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Nutrition plays an important role in the development and progress of several health
conditions, but the exact mechanism is often still unclear. Blood metabolites are likely
candidates to be mediating these relationships, as their levels are strongly dependent on
the frequency of consumption of several foods/drinks. Understanding the causal effect of
food on metabolites is thus of extreme importance. To establish these effects, we utilized
two-sample Mendelian randomization using the genetic variants associated with dietary
traits as instrumental variables. The estimates of single-nucleotide polymorphisms’ effects
on exposures were obtained from a recent genome-wide association study (GWAS) of 25
individual and 15 principal-component dietary traits, whereas the ones for outcomes were
obtained from a GWAS of 123 blood metabolites measured by nuclear magnetic
resonance spectroscopy. We identified 413 potentially causal links between food and
metabolites, replicating previous findings, such as the association between increased oily
fish consumption and higher DHA, and highlighting several novel associations. Most of the
associations were related to very-low-density, intermediate-density (IDL), and low-density
lipoproteins (LDL). For example, we found that constituents of IDL particles and large LDL
particles were raised by coffee and alcohol while lowered by an overall healthier diet and
fruit consumption. Our findings provide a strong base of evidence for planning future RCTs
aimed at understanding the role of diet in determining blood metabolite levels.
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INTRODUCTION

Nutrition plays an important role in the development and progress of several diseases, such as obesity
(Popkin, 2001), type II diabetes (T2D) (Schwingshackl et al., 2017), cardiovascular diseases (CVD)
(Boeing et al., 2012; Dilis et al., 2012; Schaefer, 2002), and cancer (Key et al., 2004; Johnson and Lund,
2007). These in turn create a high burden for individuals, society, the economy, and healthcare, and
thus prevention is of great importance. In many cases, the mechanism by which food consumption
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acts on health is still unclear. Blood metabolites are promising
candidates for filling this gap. Metabolites have been shown to be
important in the onset of a wide range of diseases such as type II
diabetes (Suhre et al., 2010; Wang et al., 2011), incident
cardiovascular events (Würtz et al., 2015; Holmes et al., 2018),
dementia (Lee et al., 2018; Tynkkynen et al., 2018), and colorectal
cancer (Guertin et al., 2015; Shu et al., 2018) and indicative of
mortality (Fischer et al., 2014), and are thus likely mediators for at
least some of the food–health relationships. Furthermore,
metabolites can serve as objective biomarkers of dietary intake.
However, it is important to note that a metabolite can be an
intermediate in the diet–disease relationship while not being an
objective biomarker—this occurs for example when a metabolite
is affected by several exposures. On the other hand, a metabolite
can be an objective biomarker of dietary intake while not acting as
an intermediate in diet–disease relationships. The main focus of
this paper is investigating the diet–metabolite associations where
metabolites may act as intermediates in diet–disease
relationships.

In recent years, the progress in quantifying metabolites has
allowed investigation of the relationship between food and blood
or urine metabolite levels. Studies have shown associations
between metabolomic profile and intake of fruit and vegetables
(Menni et al., 2013), coffee (Guertin et al., 2015), alcohol (Würtz
et al., 2016), and a wide range of dietary patterns. A more detailed
overview of the current state of the field is summarized by
Guasch-Ferré, Bhupathiraju, and Hu (Guasch-Ferré et al.,
2018) and Brennan and Hu (Brennan and Hu, 2019). Most
studies in this field are observational and are thus limited by
the typical biases which affect nutritional epidemiology
(i.e., reporting bias, strong correlation between the studied
variables, etc.) and are therefore unfit to detect causal
relationships. Moreover, even in feeding studies conducted
under very strict and controlled conditions, the effects could
be measured only on a short-term basis and on limited sample
size, which in turn limits statistical power.

Nevertheless, the feeding studies provide convincing evidence
that dietary intake has causal effects on the metabolic profile,
highlighting the potential to assess dietary intake via investigation
of metabolomic profiles. Such studies have been applied to the
percentage of dietary intake coming from carbohydrates/fat/
protein (Esko et al., 2017), the effects of a low-glycemic index
diet (Hernández-Alonso et al., 2019), and the dose-dependent
effect of orange juice on proline betaine (Gibbons et al., 2017).
Consequently, consumption or nonconsumption of various
dietary items can cause change in the levels of blood
metabolites, which are therefore likely candidates to be acting
as intermediates between food and health. Thus, detecting
potentially causal relationships between dietary choices and
blood metabolites might reveal more insight into the
mechanism by which food affects health.

A possible complementary approach to observational and
feeding studies is the method of Mendelian randomization
(MR) (Davey Smith and Ebrahim, 2003). MR exploits the
natural randomization of the alleles associated with exposure
in the population to measure the long-term effects of the trait on
the outcome of interest. MR assumes that differences in exposure

originating from different allelic compositions remain
throughout life and, thus, by comparing the effect of the allele
on the exposure and the outcome, it is possible to derive the effect
of the exposure on the outcome.

MR relies on the results coming from genome-wide
association studies (GWAS) which are generally publicly
available and does not require the direct involvement of the
participants. It is thus extremely cost-effective, and it is possible to
apply it to contexts where randomized controlled trials would be
unethical (for example, alcohol consumption). If carefully
conducted, MR is exempt from the biases that are typical of
observational studies. MR has been successfully used in many
different contexts including nutritional epidemiology in the cases,
for example, of milk (Bergholdt et al., 2015; Yang et al., 2017),
alcohol (Chen et al., 2008; Andrews et al., 2020), and coffee
consumption (Nordestgaard et al., 2015; Lee, 2018). Nevertheless,
there are no studies using MR on a broader range of dietary items
due to the lack of single-nucleotide polymorphisms (SNPs)
strongly associated with food consumption to be used as
instrumental variables.

By virtue of the availability of the data from UK Biobank, we
have recently been able to broaden the number of foods for which
genetic instruments are available, identifying several potentially
causal food–health relationships (31, currently available as
preprint). We thus decided to use MR to investigate the
potentially causal effect of 40 foods/dietary patterns on 123
blood metabolites measured by nuclear magnetic resonance
spectroscopy (NMR) available from a previous large GWAS by
Kettunen et al. (2016). We detected 413 potentially causal links
between food and metabolites, replicating previous findings and
bringing novel insights, and discuss how these may be mediating
the effect of food on health.

METHODS

To infer the potentially causal relationships between food and
metabolites, we used two-sample MR. In contrast to conventional

FIGURE 1 | Selection of instrumental variables and workflow.
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MR, which would require instrument, exposure, and outcome to
be available as individual-level data for the same samples, the
same analysis can be performed using summary statistics from
GWAS. In this case, instead of directly estimating the effect of the
SNP on the exposure and on the outcome, the parameter
estimates from previous association studies for the two
variables are used. MR can thus be performed, even if sample
sizes of the two studies are different and there is no sample
overlap—in the latter case, the method is called two-sample MR
(Pierce and Burgess, 2013). Apart from the obvious advantage of
using the existing summary statistics, two-sample MR minimizes
the potential residual genetic confounding. We performed two-
sample MR using MR-Base via R-package TwoSampleMR
version 0.5.5 (Hemani et al., 2018) (see detailed description:
https://mrcieu.github.io/TwoSampleMR/). The selection
process of instrumental variables and workflow is summarized
in Figure 1.

Dietary Traits and Principal Components
For our study, exposure instruments were selected from the
previous GWAS on food consumption conducted in
United Kingdom Biobank data (up to N � 445,799) (Pirastu
et al., 2019) which included 25 traits for which valid instruments
were available: consumption of beef, beer, bread, champagne/
white wine, cheese, cooked vegetables, decaffeinated coffee, dried
fruit, fresh fruit, ground coffee, instant coffee, lamb, nonoily fish,
oily fish, pork, poultry, processed meat, red wine, salad, salt,
spirits, tea, water adjusted for coffee, and vegetarianism and drink
temperature. The paper reporting the results of food
consumption GWAS is currently under review and has not
been published yet and consequently included in the current
study as a preprint. The replication analyses for the food
consumption GWAS were conducted on two different cohorts:
the EPIC-Norfolk Study and the Fenland Study. The statistical
power of the replication cohorts was relatively limited (sample
sizes 21,337 and 11,442 individuals, respectively). Despite that,
for 82% of the signals a concordant direction of effects was
observed and for 32% of the signals the nominal significance
was achieved (Pirastu et al., 2019). The performance of the
United Kingdom Biobank dietary questionnaire has been
previously assessed and shown to reliably rank individuals
according to the intake of the measured foods and food
groups (Bradbury et al., 2018).

In order to be able to distinguish between the independent
effects of single food items and those arising due to the effect of
dietary patterns, we defined 15 “Principal Component traits”
(PC-traits) by first clustering the single food items using the
iCLUST algorithm (Revelle, 1979; Revelle and Zinbarg, 2009).
The defining and calculation of PC-traits is not a part of this
paper and was done for our previous manuscript—therefore, only
a brief description is included here andmore detailed information
can be found in Pirastu et al. (2019). After clustering the single-
food items, we split the resulting tree dendrogram into different
layers depending on the items in each cluster and the degree of
similarity. For example, Oily-Fish and Non-Oily fish were first
grouped in an overall fish consumption variable (Fish-PC1) and
then in a more general healthy food measure together with Fruit-

PC1 and Vegetables-PC1. Finally, they were all used to estimate a
measure of the overall dietary pattern (All-PC1-3). Figure 2
shows the Sankey plot of the relationships between the
different defined traits, and Figure 3 represents the loadings of
each single food/drink on each of the main PC-traits (a full table
of the PC-loadings can be viewed in Supplementary Table S1
and is visualized in Supplementary Figure S1). Higher values of
All-PC1 correspond to higher consumption of vegetables, fruit,
and fish and lower consumption of meat, coffee, and alcohol. All-
PC2 separates foods from drinks (alcohol-containing beverages
and coffee) with higher values corresponding to higher
consumption of coffee and alcohol and lower consumption of
the rest of the foods. Fruit-PC1 corresponds to higher
consumption of dried and fresh fruit whereas a higher value
on Psychoactive-PC1 corresponds to higher consumption of
coffee and alcohol.

The SNP effect estimates for the PC-traits were estimated by
applying principal component analysis to the genetic correlation
matrix of the items included in each group and by using the
resulting rotation matrix to project the estimated effects of the
SNPs on each of the items onto the PC space. Standard errors for
the PC-trait effects were estimated using the single items SEs and
the phenotypic correlation matrix.

Instrumental Variable SNP Selection
As instruments, independent (r2<0.001) SNPs significantly
associated with the traits in the exposure GWAS (p-value <
5 × 10–8) were used, for which the effect was not mediated
through other confounders or health-related traits. In case of the
PC-traits, SNPs were selected if they were associated (p-value
<5e-8) with at least one of the items which participated in the trait
definitions. Once extracted, each selected SNP was assigned the
p-value among the traits of interest from the rotated PC space.
Next, the SNPs that were not available in the outcome GWAS
were excluded. Finally, we applied LD pruning (r < 0.001) to the
selected SNPs. We have previously shown that food frequency
GWAS results are strongly affected by educational attainment (as
a proxy of socioeconomic status) and by health-related traits such
as body mass index, blood pressure, and cholesterol, for which
dietary advice is generally given (Pirastu et al., 2019). This results
in either bias by indication (where the behavior is determined by
health advice or belief, e.g., lower fat consumption in people with
high cholesterol) or reporting bias (where people underreport or
overreport food consumption due to their health status, e.g.,
obese people underreport true fat consumption). If the biasing
trait is heritable, this leads to spurious results in the GWAS,
which can bias the MR results. In order to distinguish which
variables are likely directly associated with the food of interest
(and not mediated by health conditions), we have previously
developed a method called Corrected to Uncorrected ratio
filtering (CUR), which is based on the idea that if the SNP is
directly associated with food preferences, then its effect should
not change when adjusted for education status or health
conditions (Pirastu et al., 2019). The following list was
considered as potential confounders: body mass index, low-
density lipoprotein cholesterol, high-density lipoprotein
cholesterol, triglycerides, diastolic and systolic blood pressure,
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T2D, coronary artery disease, Crohn’s disease, ulcerative colitis,
and educational attainment. Briefly, the method is composed of
three steps. The first step is to conduct multivariable MR using
each food trait as the outcome while the exposures are selected
through a stepwise procedure. Once the effect of each exposure is
obtained for each SNP, we obtain an “expected effect” which
represents the overall effect of each SNP on the food trait
mediated through the causal exposures. We then obtain a

corrected effect which is the difference between the observed
effect and the exposure-mediated effect. Finally, we estimate the
ratio between the corrected effect the uncorrected observed effect
(CUR). When CUR is close to 1, it means that the effect of the
SNP on the food trait is entirely direct and thus it is a valid
instrument. We have shown elsewhere (Pirastu et al., 2019) that
using SNPs with CUR � 1 ± 0.05 maximizes the chances of
selecting the correct SNPs. The strength of the instruments was

FIGURE 2 | Sankey diagram of the relationships between dietary items and the principal components traits.

FIGURE 3 | Loadings of PC traits. The plot represents the loadings of separate dietary items on each of the main PC-traits. Blank squares indicate that the
corresponding item is not a component of the PC-trait. The size of the dots and the color intensity are proportional to the magnitude of the loadings, while the color
indicates the sign of the loading: a darker red refers to a stronger positive loading, whereas darker blue corresponds to stronger negative loading.
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assessed by using F-statistic and is reported in Supplementary
Table S2. The SNP effects for the outcomes were obtained from a
previous GWAS on 123 plasma metabolites in 24,925 individuals
(Kettunen et al., 2016). Most of the metabolites assessed in this
GWAS were linked to the lipid profile, and consequently the
sample of metabolites used in the current paper is biased toward
lipids.

Mendelian Randomization Methods and
Sensitivity Analysis
As the main MRmethod, we used the inverse-variance weighted
method, with a random-effect standard error if the
heterogeneity p-value was less than 0.05/123. One of the
problems of MR is when SNPs are associated with the
outcome through causal paths which do not pass through the
exposure of interest, also referred to as horizontal pleiotropy. In
order to remove the SNPs with the highest heterogeneity (and
thus likely are subject to horizontal pleiotropy), we used the
method called MR-Radial (Bowden et al., 2018). All analyses
were thus run on the instruments selected with this method. As
sensitivity analyses, we used MR-Median (Bowden et al., 2016),
MR-RAPS (Zhao et al., 2019), and MR-Egger (Bowden et al.,
2015). These methods have been thoroughly described
elsewhere and are all sensitive to the breaking of different
MR assumptions. When only one instrument was available,
the Wald ratio method was used. Finally, we defined as
significant the food–metabolite relationships where Storey’s
q-value (Storey, 2003) was less than 0.05. The analyses were
run using R version 3.6.1 (R Core Team, 2019).

RESULTS

After correcting for multiple testing by using the false discovery
rate (FDR<0.05) via Storey’s q-values, 413 potentially causal
relationships remained statistically significant. Most of these
are associations related to atherogenic lipoproteins: very-low-
density lipoproteins (VLDL), intermediate-density lipoproteins
(IDL), and low-density lipoproteins (LDL), which all contain
Apolipoprotein B (ApoB). Figures 4, 5 are heatmaps reporting
the relationships between food items and groups with the
metabolites, Figure 4 depicts atherogenic lipoproteins and
related metabolites, and Figure 5 depicts all other
food–metabolite relationships of interest. For readability, some
metabolites which had only single significant associations are left
out of these graphs. A full list of all significant food–metabolite
relationships that we detected is found in Supplementary Table
S3, and a full list of all food–metabolite relationships we analyzed
is found in Supplementary Table S4.

Sensitivity Analysis
Out of the 413 significant results, 19 were based on theWald ratio
and 394 were based on the inverse-variance weighted method.
For the latter, we used MR-Median, MR-RAPS, and MR-Egger as
sensitivity analyses to detect potential violation of assumptions.
We found that the sensitivity analyses broadly agreed with the
results of the main analysis with the exception of one case
(Alcohol-PC2 on “Description of average fatty acid chain
length, not actual carbon number”), where the direction of the
effect estimate fromMR-Median was opposite to the one from the
main analysis, and thus this result cannot be considered reliable.

FIGURE 4 | Heatmap of the relations of food traits with atherogenic lipoproteins and related metabolites (VLDL, IDL, LDL, and related). Depicted are only the
metabolites which showed a significant association with the food items or groups. To facilitate meaningful visualization andmaximize the appearance of signal rather than
noise, we applied a shrinkage method—imposing a Bayesian prior assumption on the distribution of beta (mean 0, SD 0.1), and conjugating that with the likelihood of our
results and then taking the mean beta from the resulting distribution, thus shrinking estimates with larger SEs more toward 0. The color of the squares indicates the
size and direction of betas after a shrinking procedure. The FDR-significant results are marked with “*” in the middle of the square.
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In 16 cases (mostly when Alcohol-PC2 was the exposure), the
betas from MR-median were smaller (>50% effect difference)
than the ones in the main analysis, which indicates that in these
cases the effect sizes might be inflated. For some food–metabolite
pairs, we detected some indication of heterogeneity. This was
mostly related to PC-traits which reflect the effects of many
different exposures, and it is thus not unexpected.

All-PC1
Most significant relationships were found with All-PC1 (higher
value corresponds to lower meat/coffee/alcohol/salt and higher
fruit/salad consumption), higher consumption of coffee (Coffee-
PC1), and consumption of alcoholic beverages and coffee
(Psychoactive-PC1 and -PC2). The majority of the effects of
these traits were on the same metabolites (VLDL, IDL, and LDL
related) and with opposite directions: namely, showing negative
correlations for All-PC1 and positive correlations for Coffee-PC1
and Psychoactive-PC1. These effects were very similar to each
other in size, with betas ranging from −0.502 to −0.322 for All-
PC1, from 0.327 to 0.436 for Coffee-PC1, and from 0.425 to 0.778
for Psychoactive-PC1. The latter is likely partly due to the strong
correlation between these lipid measurements.

All-PC1 had significant associations with 41 of the measured
123 metabolites, which was, as expected, the highest number of
associations we saw for any of the tested foods or PCs.
Interestingly, these effects were mostly related to atherogenic

lipoproteins—the components of VLDL, IDL, and LDL of various
sizes, and ApoB—whereas surprisingly there were no notable
effects on any of the components of high-density lipoprotein
(HDL) particles or other metabolites measured (for example,
omega-3 or omega-6 fatty acids). Additionally, All-PC1 had
significant effects on serum total cholesterol and serum total
triglycerides. When a significant potentially causal relationship
was found for a metabolite, the associations of this metabolite
with each dietary item were examined. Often, the effects on PC-
traits were driven only by a subset of dietary items. For example,
in the case of total lipids in IDL, although we see a clear effect of
overall diet (All-PC1), it seems that this is driven primarily by the
components of Fruit-PC1 and Psychoactive-PC1 while the
remaining foods do not seem to play any role. This
observation may explain some of the significant heterogeneity
we detected.

Psychoactive-PC1, Alcohol-PC1, and
Coffee-PC1
Some strikingly clear patterns can be noted, when examining the
results that are depicted on Figure 4—for example, looking at
the significant positive effects that Psychoactive-PC1 has on the
components of IDL particles, large LDL particles, and serum
total cholesterol. In the case of these results, both
subcategories—coffee and alcohol—clearly contribute to the

FIGURE 5 | Heatmap of the relations of food traits and all other metabolites (not VLDL, IDL, LDL related). Depicted are only the metabolites which showed a
significant association with the food items or groups. To facilitate meaningful visualization and maximize the appearance of signal rather than noise, we applied a
shrinkage method—imposing a Bayesian prior assumption on the distribution of beta (mean 0, SD 0.1), and conjugating that with the likelihood of our results and then
taking themean beta from the resulting distribution, thus shrinking estimates with larger SEsmore toward 0. The color of the squares indicates the size and direction
of betas after a shrinking procedure. The FDR-significant results are marked with “*” in the middle of the square.
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overall effect of Psychoactive-PC1. More importantly, all the
four subcategories of alcohol show independently significant
effects. All the significant effects that Psychoactive-PC1 has on
the components of IDL particles and large LDL particles are
accompanied by a contrary effect from Fruit-PC1, which shows
significant negative effects. The latter indicates that higher
consumption of fruits has a lowering effect on several IDL
and large LDL components. In these cases, the effects of
Fruit-PC1 are with the same direction as the effects of All-
PC1 (“low meat/coffee/alcohol/salt + high fruit/salad”).
Furthermore, this association pattern is also partly followed
by the components of medium LDL particles, but in this case,
when looking into the components of Psychoactive-PC1,
alcohol seems to play a less important role compared to coffee.

In most of the cases, alcohol and coffee both contributed to
the overall effect of Psychoactive-PC1, and we cannot
distinguish between the effects of the components (although
alcohol seems to play a slightly larger role in the case of IDL
particles). Therefore, in most of the cases Alcohol-PC1, Coffee-
PC1, and the items comprising these behave in the same way.
Nevertheless, there is a group of clear and notable
counterexamples: the components of medium VLDL and
small VLDL particles. In these cases, Coffee-PC1 shows clear
positive effects and all the betas of all the coffee subgroups agree
with the direction of these effects, whereas Alcohol-PC1 and all
of its subgroups show no clear effects and do not seem to be
associated with the components of medium and small VLDL
particles. Another interesting example that behaves differently
from other items in the group of Psychoactive-PC1 is beer,
which has significant positive effects on glucose (β � 0.43, 95%
CI: 0.15; 0.70), concentration of very large HDL particles (β �
0.47, 95% CI: 0.16; 0.77), free cholesterol in very large HDL (β �
0.45, 95% CI: 0.16; 0.75), phospholipids in very large HDL (β �
0.46, 95% CI: 0.16; 0.76), total cholesterol in large HDL (β �
0.53, 95% CI: 0.23; 0.83), free cholesterol in large HDL (β � 0.57,
95% CI: 0.27; 0.86), and 22:6 docosahexaenoic acid (DHA, a
subgroup of omega-3 fatty acids; β � 0.84, 95% CI: 0.32; 1.37).
The latter is an example, where beer is clearly the odd-one-out
compared to the effects of other alcohol subgroups, indicating
that the effect comes from other ingredients in beer rather than
alcohol.

Meat-PC1
The effects of Meat-PC1 do not have much contribution from
beef, processed meat, and poultry and are driven mostly by pork
(in the case of polyunsaturated fatty acids than other 18:2, and
average number of double bonds in a fatty acid chain) or lamb (in
the case of ratio of bisallylic groups to total fatty acids) or both
(ratio of bisallylic groups to double bonds, DHA, and average
number of methylene groups per double bond). Furthermore, it is
noteworthy that lamb as a separate item had significant negative
effects on several components of medium, large, very large, and
largest VLDL particles, namely, on total cholesterol, cholesterol
esters, free cholesterol, and phospholipids in medium and large
VLDL; total lipids and triglycerides in very large and largest
VLDL; phospholipids in very large VLDL; concentration of small
and large VLDL particles; and mean diameter for VLDL particles.

Thus, lamb has significant negative effects on the components of
those lipoproteins that are largest and with lowest density,
whereas showing no notable effects on the components of any
of the lipoproteins that are smaller and with higher density than
small VLDL particles.

Fish-PC1, Vegetarianism, and Bread
As expected, Fish-PC1 had significant effects on omega-3 fatty
acids and DHA, and these effects were clearly driven by oily fish.
Furthermore, looking at Figure 5, the results regarding creatinine
notably stand out, namely, there is a lowering effect of
Psychoactive-PC1 on creatinine, which is clearly driven by
coffee (which in turn shows significant negative effect on
creatinine). Surprisingly, vegetarianism and bread share largely
the structure of effects—they both have significant effects on
omega-6 fatty acids (β � 3.73, 95% CI: 1.75; 5.70; β � 0.67 95% CI:
0.30; 1.04, respectively), 18:2 linoleic acid (LA, a subgroup of
omega-6 fatty acids; β � 3.83, 95% CI: 1.86; 5.80; β � 0.55 95% CI:
0.18; 0.91), phosphatidylcholine and other cholines (β � 3.27, 95%
CI: 1.31; 5.24; β � 0.53 95% CI: 0.17; 0.89), and total
phosphoglycerides (β � 3.19, 95% CI: 1.23; 5.16; β � 0.63 95%
CI: 0.25; 1.00). Of note, the results of vegetarianism are based only
on one instrument and the method of the Wald ratio was used.

DISCUSSION

In this study, we have assessed the effect of long-term exposure to
single foods and food groups on blood metabolite profiles using
Mendelian randomization. We have in general found that in
many cases these changes are not due to specific food items but
are related to general dietary patterns. This could be due to the
fact that most of the metabolites assayed are linked to lipid profile
and it does not exclude more specific biomarkers being
discovered for single items.

Many of the results that we found elaborate the lipid profiles
of lipoprotein subclasses in more detail than the previous
studies. Our results regarding the effects of alcohol on IDL
and large LDL-related lipids conflicted with some
observational studies’ findings (Würtz et al., 2016; Du et al.,
2020), but agreed with another MR-study (Rosoff et al., 2019),
whereas in our study we showed that the same relationships
hold for each of the alcohol subgroups as well. Our finding of
vegetarianism raising 18:2 linoleic acid replicated a previous
finding from a randomized trial conducted on subjects with
T2D (Kahleova et al., 2013), whereas our results show that this
finding applies for the general population in a larger sample as
well. Furthermore, the finding of vegetarianism raising omega-
6 replicated a previous observational finding (Kornsteiner
et al., 2008); however, our MR-analysis showed the
potential for a causal relationship. We also saw a significant
positive effect of oily fish on omega-3 fatty acids and DHA,
which are well-known causal relationships (Horrocks and Yeo,
1999). The fact that our results conflicted with some
observational findings, but aligned with known causal
relationships and with a randomized trial, highlights the
strength of MR studies as an intermediate step between
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observational studies and clinical trials and validates the utility
of our approach.

Association Pattern on VLDL, LDL, and IDL
Many of our significant results were related to All-PC1 (“low
meat/coffee/alcohol/salt + high fruit/salad”), which seems to
affect mostly LDL, VLDL, IDL, and related subclasses. The
fact that the effect sizes were very similar can be partly
explained by the strong correlations between the different
metabolites explained in the Results section. Another
explanation might be the effect that All-PC1 has on ApoB.
Namely, higher values on All-PC1 (corresponding to lower
meat/coffee/alcohol/salt and higher fruit/salad) have a lowering
effect on ApoB. The latter is the protein part of LDL, IDL, and
VLDL, specifically one ApoB per each lipoprotein, thus reflecting
the total amount of atherogenic lipoprotein particles (Elovson
et al., 1988). This is important in the context of health risks,
because it shows that ApoB, being a component of all atherogenic
lipoprotein particles, might reflect the actual CVD risk better than
the amount of cholesterol in any lipoprotein particle type on their
own (Leslie, 2017). Ference et al. (2019) came to the conclusion
that the risk of CVD posed by LDL particles is more determined
by the concentration of LDL particles measured by ApoB
compared to the mass of cholesterol or triglycerides in LDL
particles. Furthermore, a recent study using multivariable MR
found that ApoB has a robust elevating effect on CVD risk, while
the effects of LDL-C, triglycerides, and HDL-C on CVD risk were
not significant after accounting for ApoB (Richardson et al.,
2020). Our results confirm the possible role of ApoB as a
substantial factor in the relationship between diet and health
and thus can prove useful to investigate when the causal effects of
dietary patterns on risk of CVD are of interest. Nevertheless,
despite the important role of ApoB, there is still a wide body of
literature showing other features of atherogenic lipoproteins
affecting health risks and these should not be neglected when
interpreting the findings.

One of the most notable patterns in our results was the one
regarding IDL and LDL particles, where higher consumption of
coffee and alcohol had elevating effects, whereas higher
consumption of fruits and higher value on All-PC1 had
lowering effects. Higher levels of atherogenic particles and
their components is part of a less desirable blood lipoprotein
profile due to the elevated risk for several cardiovascular diseases
(Carmena et al., 2004; Ference et al., 2017). For example, IDL-C
has been shown to be associated with the degree and frequency of
CAD independent of LDL-C (Tatami et al., 1981). Furthermore,
different properties of LDL, like size, amount of cholesterol esters
and cholesterol, and fatty acid composition are all considered to
be aspects of its CVD-causing capability (Lada and Rudel, 2004).
The clear pattern of effects we saw on IDL and LDL indicates that
these metabolites are likely affected by dietary habits. Since these
metabolites are largely shown to affect cardiovascular health, and
Mendelian randomization results indicate possible causal
pathways, there is considerable scope for further investigation
of these results. Furthermore, our results indicate that the harmful
effects alcohol and coffee have on cardiovascular health are at
least partly mediated by IDL and LDL lipoproteins.

Possible Beneficial Effects of Alcoholic
Beverages on Lipid Profile
There was a surprising positive effect of beer on DHA, which has
been shown to have a cardioprotective effect, as concluded in a
recent large meta-analysis of randomized control trials
(Bernasconi et al., 2020). This effect on DHA was in the
opposite direction compared to other alcoholic beverages,
indicating that the beneficial effect is likely not due to alcohol
itself but some other ingredient in beer. We propose that the
beer–DHA relationship is worth further investigation, and it
would be especially interesting to compare regular beer with
nonalcoholic beer to detect whether the potential beneficial effect
remains. Furthermore, even if beer had some beneficial effect, this
is unlikely to counterbalance the negative effect of alcohol raising
IDL and LDL and their very well-established effect in
predisposing to cardiovascular disease.

Many observational and epidemiological studies have pointed
to the possibility of moderate alcohol intake to have a protective
effect from cardiovascular diseases (Ronksley et al., 2011) and
beneficial effects on cardiovascular biomarkers (Brien et al.,
2011). The positive effects of alcohol on the lipid profile have
mostly been associated with raised HDL-C levels (Brien et al.,
2011). Although our results do show such a trend (with only beer
having a significant effect on HDL levels), there have been
conflicting results in other studies on the actual benefit of
higher HDL-C levels protecting from developing
cardiovascular diseases (Briel et al., 2009). Looking at the
possible beneficial effect from raised HDL, one cannot
underestimate the negative impact of raised IDL and LDL
levels on health due to alcohol consumption. Furthermore, the
reduced risk of cardiovascular disease in the case of light and
moderate alcohol consumption compared with abstinence and
heavy drinking, or in other words the U-shaped association of
alcohol and CVD risk, found in many epidemiological studies has
been found to be originating from other factors such as abstaining
from alcohol due to poor health (Shaper et al., 1988) or might be
resulting from reverse causation (Millwood et al., 2019). Further,
alcohol has been shown to have harmful effects on health
regardless of the quantities consumed (Holmes et al., 2014).
Thus, the beneficial effects of alcohol on health are debatable
and our results do not indicate that alcohol itself would have any
beneficial effects.

Coffee and Lipid Profile
We saw a significant increasing effect from Coffee-PC1 on several
VLDL, IDL, and LDL lipoprotein subclasses and their components
and in addition a negative effect on the mean HDL diameter and
cholesterol esters in large HDL. Effects on other HDL parameters
were not significant, but there is a notable trend toward a negative
correlation. Overall, a higher value on Coffee-PC1 results in a more
unhealthy lipid profile, raising ApoB, serum total cholesterol, VLDL,
IDL, and LDL levels, and their constituents. There is consistent
evidence in the literature of coffee raising LDL-C and total
cholesterol. Poole et al. (2017) showed in their meta-analysis of
randomized clinical trials (RCTs) that coffee has elevating effects on
total and LDL cholesterol, but no clear effect on HDL cholesterol.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7382658

Taba et al. Impact of Diet on Metabolites

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Furthermore, coffee consumption has been associated with elevated
ApoB levels (Williams et al., 1985; Periti et al., 1990; Cornelis and van
Dam, 2020), but the causal link has not been established.
Interestingly, Cornelis and van Dam (2020) observed higher
HDL-C associated with higher coffee consumption, which is not
in line with previous RCTs showing no significant effect and
contrary to our results showing a non-significant HDL-C
lowering effect. Thus, the effect of coffee on HDL-C and other
HDL-related metabolites remains unclear.

We are not aware of any studies showing the effects of coffee
on IDL and VLDL particles or their constituents, for which we
observed consistent elevating effects. Raised VLDL levels might
be due to cafestol, a common ingredient in coffee, having an effect
of increased VLDL particle assembly rate on the liver (de Roos
et al., 2001). Furthermore, we are the first ones to observe the
effect of coffee on such a wide range of lipoprotein subclasses,
allowing us to see the consistency of coffee’s effects on
atherogenic lipoproteins. Looking at these results in the
context of health outcomes, there is considerable scope for
further investigation. In the case of coffee, the results
regarding cardiovascular health are controversial and mostly
show either beneficial or neutral effects (Chrysant, 2015) or
that moderate consumption is unlikely to have adverse effects
(Rebello and van Dam, 2013). On the other hand, raised ApoB
levels indicate that the overall atherogenic particle amount is
higher, which, as mentioned before, is a good predictor of CVD
risk. Overall, we did not see any beneficial effect of coffee on lipid
profile in our results; in fact, coffee turned out to have a negative
effect on a larger variety of atherogenic lipoproteins than other
dietary items. Hence, the total effect of coffee on health remains
still unclear, but we propose that the potential harmful effect of
coffee on health might be mediated by ApoB and thus via VLDL,
IDL, and LDL. Furthermore, these results suggest that coffee
consumption should be limited in people at risk of cardiovascular
diseases.

Study Limitations and Strengths
Our study has several limitations: for some items, only a few SNPs
were available to be used as an instrument in MR; self-reported
dietary data are a difficult trait to investigate since it encompasses
several biases—we aimed to mitigate this issue by using the
corrected-to-uncorrected ratio (Pirastu et al., 2019); MR
analysis can suffer from horizontal pleiotropy—we tried to
mitigate this issue by using sensitivity analyses; item
heterogeneity (the same dietary trait can incorporate items
with varying nutritional values); sample homogeneity whereby
our analyses are conducted on the European population and
might not be fully generalizable to the population of the whole
world; and when analyzing dietary patterns, we are limited to the
ones arising from the data and cannot therefore fully account for
the context of different diets. Furthermore, despite using the
corrected-to-uncorrected ratio to identify SNPs that are not
influenced by confounders, we cannot rule out the possibility
that there were additional confounders that were not included in
the model or that some might not have been captured properly
(for example, when using educational attainment as a proxy for
socioeconomic status). Nevertheless, our study has several

strengths: to our best knowledge, we are the first ones to
perform MR analysis between dietary items and blood
metabolites with such a large amount of dietary SNP
instruments available; we found several distinct patterns that
shed more light on how dietary changes might affect
cardiovascular health; and we found multiple interesting
associations that are worth further investigation via feeding
studies or randomized trials. We investigated the effects on
metabolites profiled with NMR spectroscopy, which
encompass mostly lipid profiles. Future studies with
proteomics and metabolite data from mass spectrometry might
give more detailed insight about the mechanisms by which food
affects health.

CONCLUSION

In conclusion, we aimed to investigate the relationships between
dietary items and blood metabolites in order to gain more insight
into the mechanisms by which food affects health. Mendelian
randomization proved a useful method for fulfilling this aim.
Moreover, we replicated several previous findings and known
associations, which validates the method used. We did not detect
any reported causal relationships in the literature conflicting with
our results; however, occasionally our results conflicted with
previous observational studies. This demonstrates the strength
of MR studies and indicates that some of the previously reported
findings might be confounded through other unobserved factors.
Nevertheless, in order to give actual dietary intervention
suggestions, additional thorough investigations should be
carried out via feeding studies or randomized trials. We
believe that many of the potentially causal relationships that
have been described here have promising potential for further
investigation.
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