
circulating Tregs are decreased during active
disease.”®>**” Although Tregs present in the
intestinal mucosa of IBD patients continue to
express activation markers such as CTLA-4 and
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PD-1,2%?% these cells exhibit functional impair-
ments and fail to effectively suppress
inflammation.”®*>**  Notably, while Tregs
derived from the mucosa of CD patients retain
the ability to suppress peripheral CD4" Teff cells
isolated from blood, they are unable to exert
similar suppressive effects on mucosal Teffs.
Further, this finding suggests that gut-resident
Teffs acquire resistance to Treg-mediated sup-
pression during active IBD.**® Comprehensive
single-cell analyses of intestinal tissues from var-
ious human IBD cohorts have uncovered dis-
tinct Treg subsets within the inflamed mucosa.
These subsets exhibit a spectrum of Foxp3
expression and produce proinflammatory cyto-
kines such as IL-17 and IFN-y. Notably, a mem-
ory-like IL-17" Treg population has been
identified in patients with UC,*’' alongside a
TNF" Treg subset,”> which might contribute
to the anti-TNF treatment resistance in IBD
patients.

Thus, schemes to expand functional mucosal
Tregs or enhance their function can provide
protection from IBD. Indeed, Treg expansion
therapies like low-dose IL-2 treatment have
been shown to provide moderate clinical
response in UC patients with significant expan-
sion of Tregs.””> Similarly, recent studies have
demonstrated that microbial restoration
through fecal microbiota transplantation
(FMT) can improve outcomes in patients with
UC form of IBD.??42%¢ Additionally, a defined
consortium of probiotics, selected for their
ability to produce beneficial metabolites such
as SCFAs, indoles, and bile salts'®” has demon-
strated efficacy in ameliorating experimental
colitis in murine models. This probiotic con-
sortium not only reversed dysbiosis but also
restored a functional gut microbiome capable
of generating anti-inflammatory metabolites
associated ~ with  mucosal = homeostasis.
Furthermore, it enhanced protective immunity
by significantly increasing the frequency of IL-
10-producing RORyt" FoxP3" Tregs. While
microbe-derived products like PSA, CSGG,
and MGCP have shown promising results in
resolving experimental colitis in mice, clinical
data remain limited. Nevertheless, given their
ability to induce Tregs, it is reasonable to

hypothesize that administrating these bioactive
compounds from beneficial bacteria (postbio-
tics) could elicit favorable therapeutic
responses in human IBD, warranting further
investigation in clinical trials.

Celiac disease (CeD)

Immune dysregulation and treg dysfunction in CeD
CeD is a chronic hyperimmune disorder caused by
an abnormal immune response to gliadin, a com-
ponent of gluten, in genetically predisposed indivi-
duals. Having compatible human leukocyte antigen
(HLA) genetics is necessary for the development of
CeD, but it alone does not cause the condition.
While around 40% of the population possesses
the permissive HLA genes, only approximately
3% of individuals develop CeD during their
lifetime.>”” This highlights the critical role of addi-
tional genetic, environmental, and immunological
factors in disease pathogenesis. Though associated
with changes in gut bacteria, a consistent microbial
signature in patients has not been identified.**® The
pathogenesis of CeD is known to primarily
mediated by gluten-specific inflammatory Thl
and Th17 cells.**>?°° Multiple studies have
reported simultaneous expression of regulatory
cytokines like IL-10 and TGF-p along with inflam-
matory cytokines IFN-y, IL-17, and IL-21 in
CeD.**'"*% This creates a paradoxical environment
in untreated CeD, where regulatory mechanisms
attempt to suppress inflammation and mitigate
the abnormal immune response triggered by
gliadin.”*

Studies have revealed intriguing parallels between
CeD and IBD regarding Treg dynamics, as CeD is also
characterized by an increase in Foxp3™ Tregs in small
intestinal lamina propria.’*>**® However, their sup-
pressive functions are impaired significantly.***"*%
IL-15 is significantly overexpressed in the intestines of
celiac patients, where it contributes to immune dys-
function by disrupting TGF-f signaling, impairing
Treg activity, and rendering Teff cells resistant to
Treg-mediated suppression through activation of
PI3K pathway.’*>*'* Additionally, Serena et al.>''
highlighted the role of gut microbiome in the hypo-
function of Tregs in CeD. In active CeD, the loss of
intestinal barrier integrity allows microbial-derived



butyrate to synergize with IFN-y to modulate alter-
native splicing of FOXP3, favoring the expression of
shorter FOXP3 Delta 2 isoform, which lacks exon 2.
This isoform compromises the interaction between
FOXP3 and transcription factors RORat and RORyt,
thereby promoting Th17 differentiation.>'* This shift
in FOXP3 isoform expression underscores how the
intestinal microenvironment can reprogram Tregs,
undermining their capacity to maintain immune tol-
erance and exacerbating the inflammatory response
in CeD.

Microbiota alterations in CeD

The CeD-associated microbiota changes have been
studied in high-risk infants with a first-degree relative
diagnosed with CeD. These studies have revealed dis-
tinct microbial signatures, with increased abundance
of the Bacteroides-Prevotella group,”"> Firmicutes,
Proteobacteria, and Bifidobacterium in infants com-
pared to controls.’'* Another study found that such
infants exhibit a lower abundance of Bacteroides and a
higher abundance of Firmicutes compared to healthy
controls.”’® In a longitudinal study, Olivares et al.'®
observed that children who later developed CeD
showed an increased abundance of Firmicutes, parti-
cularly Enterococcaceae and Peptostreptococcaceae,
between 4 and 6 months of age. In contrast, no such
differences were observed in control individuals dur-
ing the same period. These findings suggest that early-
life microbial dysbiosis may precede and potentially
contribute to CeD pathogenesis.

A recent ongoing prospective clinical trial,"* utiliz-
ing shotgun metagenomic sequencing for functional
characterization of microbes, Celiac Disease
Genomic, Environmental, Microbiome and
Metabolome study (CDGEMM), has further eluci-
dated the relationship between environmental factors
and microbial changes in high-risk infants. The study
found that formula feeding was associated with an
increased abundance of Ruminococcus gnavus and
Lachnospiraceae bacterium, both of which have been
linked to allergic and inflammatory conditions.
Additionally, infants delivered by cesarean section
exhibited a decreased abundance of Bacteroides vul-
gatus and Bacteroides dorei, alongside broader meta-
bolomic alterations. One particularly intriguing
finding from the CDGEMM study was the decreasing
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abundance of propionic acid in high-risk infants.
Propionic acid is a known inducer of functionally
competent Tregs.'” While it remains to be deter-
mined whether these microbial and metabolic
changes directly contribute to CeD development,
these findings underscore the potential importance
of restoring Treg functionality or modulating the gut
microbiome as novel therapeutic strategies.

Future research should focus on unraveling the
precise mechanisms by which microbial and
environmental factors influence immune regula-
tion in CeD. Understanding these pathways could
pave the way for innovative interventions aimed
at restoring durable immune tolerance and pre-
venting disease onset in genetically predisposed
individuals.

Colorectal cancer

Microbial alterations in CRC

Colorectal cancers (CRCs) are intrinsically linked
to the gut microbiota due to their anatomical loca-
tion within the gastrointestinal tract. Transplanting
fecal microbiota from CRC patients into GF mice
promotes colonic cell proliferation and accelerates
colon tumor formation. Conversely, fecal micro-
biota from cancer-free individuals do not have the
same effect, underscoring the role of CRC-asso-
ciated microbiota in disease progression.>'® A com-
prehensive multi-cohort metagenomic analysis
identified a core bacterial signature of seven CRC-
enriched bacterial species—Bacteroides fragilis,
Fusobacterium nucleatum, Porphyromonas asac-
charolytica, Parvimonas micra, Prevotella interme-
dia, Alistipes finegoldii, and Thermanaerovibrio
acidaminovorans—that were consistently present
across diverse populations spanning various geo-
graphies and ethnicities.”’” In addition to these
CRC-associated bacteria, the study also identified
62 bacterial species that were depleted in CRC
patients. Notably, five of these depleted species—
Clostridium butyricum, Streptococcus salivarius,
Streptococcus thermophilus, Carnobacterium mal-
taromaticum, and Lactobacillus gallinarum—have
been associated with health-promoting effects,
underscoring their potential protective roles in
the context of CRC development. Further, gut bac-
teria have been shown to modify response to
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immune check-point inhibitor therapy in multiple
tumor types,” °**° including CRC.**'*** Fecal
metagenomic and metabolomic data from indivi-
duals at various stages of colorectal tumorigenesis
revealed dynamic changes in gut microbes and
metabolites from early adenoma to the late stage
of CRC suggesting dysbiotic changes could be dri-
vers of CRC tumorigenesis.”**

F. nucleatum ssp. nucleatum, Solobacterium
moorei, Peptostreptococcus stomatis,
Peptostreptococcus anaerobius, Lactobacillus sanfran-
ciscensis, Parvimonas micra, and Gemella morbil-
lorum are bacterial species that increased across all
stages of tumor progression, while Atopobium parvu-
lum, Actinomyces odontolyticus, Desulfovibrio long-
reachensis, and Phascolarctobacterium succinatutens
were elevated only in early stages. Two butyrate-pro-
ducing bacteria Lachnospira multipara, and
Eubacterium eligens are significantly depleted in
CRC. While relatively less studied, this loss of bene-
ficial bacteria can be instrumental in CRC tumorigen-
esis. Furthermore, in the early stages of CRC, there is
an increase in bile salt DCA, glycocholate, and taur-
ocholate, indicating a role in tumorigenesis.’**
Indeed, DCA increases DNA damage and mutations,”
>2° while administration of BAs increases gut tumor

incidences in mice.>*

Tregs in CRC progression and therapy

Chronic inflammation is a well-established risk factor
for the development and progression of various can-
cers, including CRC.*”” The role of Tregs in this
context presents a complex relationship with tumor
progression. While they are pivotal in maintaining
immune homeostasis and suppressing exuberant
inflammation under normal conditions, their
increased presence in tumors is implicated in cancer
progression and indicates a worsening prognosis.zs’3 >
Studies demonstrate that Tregs adopt a hyper-sup-
pressive phenotype within TME, actively suppressing
anti-tumor immunity and thus promoting CRC
progression.””®**’ These findings align with our
recent demonstration that CRC-infiltrating Tregs
exhibit enhanced activation of the NF-«xB subunit
C-REL, a Treg-effector transcription factor, driven
by increased post-translational O-GlcNAcylation,
which may contribute to their heightened immuno-
suppressive functions.”’ However, some studies have
reported that elevated densities of Foxp3™ Tregs

correlate with suppression of CRC progression.3 31,332

These apparent contradictions may be explained by
the heterogeneity of cells expressing FOXP3 in
humans. Saito et al.’*’ identified a subset of
FOXP3"°CD45RA-CD4" TILs that transiently express
FOXP3 but lack the canonical suppressive functions
of bona fide Tregs. These cells are characterized by
high expression of proinflammatory cytokines such
as IL-17 and IFN-y, suggesting that their accumula-
tion in CRC may enhance anti-tumor immunity
rather than suppress it and thus, their accumulation
in CRC accentuates the anti-tumor immunity.*>

Furthermore, considering the signature micro-
biota, which is depleted in the initiation stages of
CRC being instrumental in colonic differentiation of
RORyt" Tregs and activation of colonic Tregs of
thymic origin, it is highly probable that Tregs main-
tain a low inflammatory environment in the gut
promoting intestinal immune homeostasis and
thus, potentially inhibiting the tumorigenesis in the
gut. Supporting this notion, a recent study by Frei et
al.>** spatially resolved the immune markers over
3,000 CRC samples, distinguishing between intrae-
pithelial and intrastromal compartments. Strikingly,
they found that higher densities of intraepithelial
CD8" T cells and intrastromal Foxp3"™ Tregs were
strongly predictive of favorable clinical outcomes.
The association of better prognosis with intrastro-
mal rather than intraepithelial Tregs underscores
their potential role in controlling inflammation
and limiting tumor invasiveness. These findings sug-
gest that enhancing the frequency and functionality
of colonic Tregs through targeted interventions,
such as specific probiotics, postbiotics, live biother-
apeutic products, or microbial-derived ligands,
could represent a promising therapeutic strategy
for CRC. Characterizing the unique markers and
mechanisms of stromal Tregs that inhibit tumor
growth will be crucial for developing precise micro-
biome-based therapies. Such approaches could har-
ness the immunoregulatory properties of Tregs to
maintain gut immune homeostasis while simulta-
neously mitigating chronic inflammation, thereby
offering a dual benefit in CRC prevention and treat-
ment. Further research into the interplay between
the gut microbiota, Treg biology, and tumor micro-
environment dynamics will pave the way for inno-
vative strategies aimed at modulating Treg activity to
improve patient outcomes in CRC.



Despite the strong associations between
microbiota alterations and various inflamma-
tory and autoimmune diseases, establishing
causality remains a significant challenge in the
field. To distinguish whether dysbiosis is a
cause or consequence of disease is inherently
difficult due to the bidirectional nature of host-
microbiome interactions.”®” Studies in GF
mouse models demonstrate that the absence of
microbiota attenuates disease severity in IBD,

suggesting a contributory role of the
microbiome.'®" Similarly, FMT from IBD
patients to GF mice transfers disease
phenotypes,”® however, reverse causality

where inflammation itself reshapes the micro-
biota complicates interpretations. For example,
intestinal inflammation reduces oxygen toler-
ance, favoring the expansion of facultative
anaerobes like Proteobacteria.’’® Moreover,
clinical trials of probiotics and prebiotics have
yielded mixed results - Lactobacillus rhamnosus
GG ameliorates eczema but fails to prevent
asthma,?” while high-fiber diets improve Treg
responses in some IBD cohorts but show no
benefit in others.’®® Genetic polymorphisms in
immune receptors (e.g., TLRs, NLRP3) further
modulate individual responses to microbial sig-
nals, suggesting that microbiota-Treg interac-
tions are heavily influenced by host factors.””®
Moreover, geographical and genetic heteroge-
neity in microbial signatures, as observed with
Saccharomyces cerevisiae in Crohn’s disease
cohorts, underscores the challenge of establish-
ing universal microbial drivers of disease."’
Furthermore, many studies reporting micro-
biome alterations in disease states are cross-
sectional rather than longitudinal, limiting
their ability to establish temporal relationships
necessary for causal inference.’®” These contra-
dictory findings highlight the need for caution
in interpreting the microbiota-Treg axis as uni-
formly beneficial. Future research leveraging
longitudinal studies, multi-omics approaches,
mechanistic studies, and controlled microbial
interventions is essential to move beyond cor-
relative observations and establish causal rela-
tionships in the microbiome-Treg axis and
dissect the context-specific roles of microbial
communities in immune regulation.
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Clinical translation: trials and challenges in
targeting the microbiota-Treg axis

The promising results from preclinical studies target-
ing the microbiota-Treg axis have spurred numerous
clinical trials, with varying degrees of success.
Understanding both the successes and failures of
these trials provides valuable insights for future ther-
apeutic development.

Low-dose IL-2 therapy has emerged as a promis-
ing approach to expand Tregs in vivo. Several clin-
ical trials have demonstrated that low-dose IL-2
can selectively expand Tregs without significantly
affecting effector T cells in patients with various
autoimmune conditions.>*® In a phase 1/2 trial
involving patients with ulcerative colitis, low-dose
IL-2 treatment resulted in significant clinical
improvement in 50% of patients, accompanied by
expansion of FOXP3" Tregs.*' However, chal-
lenges remain regarding the optimal dosing regi-
men, potential off-target effects, and long-term
efficacy of this approach. Similarly, adoptive Treg
transfer represents another strategy to restore
immune tolerance. Early-phase clinical trials have
demonstrated the safety and feasibility of ex vivo
expanded autologous Tregs in conditions such as
type 1 diabetes®** and Crohn’s disease.*** However,
a phase 1 trial of ovalbumin-specific Tregs in
Crohn’s disease patients failed to show significant
clinical benefit despite demonstrating safety.”*'

FMT has shown promise in recurrent
Clostridioides difficile infection and is being inves-
tigated for various immune-mediated conditions.
In ulcerative colitis, several randomized controlled
trials have demonstrated modest efficacy of FMT in
inducing clinical remission.”***** A trial of FMT in
Crohn’s disease showed moderate benefit,*® high-
lighting the disease-specific effects of this
approach. The variability in donor stool composi-
tion, optimal administration protocols, and long-
term safety concerns remain significant challenges
for FMT.

Probiotic interventions have yielded mixed
results in clinical trials. While some studies have
shown modest benefits of specific probiotic strains
in conditions such as ulcerative colitis,”*”*** others
have failed to demonstrate significant effects as in
atopic dermatitis.>** A notable failure was the
PROPATRIA trial, which found that a probiotic
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mixture increased mortality in patients with severe
acute pancreatitis,”® highlighting the potential
risks of untargeted microbial interventions in cer-
tain clinical contexts. Postbiotic interventions,
using microbial-derived components or metabo-
lites, represent an emerging approach with poten-
tial advantages over live bacterial therapies. Early-
phase trials of SCFA supplementation®’' has
shown promising effects on immune parameters,
but larger efficacy trials are still needed.

However, clinical trials specifically examining
the relationship between Tregs and microbial inter-
ventions remain limited, with most evidence com-
ing from preclinical models or observational
studies. Though several studies are investigating
FMT in immune-mediated conditions, only few
directly measured Treg outcomes. Al et al.*>> con-
ducted a pilot randomized controlled trial of FMT
in multiple sclerosis patients (NCT03183869),
measuring peripheral blood cytokines as the pri-
mary outcome. While this trial demonstrated that
FMT was safe and tolerable, with potential to
improve intestinal permeability and enrich for an
MS-protective microbiota, it did not specifically
report Treg changes. Similarly, NCT02516384
examined two donor FMT in ulcerative colitis
patients with immunological assessments.’>>
Interestingly, along with moderate improvement
in clinical response they found that both mucosal
Th1 cells and Tregs were decreased post-FMT.
Reduction in Tregs probably happened concomi-
tant to reduction in mucosal inflammation as a
result of increased microbial diversity. Preclinical
evidence suggests that microbial interventions can
influence Treg populations, as demonstrated in
murine models where defined microbiota trans-
plants restored Th17/RORyt" regulatory T cell bal-
ance, but human clinical trial data with direct Treg
outcome measurements remains an important gap
in the current literature.

Furthermore, oral consumption as a substitute
for bacterial functionality presents both opportu-
nities and challenges. While oral administration of
bacterial metabolites like SCFAs, tryptophan deri-
vatives, or BAs could theoretically bypass the need
for a functional microbiota, several limitations
exist. These include the poor stability of many
metabolites in the gastrointestinal tract, challenges
in achieving physiologically relevant

concentrations at target sites, and the loss of con-
text-dependent production of these metabolites.>>*
Additionally, many bacterial functions involve
complex metabolic networks and cell-to-cell inter-
actions that cannot be easily replicated by single
metabolites.”>> Despite these challenges, targeted
delivery systems and synthetic biology approaches
are being developed to overcome some of these
limitations. For example, engineered bacteria
designed to produce specific metabolites or
immune-modulating molecules in response to
environmental cues represent a promising
approach to combine the advantages of live bac-
teria with the specificity of postbiotic
interventions.>>®

The mixed results from clinical trials targeting
the microbiota-Treg axis highlight the complexity
of translating preclinical findings to human dis-
eases. Future success will likely depend on more
personalized approaches that consider individual
variations in microbiota composition, genetic fac-
tors, and disease heterogeneity. Additionally, com-
bination therapies that target multiple aspects of
the microbiota-Treg axis may prove more effective
than single interventions.

Conclusion and future perspectives

The interplay between the gut microbiome and Tregs
represents a cornerstone of immune homeostasis,
with profound implications for health and disease.
This review has highlighted the multifaceted mechan-
isms by which microbial components and metabolites
shape Treg development, differentiation, and func-
tion. These microbial-derived signals not only main-
tain intestinal immune tolerance but also influence
systemic immunity, underscoring the gut micro-
biome’s role as a key modulator of immune responses.

Dysregulation of the microbiome-Treg axis is a
hallmark of inflammatory and autoimmune dis-
eases. In IBD, microbial dysbiosis and reduced pro-
duction of immunomodulatory metabolites, such as
SCFAs, impair Treg function, leading to chronic
inflammation.” Similarly, emerging evidence sug-
gests microbiome-based changes in other condi-
tions, such as MS and autism spectrum disorders
(ASD), among others. In MS, alterations in gut
microbial composition have been linked to immune
dysregulation and disease progression,””>® while



in ASD, gut microbiome imbalances correlate with
behavioral and neurological symptoms.* In cancer
therapy, specific microbial signatures have been
identified as predictors of response to immune
checkpoint inhibitors, highlighting the potential for
microbiome modulation to enhance treatment
efficacy.”***®" However, in many instances, it
remains unclear whether microbial changes are a
cause or consequence of disease processes, necessi-
tating further investigation to establish causal rela-
tionships and mechanistic insights.

Emerging evidence suggests that targeting the
microbiome-Treg axis holds immense therapeutic
potential. Strategies such as FMT, probiotics,
postbiotics, LBPs, and microbial-derived ligands
have shown promise in preclinical and clinical
studies.'””*** However, translating these findings
into effective therapies requires a deeper under-
standing of the complex interactions between
microbial signals, host immunity, and disease-
specific contexts.

From a therapeutic perspective, FMT has
emerged as a well-established approach for modu-
lating the gut microbiota and correcting dysbiosis.
Indeed, FMT-related therapeutics have been
approved by the US FDA for recurrent
Clostridioides difficile infections.”®**®> However,
defined consortia of bacteria offer significant advan-
tages over FMT. These consortia can mimic the
natural complexity of the gut microbiome, provide
functional redundancy to ensure therapeutic stabi-
lity, and promote stable colonization, potentially
leading to long-term effects.’®* Moreover, they can
simultaneously target multiple pathways, making
them suitable for complex diseases. However, the
use of live biotherapeutics presents challenges,
including variable responses in heterogeneous
patient populations and inconsistent efficacy out-
comes, necessitating rigorous investigation and
well-designed clinical trials to address these
limitations.’*® Both LBP and FMT efficacy is highly
context-dependent, influenced by factors such as
donor and recipient microbiota composition, host
immune status, host genetics, and delivery methods,
which may limit long-term benefits.*****” For
instance, FMT trials in ulcerative colitis show vari-
able remission rates due to differences in donor
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microbial profiles and patient baseline microbiota
which may either facilitate or inhibit colonization by
the introduced strains.’*®**® Similarly, LBP out-
comes, such as those with VE303, vary based on
colonization success and host factors.””® The com-
plex ecological dynamics within the gut microbiota,
including competition for nutrients and niches,
cross-feeding relationships, and antagonistic inter-
actions, further complicate the predictability of
microbiota-based interventions.””' These findings
underscore the need for personalized approaches
and further research to optimize donor selection,
delivery protocols, and patient stratification to
achieve sustained therapeutic outcomes.

In contrast, purified microbial products, such
as PSA, CSGG, MGCP, RHP,””**”* and other
microbial-derived ligands, may offer a more
controlled and precise approach. These well-
defined products enable consistent outcomes
and facilitate the study of precise mechanisms,
providing better control over therapeutic inter-
ventions. Logistically, purified products, if they
have a simple chemical structure, might be safer,
easier to manufacture and store, and face fewer
regulatory hurdles compared to live consortia or
FMT. Despite these advantages, the exploration
of microbial products is still in its infancy, and a
plethora of bioactive molecules remain to be
discovered for various dysbiotic diseases.
Additionally, the roles of understudied compo-
nents of the human microbiome other than
bacteria, such as fungi and viruses, in Treg reg-
ulation warrant further investigation, as they
may hold untapped therapeutic and biomarker
potential >">7>7*

Future research should focus on elucidating the
precise molecular mechanisms by which microbial
components and metabolites modulate Treg biol-
ogy. Personalized microbiome-based therapies, tai-
lored to individual microbial and immune profiles,
could improve treatment outcomes and pave the
way for precision medicine in immune-mediated
diseases.””” Furthermore, the integration of multi-
omics approaches, including metagenomics, meta-
bolomics, and single-cell sequencing, will provide
deeper insights into the microbiome-Treg axis and
its role in health and disease.>”**””
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In conclusion, the microbiome-Treg axis repre-
sents a dynamic and bidirectional relationship that is
central to immune homeostasis and disease. The con-
text-dependent nature of microbial effects on
immune regulation necessitates personalized
approaches that consider individual variations in
microbiota composition, host genetics, and disease
pathophysiology.>”® Moreover, the complex interplay
between beneficial and potentially harmful microbial
signals requires careful consideration when develop-
ing microbiota-based therapeutics. As demonstrated
by failed clinical trials with FMT in ulcerative colitis,
not all patients respond uniformly to microbiome-
targeted interventions, highlighting the need for better
stratification approaches and more precise manipula-
tion of specific microbial pathways.”*> Future research
should focus on establishing causality through long-
itudinal studies, identifying disease-specific microbial
signatures with strain-level characterization, metabo-
lite profiling in disease-specific contexts, integration
of multi-omics data, and developing targeted
approaches to modulate specific aspects of the micro-
biome-Treg axis while minimizing unintended con-
sequences. By unraveling the complexities of this
interaction, we can harness the therapeutic potential
of the microbiome to restore immune tolerance and
improve outcomes in inflammatory, autoimmune,
and neoplastic diseases. The development of micro-
biome-based therapies, whether through live consor-
tia, purified products, or personalized interventions,
holds immense promise for revolutionizing the treat-
ment of immune-mediated disorders.
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