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ABSTRACT
Immune-related long noncoding RNAs (irlncRNAs) are actively involved in regulating the immune 
status. This study aimed to establish a risk model of irlncRNAs and further investigate the roles of 
irlncRNAs in predicting prognosis and the immune landscape in pancreatic cancer. The transcrip-
tome profiles and clinical information of 176 pancreatic cancer patients were retrieved from The 
Cancer Genome Atlas (TCGA). Immune-related genes (irgenes) downloaded from ImmPort were 
used to screen 1903 immune-related lncRNAs (irlncRNAs) using Pearson’s correlation analysis 
(R > 0.5; p < 0.001). Random survival forest (RSF) and survival tree analysis showed that 9 
irlncRNAs were highly correlated with overall survival (OS) according to the variable importance 
(VIMP) and minimal depth. Next, Cox regression analysis was used to establish a risk model with 3 
irlncRNAs (LINC00462, LINC01887, RP11-706C16.8) that was evaluated by Kaplan-Meier analysis, 
the areas under the curve (AUCs) of the receiver operating characteristics and the C-index. 
Additionally, we performed Cox regression analysis to establish the clinical prognostic model, 
which showed that the risk score was an independent prognostic factor (p < 0.001). A nomogram 
and calibration plots were drawn to visualize the clinical features. The Wilcoxon signed-rank test 
and Pearson’s correlation analysis further explored the irlncRNA signatures and immune cell 
infiltration, as well as the immunotherapy response.
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Introduction

Pancreatic cancer is a highly malignant tumor with 
a 5-year survival rate of less than 10%; it is also the 
seventh leading cause of death in developed coun-
tries [1]. The short overall survival (OS) highlights 
the need for an accurate staging system to predict 
the prognosis, and the modification of the 8th 

edition of the American Joint Committee on 
Cancer (AJCC) staging system contributes to 
improving prognosis prediction [2]. Surgical exci-
sion is the only option to achieve a complete cure, 
and chemotherapy and neoadjuvant treatment 
play important roles in pancreatic cancer therapy. 
Although immunotherapy has shown substantial 
improvement in several tumors, mono – or com-
bined immune checkpoint inhibitors show limited 
effects in pancreatic cancer, partially due to the 
reduced infiltration of immune cells, poor immu-
nogenic immune microenvironment, and abun-
dant mesenchymal fibroblasts blocking drug 
delivery [3,4]. An understanding of the immune 
microenvironment of pancreatic cancer is required 
to promote its clinical application.

Long noncoding RNAs (lncRNAs) account for 
more than 80% of RNAs, and their transcripts are 
more than 200 nucleotides in length; lncRNAs do 
not translate into proteins. LncRNAs interfere 
with proteins, RNA and DNA to participate in 
many biological regulation processes, including 
transcriptome modulation and gene modification 
[5]. Furthermore, recent studies have delineated 
the mechanisms of lncRNAs that are actively 
involved in tumor biology, such as H19, PVT1, 
NEAT1 and HISLA, which were disclosed to be 
associated with tumorigenesis, epithelial mesench-
ymal transition, metastasis, chemoresistance, 
immune evasion and metabolic reprogramming 
[6–8].

Immune-related lncRNAs (irlncRNAs) have 
recently been studied in several cancers. Wang 
et al [9] identified 4 irlncRNAs to establish a risk 
model for lung adenocarcinoma, while 8 
irlncRNAs were used to construct a prognostic 
model for melanoma [10]. Additionally, 
irlncRNAs have been utilized in glioblastoma, 
head and neck squamous cell carcinoma and blad-
der cancer [11–13]. These models demonstrate the 

potential clinical significance of irlncRNAs and 
provide novel insights to establish a clinical prog-
nostic model.

In this article, we tried to construct a risk model 
using immune-related lncRNAs and demonstrated 
the significance of predicting prognosis using 
AUC and Kaplan-Meier analysis. Next, we con-
structed a clinical prognostic model using Cox 
analysis and presented it with a nomogram as 
well as calibration plots. Finally, we explored 
immune cell infiltration and responses to che-
motherapy to delineate the immune landscape in 
pancreatic cancer patients.

Methods

Retrieval of the transcriptome data and 
identification of immune-related lncRNAs 
(irlncRNAs)

We obtained the transcriptome profile data (high- 
throughput sequencing (HTseq) counts) and clin-
ical information of patients (npatient = 176, nnormal 
= 4) from The Cancer Genome Atlas pancreatic 
cancer dataset (TCGA-PAAD). Next, we down-
loaded the gene transfer files (GTFs) from 
Ensemble (http://asia.ensembl.org) to annotate 
the transcriptome profiles and extract the 
lncRNA expression profiles. Additionally, 
immune-related genes (irgenes) were downloaded 
from the ImmPort database (http://www.immport. 
org), and 2438 genes were obtained. After 
Pearson’s correlation analysis of lncRNAs and 
irgenes, 1903 irlncRNAs were identified (r > 0.5; 
p < 0.001). In this step, the Hmisc package was 
employed.

Establishment of the risk model by random 
survival forest (RSF) analysis

The RSF model was applied to determine the 
irlncRNAs significant to the OS and survival status 
according to variable importance (VIMP) and the 
minimal depth [14,15]. The samples were ran-
domly divided into a training set (n = 123) and 
a test set (n = 53) at a ratio of 7:3. Survival tree 
analysis was constructed using the variables 
selected from the previous procedure (CTC- 
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529P8.1, RP11-706C16.8, LINC01493, LINC01887, 
LINC00462, LINC01510, LINC02205, RP11- 
1082L8.2, RP11-402N8.1), using 1000 trees and 
the log-rank splitting rule. After deleting the vari-
ables with extremely low expression, the risk 
model was established by multivariable Cox 
regression analysis. Three variables (LINC00462, 
LINC01887, and RP11-706C16.8) were selected 
by Cox regression analysis and were used to pre-
dict the risk score for each sample in the training 
set. The forest map of the 3 irlncRNAs was drawn. 
Additionally, the areas under the receiver operat-
ing characteristic (ROC) curve (AUCs) for 
36 months, 30 months, 24 months, 18 months, 
12 months and 6 months as well as the concor-
dance index (C-index) for the risk model were 
calculated. The randomForestSRC, glmnet, survi-
val, surviminer, ggplot2, forestplot, survcopm, and 
prodlim packages were used in this procedure.

Clinical validation of the risk model

According to X-Tile software (https://medicine. 
yale.edu/lab/rimm/research/software/), the best 
cutoff value for the risk score was 1.44 in the 
training set and 1.40 in the test set. After dividing 
the samples into high-risk and low-risk groups in 
the training set and test set separately, Kaplan- 
Meier analysis was conducted to analyze the dif-
ference in OS in the high – and low-risk groups. 
Furthermore, we drew survival plots and survival 
curves to visualize the difference between the 
groups. The survivalROC, plotROC, ggplot2, sur-
vival and survminer packages were applied in this 
step.

Establishment of the clinical prognostic model

To evaluate the clinical significance of the 
irlncRNAs in the signature, we further conducted 
several analyses, including Cox regression analysis 
and Pearson’s correlation analysis. The AUC for 
each clinical characteristic and risk score were 
calculated to determine the potential prognostic 
factors. Univariate Cox regression and multivari-
ate Cox regression analyses were applied to con-
struct the clinical prognostic model. A nomogram 

was constructed, and a calibration plot was drawn 
to show the results of Cox analysis. The C-index of 
the clinical prognostic model increased from 0.599 
to 0.682 after considering the risk score. The dplyr, 
ggolot2, ggpubr, survival, survminer, rms, and 
survcomp packages were used in this step.

Exploring the correlation between the irlncRNA 
signature and immune cell infiltration

Correlation analysis of lncRNAs and irgenes was 
conducted initially. Therefore, we further explored 
the correlation between the irlncRNA signature 
and immune cell infiltration using the Tumor 
IMmune Estimation Resource (TIMER), 
CIBERSORT, XCELL, QUANTISEQ, 
MCPcounter and EPIC databases [16,17]. The 
Wilcoxon signed-rank test showed significantly 
infiltrated immune cells (p < 0.1), and Pearson’s 
correlation analysis revealed the correlation index 
between immune cells and the risk score. 
Additionally, we performed the Wilcoxon signed- 
rank test to assess the association between immune 
checkpoint inhibitor (ICI) biomarkers and risk. 
The Hmisc, ggplot2 and ggrepel packages were 
used here.

Results

In this study, we established a risk model and 
clinical prognostic model using 3 irlncRNAs and 
explored the correlation between the irlncRNA 
signature and immune cell infiltration. First, cor-
relation analysis of lncRNAs and irgenes was per-
formed to obtain irlncRNAs. Second, random 
survival forest, survival tree decision and Cox 
regression analyses were applied to establish the 
risk model by irlncRNAs. Additionally, we calcu-
lated the AUC of the time-dependent ROC curve 
to validate its practical significance. Third, to con-
firm its clinical significance, Kaplan-Meier analy-
sis, the Wilcoxon signed-rank test, and Cox 
regression analysis were used and confirmed that 
the irlncRNA signature was an independent prog-
nostic factor among the clinical characteristics. 
Finally, we explored the relationship between the 
irlncRNA signature and immune cell infiltration, 
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revealing that specific immune cells differentially 
infiltrated tissues from the high – and low-risk 
groups, shedding light on the immune microenvir-
onment of pancreatic cancer. The risk model 
established from irlncRNAs in this study is of 
high predictive value. After combining the risk 
score into the clinical prognostic model, the 
C-index increased from 0.599 to 0.682, indicating 
that it significantly contributes to clinical prog-
nosis efficacy among pancreatic cancer patients. 
Furthermore, the irlncRNA signature can predict 
the immune landscape, including immune cell 
infiltration in tumor tissue, providing insights for 
immunotherapy.

Identification of immune-related long noncoding 
RNAs (irlncRNAs)

The process flow of this study is shown in the 
figure abstract. First, we obtained the transcrip-
tome profile from high-throughput sequencing 
(HTseq) count data (npatient = 176, nnormal = 4) 
and the clinical information of patients from The 
Cancer Genome Atlas pancreatic cancer dataset 
(TCGA-PAAD). Second, we retrieved the gene 
transfer files (GTFs) from Ensembl to annotate 
the lncRNAs from the expression matrix. Third, 
immune-related genes (irgenes) were downloaded 
from the ImmPort database. Pearson’s correlation 
analysis between the lncRNAs and irgenes was 
performed, and 1903 irlncRNAs were identified 
(R > 0.5; p < 0.001) (Table S1).

Establishment of a risk model by random 
survival forest (RSF) analysis

RSF was applied to determine the irlncRNAs of 
most significance to the OS of pancreatic patients. 
In the survival tree analysis, we set trees as 1000 
and the terminal node size as 3. The method was 
set as variable hunting with VIMP and k-fold as 5. 
Next, we selected the top 9 variables (CTC- 
529P8.1, RP11-706C16.8, LINC01493, 
LINC01887, LINC00462, LINC01510, 
LINC02205, RP11-1082 L8.2 and RP11-402N8.1) 
that were selected according to the variable impor-
tance (VIMP) and minimal depth. Subsequent Cox 

regression analysis identified 3 irlncRNAs 
(LINC00462, LINC01887, RP11-706C16.8), with 
a coefficient index and risk score for each sample 
in the training set calculated. To validate this 
model, receiver operating characteristic (ROC) 
curves were drawn, and the areas under the curves 
(AUCs) for 36 months, 30 months, 24 months, 
18 months, 12 months and 6 months were 0.778, 
0.774, 0.751, 0.753, 0.780 and 0.756, respectively 
(Figure 1). Additionally, the C-index for this risk 
model was 0.696 (p < 0.001).

Clinical evaluation of the risk model

Instead of the median risk score value, the best 
cutoff value (1.44) calculated using X-Tile software 
(https://medicine.yale.edu/lab/rimm/research/soft 
ware/) was used to divide the samples into high- 
risk and low-risk groups in the training and vali-
dation sets. To clinically evaluate the risk model, 
several analytical methods were applied. First, 
Kaplan-Meier analysis showed that the OS of 
patients in the high-risk group was significantly 
lower than that of patients in the low-risk group 
(p < 0.001). In the high-risk group, the 5-year OS 
rate was 5.66%, the 95% confidence interval (CI) 
was 0.88 to 361, the 5-year OS rate was 30.9%, and 
the 95% CI was 18.28 to 52.4 in the low-risk 
group. In the test set, Kaplan-Meier analysis 
showed a significant difference in OS between 
the groups (p < 0.001) (Figure 2).

The risk model is an independent prognostic 
factor for pancreatic cancer

To construct a more accurate clinical prognostic 
risk model, the AUC of each ROC for each clinical 
characteristic and risk score were calculated; the 
AUCs of the risk score, age, sex, T stage, N stage, 
M stage and stage were 0.778, 0.654, 0.548, 0.564, 
0.686, 0.462 and 0.557, respectively, with the risk 
score AUC being the only one above 0.7. After 
univariate Cox regression analysis, the risk score 
(p < 0.001), N (p = 0.006) and T (p = 0.034) were 
selected for multivariate Cox regression analysis, 
revealing that the risk score (p < 0.001) and 
N (p < 0.05) were independent prognostic factors 
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for pancreatic cancer (Table 1). Furthermore, the 
addition of the risk score to the clinical model can 
raise the C-index from 0.599 to 0.682, indicating 
that it substantially contributes to prognosis pre-
diction. A nomogram and the related calibration 
plots were established to visualize the specific 
method, calculate the risk scores and show the 
ability of the model to predict OS at 6 months, 
12 months and 36 months (Figure 3).

Exploring the correlation between immune cell 
infiltration and the risk model
The irlncRNAs identified by correlation analysis of 
irgenes and lncRNAs at the beginning of this study 
may influence the immune status, such as immune 
cell infiltration. We uploaded the transcriptome 
data of lncRNAs to Tumor IMmune Estimation 
Resource (TIMER), CIBERSORT, QUANTISEQ, 
MCPcounter and EPIC resources to estimate the 

Figure 1. Establishment of the risk model. (a) Important variables selected using the random survival forest model. (b) Forest map of 
the multivariate Cox regression results. (c) ROC curve of the risk model for survival at 36 months, 30 months, 24 months, 18 months, 
12 months and 6 months. (d) ROC curve of the clinical characteristics.
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content of immune cell infiltration in the training 
set (Table S2). Next, Wilcoxon ranked analysis was 
used to compare the distribution of various 
immune cells in high-risk and low-risk patients. 
Wilcoxon analysis revealed that the high-risk 
group was associated with greater infiltration of 
cancer-associated fibroblasts, follicular helper 
T cells, CD4 + T cells, M0 macrophages and M1 
macrophages, while the low-risk group was corre-
lated with greater infiltration of B cells and M2 
macrophages. Pearson’s correlation analysis was 
then conducted between the risk score and each 
infiltrated immune cell, revealing the correlation 
between irlncRNA signatures and infiltration of 
M0 macrophages and CD4 + T cells (p < 0.05) 
(Table S3). The correlation results were expressed 
in a lollipop graph. However, the Wilcoxon 

signed-rank test comparing risk and immune 
checkpoint inhibitor (ICI) biomarkers, including 
CTLA4, LAG3, IDO1, PDCD1 and ICOS, showed 
no significant association, reflecting the poor effect 
of ICIs in clinical trials (Figure 4).

Discussion

lncRNAs have special localization features and 
functional mechanisms, including assembly with 
proteins, RNA and DNA to participate in various 
biological processes. Therefore, they have been 
widely applied in constructing prognostic models 
across tumors [18–20]. These studies also indi-
cated that lncRNAs play an important role in 
tumor biological functions, including chemother-
apy resistance, tumorigenesis and EMT [21–23]. 

Figure 2. Clinical evaluation of the risk model in the training and test sets. (a-c) Kaplan-Meier analysis in the training set. (d-f) 
Kaplan-Meier analysis in the test set.
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Wei et al. [24] disclosed the potential biological 
functions of irlncRNAs in pancreatic tumors, indi-
cating that tumor purity is negatively associated 
with the infiltration of fibroblasts, myeloid dendri-
tic cells and monocytes. This finding led to further 
research on irlncRNAs and their potential regula-
tory mechanisms in pancreatic cancer. Our study 
focused on the potential immune functions of 
lncRNAs and conducted integrated clinical 

evaluation of the risk model. To improve the effi-
cacy and accuracy, we validated the prognostic 
model in the test set. Additionally, we used multi-
ple databases to explore the tumor immune micro-
environment, revealing findings that were 
consistent with previous findings that lncRNAs 
could regulate the tumor immune microenviron-
ment by activating immune cells and promoting 
immune evasion or other mechanisms [25].

Table 1. Univariate and multivariate Cox regression analysis for the clinical prognostic model.

Items

Univariate Cox regression Multivariate Cox regression

C-indexHR 95% CI p HR 95% CI P

Risk score* 1.441 [1.250, 1.663] <0.001 1.384 [1.195, 1.601] <0.001 0. 682
N* 1.997 [1.217, 3.275] 0.006 1.794 [1.017, 3.164] 0.043 0.599
T 1.829 [1.048, 3.191] 0.034 1.855 [0.977, 3.525] 0.059
Stage 1.319 [0.829, 2.097] 0.242 – – – – – – – – – –
M 0.8561 [0.667, 1.099] 0.222 – – – – – – – –
Age 1.022 [0.996, 1.048] 0.102 – – – – – – – –
Sex 1.417 [0.865, 2.322] 0.166 – – – – – – – –

*p < 0.05 

Figure 3. Nomogram and calibration plot of the clinical prognostic model. (a) Nomogram of the clinical prognostic model. (b-d) 
Calibration curves for the 1-, 3 – and 5-year survival plots comparing the actual and predicted values.
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The irlncRNAs identified in our study included 
LINC00462, LINC01887, and RP11-706C16.8. 
LINC00462 participates in the miR-666/TGFBR1- 
TGFBR2/SMAD2/3 or AKT signaling pathways to 
promote tumor invasion and progression in pan-
creatic cancer and hepatic cancer [26–28]. 
Additionally, BBCancer (http://bbcancer.renlab. 
org), an expression atlas of blood-based biomar-
kers across cancers, demonstrated that LINC00462 
is downregulated in breast cancer and liver cancer 
and may be a biomarker for early diagnosis. 
LINC01887 is significantly downregulated in col-
orectal, pancreatic and liver cancer, exhibiting its 
potential function in gastrointestinal tumors [29]. 
Further study on the mechanisms of the identified 
irlncRNAs may reveal their potential regulatory 
function in the tumor microenvironment.

Although immunotherapy has substantially 
improved tumor treatment, it shows limited effects 
and many side effects in pancreatic cancer. Some 
clinical trials on immunotherapy, such as ICIs applied 

alone or combined with chemotherapy 
(NCT02558894, NCT02331251), immune vaccines 
(NCT00084383), CD40 antibodies (NCT00711191), 
and mesenchymal target therapy (NCT02734160), 
are currently underway [30–34]. In the present 
study, we conducted Pearson’s correlation analysis 
of the irlncRNA signature and common biomarkers 
of ICIs. However, no significant correlation was 
found, a finding that is consistent with the limited 
immunotherapy effect in pancreatic cancer [35]. 
Pancreatic cancer is usually regarded as poorly immu-
nogenic and is accompanied by fewer mutated anti-
gens recognized by patient T cells than lung cancer 
and melanoma [36]. However, the present study 
showed that high risk was associated with increased 
infiltration of cancer-associated fibroblasts, CD4 + T 
cells, M0 macrophages and M1 macrophages, while 
low risk was correlated with M2 macrophage infiltra-
tion, indicating that macrophage differentiation may 
be correlated with malignancies and may be 
a potential target in immunotherapy.

Figure 4. Exploration of the risk score and immune infiltration status. (a) Lollipop graph of the correlation between the immune cell 
infiltration status and risk score. (b-f) Violin plot of risk and ICI targets, including CTLA4, IDO1, PDCD1, ICOS, and LAG3.
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However, the present study is limited in the 
following aspects. First, the limited sample size 
of pancreatic cancer in TCGA and limited tran-
scriptome data of irlncRNAs may influence the 
validity of the risk model. However, we applied 
the random survival forest model and completed 
integrated analysis to confirm the robustness of 
the risk model to improve the validity. Second, 
the TCGA-PAAD database lacks information on 
immunotherapy, limiting further evaluation of 
the clinical prognostic model in predicting the 
response to immunotherapy. Third, few experi-
mental data support our findings, and the spe-
cific function or mechanisms of these irlncRNAs 
should be validated with additional experimental 
data. Fourth, the splitting ratio of 7:3 may intro-
duce potential sampling bias, which could be 
partially overcome by conducting Cox analysis.

Conclusions

We established a novel and robust risk model 
using 3 irlncRNAs and a 3-year survival AUC of 
0.778 in pancreatic cancer patients. The risk model 
was identified as an independent prognostic factor 
in the clinical evaluation, and we drew the nomo-
gram and calibration plots of the clinical prognos-
tic model. Furthermore, the risk model could 
delineate the immune landscape of pancreatic can-
cer patients, with potential clinical significance.
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