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Abstract: The existing methods of callose quantification include epifluorescence microscopy and
fluorescence spectrophotometry of aniline blue-stained callose particles, immuno-fluorescence mi-
croscopy and indirect assessment of both callose synthase and β-(1,3)-glucanase enzyme activities.
Some of these methods are laborious, time consuming, not callose-specific, biased and require high
technical skills. Here, we describe a method of callose quantification based on Sandwich Enzyme-
Linked Immunosorbent Assay (S-ELISA). Tissue culture-derived banana plantlets were inoculated
with Xanthomonas campestris pv. musacearum (Xcm) bacteria as a biotic stress factor inducing callose
production. Banana leaf, pseudostem and corm tissue samples were collected at 14 days post-
inoculation (dpi) for callose quantification. Callose levels were significantly different in banana
tissues of Xcm-inoculated and control groups except in the pseudostems of both banana genotypes.
The method described here could be applied for the quantification of callose in different plant species
with satisfactory level of specificity to callose, and reproducibility. Additionally, the use of 96-well
plate makes this method suitable for high throughput callose quantification studies with minimal
sampling and analysis biases. We provide step-by-step detailed descriptions of the method.

Keywords: callose; enzyme-linked immunosorbent assay (ELISA); Xanthomonas campestris pv. musacearum;
banana; biotic stress

1. Introduction

Callose, a polysaccharide of β-1,3-glucan, occurs naturally in the cell walls of a variety
of higher plants. Callose is synthesized by callose synthases (CalS) [1] and degraded by
β-(1,3)-glucanases. It is naturally involved in numerous plant biological processes which
include growth and development and response to abiotic and biotic stresses [2–4]. During
pathogen infection, increased callose deposition in the papillae prevents further microbial
colonization, acting as a permeability barrier between neighboring plant cells [2,5–14]. By
slowing down pathogen invasion in the attacked tissue, callose deposition allows time
for the induction of additional defense responses. The rate of callose deposition and
subsequently quantity of callose accumulated in tissues or cell walls therefore has a strong
bearing in physiological needs of the tissue at a given time [4,15].

The routinely used method of callose quantification involves imaging of aniline blue-
stained callose particles by epifluorescence microscopy [6,16–39]. The aniline blue-stained
callose under ‘blue’ or UV light excitation appears as yellow fluorescent particles, which
are either followed by manual counting of the fluorescing callose particles [31,34] or by
automated callose counting software. Manual counting of the fluorescing callose particles
is laborious, time consuming and subjective [25], whereas the use of automated callose
counting software requires acquisition of software resources and a considerate amount
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of technical skills. Some of the software used for automated callose counting include
ImageJ [22,37,40], photoshop [23], CalloseMeasurer [16] and Icy [25,41]. The aniline blue-
stained callose may also be quantified using fluorescence spectrophotometry [18,21,42,43].
However, the high background/autofluorescence associated with fluorescence spectropho-
tometry makes this method difficult and unreliable. Moreover, aniline blue can stain other
β-1,3-glucans besides callose [44], which presents an enormous disadvantage of both epi-
fluorescence microscopy and fluorescence spectrophotometry methods of callose detection
and quantification. Consequently, these challenges make these two methods unreliable,
non-user friendly and subjective for callose quantification.

A method of immunohistochemistry for callose quantification which is based on
callose-specific antibodies has also been used in several studies [29,45,46]. Although
this method has similar disadvantages to epifluorescence microscopy of aniline blue-
stained callose, it has the advantage of being callose-specific due to the high callose-specific
antibodies used. Assessment of callose synthases (CalS) [37,47] and β-(1,3)-glucanases
activities [21,48] have also been used in many studies for indirect callose quantification.

Here, we report a new method of callose quantification based on enzyme immunoassay,
more specifically, Sandwich Enzyme-Linked Immunosorbent Assay (S-ELISA). The method
can be optimized and applied for the quantification of callose in different plants or their
tissues with satisfactory levels of specificity to callose, high precision and reproducibility.
This method can also be modified to quantify any plant-based analyte if the antibody
against that analyte is available.

2. Experimental Design
2.1. Materials

1. Xanthomonas campestris pv. musacearum bacterial isolates, causative agent of banana
Xanthomonas wilt (BXW) disease in banana.

2. Two and half months-old tissue culture-derived Musa balbisiana and “Mbwazirume”
banana plantlets. Musa balbisiana is a diploid (genome BB) wild progenitor of cul-
tivated banana whereas “Mbwazirume” is triploid (genome AAA-EA) and a local
commercial banana variety in Uganda belonging to the larger group of East African
highland banana (EAHB) genotypes.

3. Sodium hydroxide (NaOH) (PanReac AppliChem ITW Reagents—PanReac Química
SLU, Barcelona, Spain; Cat. No.: 141687.1210).

4. Sodium chloride (NaCl) (PanReac AppliChem ITW Reagents—PanReac Química SLU,
Barcelona, Spain; Cat. No.: A2942).

5. Potassium di-hydrogen phosphate (KH2PO4) (PanReac AppliChem ITW Reagents—
PanReac Química SLU, Barcelona, Spain; Cat. No.: 141509).

6. Di-sodium hydrogen phosphate (Na2HPO4) (PanReac AppliChem ITW Reagents—
PanReac Química SLU, Barcelona, Spain; Cat. No.: 141679).

7. Potassium chloride (KCl) (PanReac AppliChem ITW Reagents—PanReac Química
SLU, Barcelona, Spain; Cat. No.: A2939).

8. Sodium azide (NaN3) (PanReac AppliChem ITW Reagents—PanReac Química SLU,
Barcelona, Spain; Cat. No.: A1430).

9. Hydrochloric acid (HCl) (PanReac AppliChem ITW Reagents—PanReac Química
SLU, Barcelona, Spain; Cat. No.: 141020).

10. Sodium carbonate (Na2CO3) (PanReac AppliChem ITW Reagents—PanReac Química
SLU, Barcelona, Spain; Cat. No.: 141648).

11. Sodium hydrogen carbonate (NaHCO3) (PanReac AppliChem ITW Reagents—PanReac
Química SLU, Barcelona, Spain; Cat. No.: 141638).

12. Polyvinylpyrrolidone (PVP) (PanReac AppliChem ITW Reagents—PanReac Química
SLU, Barcelona, Spain; Cat. No.: A2260).

13. Diethanolamine (PanReac AppliChem ITW Reagents—PanReac Química SLU, Barcelona,
Spain; Cat. No.: 191287).
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14. Micropipette tips (Eppendorf, Hamburg, Germany; Brand: epT.I.P.S. ® Singles; Cat.
No.: 022492209).

15. Microcentrifuge tubes 1.5 mL (Eppendorf, Hamburg, Germany; Catalog No. 022363204).
16. Microcentrifuge tubes 2 mL (Genesee Scientific Corp., San Diego, CA, USA; Cat. No.:

24–283).
17. Reagent reservoirs (Thermo Fisher Scientific Inc., Waltham, MA, USA; Cat. No.: 15075).
18. ELISA plates, 96-well, flat base, transparent, polystyrene, high binding (Sarstedt AG

& Co. KG, Nümbrecht, Germany; Cat. No.: 82.1581.200).
19. Laminarin (Alfa aesar, Haverhill, MA, USA; Cat. No.: J66193).
20. Para-nitrophenyl phosphate (pNPP) (Merck KGaA, Darmstadt, Germany; Cat. No.:

20-106).
21. Parafilm (Laboratory film) (Paul Marienfeld GmbH & Co. KG, Lauda-Königshofen,

Germany; Cat. No.: 740751).
22. Tween-20 (Biomatik Corporation, Ontario, Canada; Cat. No.: A4031).
23. Bovine Serum Albumin (BSA) (Thermo Fisher Scientific, Waltham, MA, USA; Cat.

No.: B14).
24. Ultrapure distilled water (Thermo Fisher Scientific, Waltham, MA, USA; Cat. No.:

10-977-015).
25. Blotting paper (Kim-Fay EA Limited, Nairobi, Kenya; Fay Kitchen towels).
26. Aluminium foil (Kim-Fay EA Limited, Nairobi, Kenya).
27. Primary antibody (1-3-β-glucan-directed mouse IgG) (Bio supplies Australia Pty Ltd.,

Melbourne, Australia; Cat. No.: 400-2).
28. Primary antibody in coating buffer (see Reagents Setup).
29. Primary antibody in blocking buffer (see Reagents Setup).
30. Secondary antibody conjugated to Alkaline Phosphatase (anti-Mouse IgG-Alkaline

phosphatase) (Sigma Life Sciences, Cherry Hill, NJ, USA; Cat. No.: A5153) (see
Reagents Setup).

31. Blocking buffer (see Reagents Setup).
32. Coating buffer (see Reagents Setup).
33. Wash buffer (see Reagents Setup).
34. Conjugate buffer (see Reagents Setup).
35. Substrate buffer (see Reagents Setup).
36. Phosphate buffered saline (PBS) (see Reagents Setup).
37. Para-nitrophenyl phosphate (pNPP) solution (see Reagents Setup).
38. Microplate Manager® 6 Version 6 software (Bio-Rad Laboratories, Inc., Hercules, CA,

USA; Cat. No.: 1689520).

2.2. Equipment

1. Freeze-drier (LabWrench, Canada, USA; Brand: VirTis—BenchTop™ “K” series;
Model: 4KBTXL; Cat. No.: 448053).

2. Digital Shaker (Eppendorf, Hamburg, Germany; Brand: MixMate®; Cat. No.: 5353000529).
3. Centrifuge (Eppendorf, Hamburg, Germany; Brand: 5425R; Cat. No.: 5406000240).
4. Micropipettes (0.5–1000 µL) (Eppendorf, Hamburg, Germany; Brand: Research ® plus;

Cat. No.: 3123000900).
5. 12-channel micropipette (30–300 µL) (Eppendorf, Hamburg, Germany; Brand: 2100 se-

ries; Cat. No.: EP-12-300R).
6. Microplate absorbance reader (Bio-Rad Laboratories, Inc., Hercules, CA, USA; iMark;

Cat. No.: 1681135EDU).
7. 405 nm filter for the iMark microplate reader (Lasec International Pty. Ltd., Cape

Town, South Africa; Model: iMark 680; Cat. No.: BRD1681011).
8. Incubator (Esco Lifesciences Group, Singapore; Isotherm® Forced Convection Incuba-

tor; Model: IFA-54-8, Cat. No.: 2100002).
9. Combined refrigerator- freezer (4 ◦C and −20 ◦C) (Haier Medical and laboratory Co.

Ltd., Qingda, China; Model: HYCD-282).
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10. Beadbeater 96 (BioSpec Products Inc., Bartlesville, OK, USA, Cat. No.: 1001EUR).
11. Precision water bath (Thermo Fisher Scientific Inc., Newinton, CT, USA; Model: GP10;

Cat. No.: TSGP10).
12. Analytical balance (Mettler-Toledo AG, Greifensee, Switzerland; Model: ML204/01).
13. pH meter (Hanna Instruments, Woonsocket, RI, USA; Model HI9126; S/N: 02310048991).

3. Procedure
3.1. Inoculation of Experimental Plants and Sampling

1. OPTIONAL STEP Inoculate 2.5-month-old tissue-culture-derived banana plantlets
(Musa balbisiana and Mbwazirume) (Figure 1, Step 1) with 200 µL of the PCR-confirmed
Xcm inoculum (1 × 108 cells) on the dorsal side of the leaf petioles [49] (Figure 1,
Step 2). Quantification of callose using this method can be done in any plant samples
depending on the objectives of the study. In our case, we wanted to assess callose
production in two banana genotypes infected with Xcm as a biotic stress imposed on
the plants.

2. OPTIONAL STEP Inoculate the control plantlets with 200 µL of double distilled
sterile water. Replicate the experiments 6–10 times and repeat at least 2–3 times
(Figure 1, Step 2).

3. Quickly excise banana leaf, pseudostem and corm samples at 14 days post-inoculation
(dpi) (time of sampling is variable depending on experimental design) and place them
into labeled 50 mL falcon tubes (Figure 1, Step 3).
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Figure 1. Schematic illustration of the major steps involved in callose quantification.

! NOTE: The 14 dpi was chosen as the sampling point because it has been shown to
be the time at which the symptoms of bacterial wilt disease of banana appear following
Xcm infection or inoculation [49,50].

4. Immediately immerse the 50 mL falcon tubes containing the samples into liquid nitrogen.
5. Transport the samples and store at −80 ◦C.
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with minimal freeze–thaw cycles.

3.2. Sample Preparation (Time to Completion: 3 Days 2 h)

1 Freeze-dry the samples for 72 h using the Mini LYOTRAP freeze-drier (LTE Scientific
Ltd., Greenfield, UK) (Figure 1, Step 4).
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2 Place 30 mg of the freeze-dried samples into 2 mL eppendorf tube containing 2 steel
bicycle beads and pulverize the tissue samples into fine powder by the use of the
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NaOH and incubate for 30 min at 80 °C in a water bath, with occasional vortexing 
after every 10 min [43,53] (Figure 1, Step 6).  

PAUSE STEP The pulverized samples can be stored in a cool dry environment
at room temperature, well-sealed and safe from moisture for up to 4 months [51,52] or at
−80 ◦C for up to 1 year with minimal freeze–thaw cycles.

3.3. Extraction of Callose from the Banana Samples (Time to Completion: 1 h)

1. To the 30 mg of the powdered samples in 2 mL eppendorf tube, add 800 µL of 1 M
NaOH and incubate for 30 min at 80 ◦C in a water bath, with occasional vortexing
after every 10 min [43,53] (Figure 1, Step 6).

2. Allow the tube to cool to room temperature (approximately 5 min) and centrifuge at
12,000 rpm for 5 min.

3. OPTIONAL STEP Transfer the supernatant (callose extract) to a sterile 2 mL eppen-
dorf tube and dilute the leaves, pseudostems and corms with the blocking buffer (see
Reagents Setup) at a ratio of 1:1, 1:1 and 1:2, respectively. The callose extract may or
may not be diluted. Once required, dilution should be done in the blocking buffer and
the dilution ratio needs to be optimized for different sample types to get absorbance
that lies within the range of the standard curve.
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up to 6 months with minimal freeze–thawing cycles. Thaw to room temperature before use.

6 Use the callose extracts and standards to quantify callose in the plant tissues (Figure 1,
Step 7–8) as indicated in Section 3.5 below.

3.5. Quantification of Callose by S-ELISA (Time to Completion: 4 Days)

1. Add 100 µL of the primary antibody (1-3-β-glucan-directed mouse IgG) in a coating
buffer (see Reagents Setup) to each of the wells of the plate (Figure 2, Step 1).

2. Seal the plate tightly with parafilm and incubate overnight at 4 ◦C in a refrigerator.



Methods Protoc. 2022, 5, 54 6 of 11

3. The next day, place the plate on the bench and allow it to get to room temperature
(approximately 10 min).

4. Wash the plate by standard blotting and washing procedures [58]. Briefly, add 200 µL
of the wash buffer (see Reagents Setup) to the plate, vortex at 500 rpm for 30 sec using
MixMate® Digital Shaker (Eppendorf, Hamburg, Germany) and blot on tissue paper.
Wash the plate 2 more times (Figure 2, Step 2).
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room temperature, well-sealed and safe from moisture for up to 4 months [51,52] or at −80 
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3.3. Extraction of Callose from the Banana Samples (Time to Completion: 1 h) 
1. To the 30 mg of the powdered samples in 2 mL eppendorf tube, add 800 μL of 1 M 

NaOH and incubate for 30 min at 80 °C in a water bath, with occasional vortexing 
after every 10 min [43,53] (Figure 1, Step 6).  

CRITICAL STEP Do not allow the plate to completely dry and use a sterile mi-
cropipette tip to remove any bubbles present in the wells without touching the base and
walls of the plate.

5. Add 200 µL of the blocking buffer (see Reagents Setup) to each of the wells of the
plate (Figure 2, Step 3).

6. Seal the plate tightly with parafilm and incubate for 4 h at 37 ◦C.
7. Repeat Step 3 and 4 (Figure 2, Step 4).
8. Add 100 µL of the callose extracts obtained in Section 3.2 above to the designated

wells of the plate (Figure 2, Step 5).
9. Add 100 µL of the laminarin standards obtained in Section 3.4 above to the designated

wells of the plate (Figure 2, Step 5).
10. Add 100 µL of the blank obtained in Section 3.4 above to the designated wells of the

plate (Figure 2, Step 5).
11. Repeat Step 2 to 4 (Figure 2, Step 6).
12. Add 100 µL of the primary antibody (1-3-β-glucan-directed mouse IgG) in blocking

buffer (see Reagents Setup) to each of the wells of the plate (Figure 2, Step 7).
13. Repeat Step 6, then Step 3 to 4 above (Figure 2, Step 8).
14. Add 100 µL of the secondary antibody (anti-Mouse IgG-Alkaline phosphatase) (see

Reagents Setup) to each of the wells of the plate [58,59] (Figure 2, Step 9).
15. Repeat Step 2 to 4 above (Figure 2, Step 10).
16. Add 100 µL of freshly prepared para-nitrophenyl phosphate (pNPP) solution at a

concentration of 1 mg/mL (see Reagents Setup) to each of the wells of the plate
(Figure 2, Step 11).
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17. VARIABLE STEP Incubate the plate on bench at room temperature for 30 min [60].
The incubation time may vary depending on the plant samples and standard used.
In our case, laminarin had good readings between 20–40 min with best readings at
30 min.

18. Terminate the reaction by addition of 100 µL of freshly prepared stop solution (0.5 M
NaOH) to each of the wells of the plate [60].

19. Transfer plate to iMark Microplate Reader (BIO-RAD, Japan) (equilibrated to 37 ◦C)
and fitted with 405 nm filter, shake at medium speed for 1 min and read absorbances
at 405 nm [60] (Figure 2, Step 12).

4. Expected Results

This protocol was developed to quantify callose in banana leaves, pseudostems and
corms by the S-ELISA method that is based on callose-specific immunoglobulin G (IgG)
and quantification of the callose by spectrophotometry. The leaf petioles of two and-
one-half-month-old banana plantlets were inoculated with Xcm and leaf, pseudostem
and corm samples were collected at 14 dpi, immediately frozen in liquid nitrogen and
transported to the laboratory. The plant samples were then freeze-dried and pulverized
into fine powder to increase the surface area of the plant tissues for callose extraction.
Callose was extracted from the pulverized plant samples as described above. S-ELISA
method was performed as described in Section 3. A simple linear regression of laminarin
absorbance at 405 nm against laminarin concentration (µg/mL) was performed to obtain
the standard curve, Y = β1X + β0 [(Y = laminarin absorbance at 405 nm, β1 = r = slope of
the regression line = Pearson correlation coefficient, X = Log10 (laminarin concentration
in µg/mL) and β0 = Y-intercept)]. The actual equation of the regression line is given as
y = 0.5079x − 0.04534 and the laminarin standard curve is given in Mustafa et al. [50].
Callose absorbance and concentrations were therefore given as laminarin equivalents (LE).
To compute callose concentrations in the plant samples, the absorbance of the blank was
subtracted from the absorbance of the samples and the standard curve was used to estimate
the callose concentration in µg/mL as LE. R statistical package, version 3.6.3 [61] was
used to analyze all data. All data was checked for normality of distribution using the
Shapiro–Wilk test and homoscedasticity of variances (α > 0.05). The independent sample
t-test was used to compare the callose production between the Xcm-inoculated and control
groups (p ≤ 0.05).

Callose production in the leaves of Xcm-inoculated groups were statistically higher
than the control groups in Mbwazirume (independent sample t-test, t(12) = 4.9520, p < 0.001)
and Musa balbisiana (independent sample t-test, t(14) = 6.2617, p < 0.0001) (Figure 3,
Supplementary Table S1). Similarly, callose production in the corms of Xcm-inoculated
and control groups varied significantly in both the banana genotypes (independent sample
t-test, p < 0.05). Contrary to the observation made for the leaves and corms, callose produc-
tion in the pseudostems of Xcm-inoculated and control groups of both Mbwazirume and
Musa balbisiana were not significantly different (independent sample t-test, p = 0.05142 and
p = 0.05818, respectively) (Figure 3, Supplementary Table S1). Highest callose was produced in
the corms of Xcm-inoculated Mbwazirume plantlets, whereas the lowest callose was produced in
the leaves of Musa balbisiana, control group (Figure 3, Supplementary Table S1). This method was
able to show consistency in our results. An example of the data generated by this method in
comparison to the epifluorescence microscopy method is given in Mustafa et al. [50]. This
method can be applied for the quantification of callose in different plant species with satis-
factory level of specificity to callose, high precision and reproducibility. Moreover, use of
96-well plates makes this method suitable for high throughput callose quantification studies
with minimal subjective sampling and analysis. This method of callose detection is as
reliable as the immunofluorescence spectrophotometry method [29,45,46]. It is noteworthy
that although callose may be easily extracted from freshly harvested plant tissues [18,43,45],
the “sample preparation” step included in our protocol provides a leverage of keeping the
samples for a very long time (up to 1 year) and allows shipping of perishable biological
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samples between distant laboratories at ambient temperatures. This allows opportunities
of repeatability of callose extractions without the necessity of repeatedly setting up the
entire experiment.
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Figure 3. Mean callose concentration in the leaves (A), pseudostems (B) and corms (C) of Xcm-
inoculated and control plantlets of Musa balbisiana and Mbwazirume (independent sample t-test,
α≤ 0.05). MZC = Mbwazirume control; MZX = Mbwazirume Xcm-inoculated; MBC = Musa balbisiana
control; MBX = Musa balbisiana Xcm-inoculated.

5. Reagents Setup

1. Phosphate-buffered saline (PBS), pH 7.4 (1 L) (store at −20 ◦C for up to 12 months).

a. 8.0 g of sodium chloride (NaCl).
b. 0.2 g of monobasic potassium phosphate (KH2PO4).
c. 1.15 g of dibasic sodium phosphate (Na2HPO4).
d. 0.2 g of potassium chloride (KCl).
e. 0.2 g of sodium azide (NaN3).
f. Dissolve in 900 mL of deionised H2O, adjust pH and make up to 1 L.

2. Blocking buffer (1 L) (store at −20 ◦C for up to 6 months).

a. 10 g of bovine serum albumin (BSA) (1% w/v).
b. Dissolve in 900 mL of PBS, make up to 1 L with PBS.

3. Coating buffer (pH 9.6) (1 L) (store at −20 ◦C for up to 12 months)

a. 1.59 g of sodium carbonate (Na2CO3).
b. 2.93 g of sodium bicarbonate (NaHCO3).
c. 0.20 g of sodium azide (NaN3).
d. Dissolve in 900 mL of deionised H2O, adjust pH and make up to 1 L.

4. Primary antibody in coating buffer (store at −20 ◦C for up to 6 months)

a. Reconstitute the lyophilized primary antibody according to manufacturer’s
instruction to obtain the concentrated stock.

b. Dilute the obtained stock in coating buffer to a working concentration of
2 µg/mL.

5. Primary antibody in blocking buffer (store at −20 ◦C for up to 6 months)

a. Reconstitute the lyophilized primary antibody according to manufacturer’s
instruction to obtain the concentrated stock.

b. Dilute the obtained stock in blocking buffer to a working concentration of
2 µg/mL.

6. Wash buffer (1 L) (pH 7.5) (store at −20 ◦C for up to 12 months).

a. 0.5 mL of Tween 20 (0.05% v/v).
b. Dissolve in 990 mL of PBS, make up to 1 L with PBS.
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7. Conjugate buffer (1 L) (store at −20 ◦C for up to 6 months).

a. 2 g of PVP (2% w/v).
b. Dissolve in 900 mL of blocking buffer, make up to 1 L with blocking buffer.

8. Secondary antibody (100 mL) (store at −20 ◦C for up to 6 months).

a. 100 µL of secondary antibody concentrate.
b. 100,000 µL of conjugate buffer (1:1000 ratio).

9. Substrate buffer (1 L) (pH 9.8) (store at −20 ◦C for up to 12 months).

a. 97 mL of diethanolamine.
b. 600 mL of H2O.
c. 0.2 g of sodium azide (NaN3).
d. Adjust pH 9.8 and make up to 1 L with H2O.

10. Para-nitrophenyl phosphate (pNPP) solution (store at −20 ◦C for up to 12 months).

Dissolve para-nitrophenyl phosphate (pNPP) in substrate buffer to a working concen-
tration of 1 mg/mL.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mps5040054/s1, Table S1: Analysis of callose concentration in
the leaves, pseudostems and corms of banana plants inoculated and non-inoculated (control) with
Xcm (Independent sample t-test, α ≤ 0.05).
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